
The RC� Encryption Algorithm�

Ronald L� Rivest

MIT Laboratory for Computer Science
��� Technology Square� Cambridge� Mass� ����	

rivest�theory�lcs�mit�edu


Revised March ��� �		��

Abstract� This document describes the RC� encryption algorithm� a
fast symmetric block cipher suitable for hardware or software imple

mentations� A novel feature of RC� is the heavy use of data�dependent
rotations� RC� has a variable word size� a variable number of rounds� and
a variable
length secret key� The encryption and decryption algorithms
are exceptionally simple�

� Introduction

RC� was designed with the following objectives in mind�

� RC� should be a symmetric block cipher� The same secret cryptographic key
is used for encryption and for decryption� The plaintext and ciphertext are
�xed�length bit sequences �blocks��

� RC� should be suitable for hardware or software� This means that RC�
should use only computational primitive operations commonly found on typ�
ical microprocessors�

� RC� should be fast� This more�or�less implies that RC� be word�oriented�
the basic computational operations should be operators that work on full
words of data at a time�

� RC� should be adaptable to processors of di�erent word�lengths� For example�
as 	
�bit processors become available� it should be possible for RC� to exploit
their longer word length� Therefore� the number w of bits in a word is a
parameter of RC�� di�erent choices of this parameter result in di�erent RC�
algorithms�

� RC� should be iterative in structure� with a variable number of rounds� The
user can explicitly manipulate the trade�o� between higher speed and higher
security� The number of rounds r is a second parameter of RC��

� RC� should have a variable�length cryptographic key� The user can choose
the level of security appropriate for his application� or as required by external
considerations such as export restrictions� The key length b �in bytes� is thus
a third parameter of RC��

� RC� is a trademark of RSA Data Security� Patent pending�



� RC� should be simple� It should be easy to implement� More importantly�
a simpler structure is perhaps more interesting to analyze and evaluate� so
that the cryptographic strength of RC� can be more rapidly determined�

� RC� should have a low memory requirement� so that it may be easily imple�
mented on smart cards or other devices with restricted memory�

� �Last but not least
� RC� should provide high security when suitable param�
eter values are chosen�

In addition� during the development of RC�� we began to focus our atten�
tion on a intriguing new cryptographic primitive� data�dependent rotations� in
which one word of intermediate results is cyclically rotated by an amount deter�
mined by the low�order bits of another intermediate result� We thus developed
an additional goal�

� RC� should highlight the use of data�dependent rotations� and encourage
the assessment of the cryptographic strength data�dependent rotations can
provide�

The RC� encryption algorithm presented here hopefully meets all of the
above goals� Our use of �hopefully� refers of course to the fact that this is still a
new proposal� and the cryptographic strength of RC� is still being determined�

� A Parameterized Family of Encryption Algorithms

In this section we discuss in somewhat greater detail the parameters of RC��
and the tradeo�s involved in choosing various parameters�

As noted above� RC� is word�oriented� all of the basic computational oper�
ations have w�bit words as inputs and outputs� RC� is a block�cipher with a
two�word input �plaintext� block size and a two�word �ciphertext� output block
size� The nominal choice for w is �� bits� for which RC� has 	
�bit plaintext and
ciphertext block sizes� RC� is well�de�ned for any w � �� although for simplicity
it is proposed here that only the values �	� ��� and 	
 be �allowable��

The number r of rounds is the second parameter of RC�� Choosing a larger
number of rounds presumably provides an increased level of security� We note
here that RC� uses an �expanded key table�� S� that is derived from the user�s
supplied secret key� The size t of table S also depends on the number r of rounds�
S has t � ��r � �� words� Choosing a larger number of rounds therefore also
implies a need for somewhat more memory�

There are thus several distinct �RC�� algorithms� depending on the choice
of parameters w and r� We summarize these parameters below�

w This is the word size� in bits� each word contains u � �w��� ��bit bytes�
The nominal value of w is �� bits� allowable values of w are �	� ��� and 	
�
RC� encrypts two�word blocks� plaintext and ciphertext blocks are each
�w bits long�

r This is the number of rounds� Also� the expanded key table S contains
t � ��r � �� words� Allowable values of r are �� �� ���� ����



In addition to w and r� RC� has a variable�length secret cryptographic key�
speci�ed by parameters b and K�

b The number of bytes in the secret key K� Allowable values of b are �� ��
���� ����

K The b�byte secret key� K���� K���� ���� K�b� �� �

For notational convenience� we designate a particular �parameterized� RC�
algorithmas RC��w�r�b� For example� RC������	���has ���bit words� �	 rounds�
a ���byte ����bit� secret key variable� and an expanded key table of ���	��� � �

words� Parameters may be dropped� from last to �rst� to talk about RC� with the
dropped parameters unspeci�ed� For example� one may ask� How many rounds
should one use in RC�����

We propose RC���������	 as providing a �nominal� choice of parameters�
That is� the nominal values of the parameters provide for w � �� bit words� ��
rounds� and �	 bytes of key� Further analysis is needed to analyze the security of
this choice� For RC��	
� we suggest increasing the number of rounds to r � �	�

We suggest that in an implementation� all of the parameters given above
may be packaged together to form an RC� control block� containing the following
�elds�

v � byte version number� �� �hex� for version ��� here�
w � byte�
r � byte�
b � byte�
K b bytes�

A control block is thus represented using b�
 bytes� For example� the control
block

�� �� �C �A �� �� �D �� �� �F �� �� BB �	 
in hexadecimal�

speci�es an RC� algorithm �version ���� with ���bit words� �� rounds� and a ���
byte ����bit� key ��� �� ��� �	�� RC� �key�management� schemes would then
typically manage and transmit entire RC� control blocks� containing all of the
relevant parameters in addition to the usual secret cryptographic key variable�

��� Discussion of Parameterization

In this section we discuss the extensive parameterization that RC� provides�
We should �rst note that it is not intended that RC� be secure for all possible

parameter values� For example� r � � provides essentially no encryption� and
r � � is easily broken� And choosing b � � clearly gives no security�

On the other hand� choosing the maximumallowable parameter values would
be overkill for most applications�

We allow a range of parameter values so that users may select an encryption
algorithm whose security and speed are optimized for their application� while
providing an evolutionary path for adjusting their parameters as necessary in
the future�



As an example� consider the problem of replacing DES with an �equivalent�
RC� algorithm� One might reasonable choose RC������	�� as such a replace�
ment� The input�output blocks are �w � 	
 bits long� just as in DES� The
number of rounds is also the same� although each RC� round is more like two
DES rounds since all data registers� rather than just half of them� are updated in
one RC� round� Finally� DES and RC������	�� each have �	�bit ���byte� secret
keys�

Unlike DES� which has no parameterization and hence no �exibility� RC�
permits upgrades as necessary� For example� one can upgrade the above choice for
a DES replacement to an ���bit key by moving to RC������	���� As technology
improves� and as the true strength of RC� algorithms becomes better understood
through analysis� the most appropriate parameter values can be chosen�

The choice of r a�ects both encryption speed and security� For some appli�
cations� high speed may be the most critical requirement�one wishes for the
best security obtainable within a given encryption time requirement� Choosing
a small value of r �say r � 	� may provide some security� albeit modest� within
the given speed constraint�

In other applications� such as key management� security is the primary con�
cern� and speed is relatively unimportant� Choosing r � �� rounds might be
appropriate for such applications� Since RC� is a new design� further study is
required to determine the security provided by various values of r� RC� users
may wish to adjust the values of r they use based on the results of such studies�

Similarly� the word size w also a�ects speed and security� For example� choos�
ing a value of w larger than the register size of the CPU can degrade encryption
speed� The word size w � �	 is primarily for researchers who wish to examine
the security properties of a natural �scaled�down� RC�� As 	
�bit processors
become common� one can move to RC��	
 as a natural extension of RC����� It
may also be convenient to specify w � 	
 �or larger� if RC� is to be used as
the basis for a hash function� in order to have ����bit �or larger� input�output
blocks�

It may be considered unusual and risky to specify an encryption algorithm
that permits insecure parameter choices� We have two responses to this criticism�

�� A �xed set of parameters may be at least as dangerous� since the parameters
can not be increased when necessary� Consider the problem DES has now�
its key size is too short� and there is no easy way to increase it�

�� It is expected that implementors will provide implementations that ensure
that suitably large parameters are chosen� While unsafe choices might be
usable in principle� they would be forbidden in practice�

It is not expected that a typical RC� implementation will work with any
RC� control block� Rather� it may only work for certain �xed parameter values�
or parameters in a certain range� The parameters w� r� and b in a received or
transmitted RC� control block are then merely used for type�checking�values
other than those supported by the implementation will be disallowed� The �ex�
ibility of RC� is thus utilized at the system design stage� when the appropriate



parameters are chosen� rather than at run time� when unsuitable parameters
might be chosen by an unwary user�

Finally� we note that RC� might be used in some applications that do not re�
quire cryptographic security� For example� one might consider using RC��������
�with no secret key� applied to inputs �� �� �� ��� to generate a sequence of pseudo�
random numbers to be used in a randomized computation�

� Notation and RC� Primitive Operations

We use lg�x� to denote the base�two logarithm of x�
RC� uses only the following three primitive operations �and their inverses��

�� Two�s complement addition of words� denoted by ���� This is modulo��w

addition� The inverse operation� subtraction� is denoted ����
�� Bit�wise exclusive�OR of words� denoted by ��
�� A left�rotation �or �left�spin�� of words� the cyclic rotation of word x left by

y bits is denoted x ��� y� Here y is interpreted modulo w� so that when w is
a power of two� only the lg�w� low�order bits of y are used to determine the
rotation amount� The inverse operation� right�rotation� is denoted x ��� y�

These operations are directly and e�ciently supported by most processors�
A distinguishing feature of RC� is that the rotations are rotations by �vari�

able� �plaintext�dependent� amounts� We note that on modern microprocessors�
a variable�rotation x ��� y takes constant time� the time is independent of the
rotation amount y� We also note that rotations are the only non�linear operator
in RC�� there are no nonlinear substitution tables or other nonlinear opera�
tors� The strength of RC� depends heavily on the cryptographic properties of
data�dependent rotations�

� The RC� Algorithm

In this section we describe the RC� algorithm� which consists of three compo�
nents� a key expansion algorithm� an encryption algorithm� and a decryption

algorithm� We present the encryption and decryption algorithms �rst�
Recall that the plaintext input to RC� consists of two w�bit words� which we

denote A and B� Recall also that RC� uses an expanded key table� S�����t� ���
consisting of t � ��r � �� w�bit words� The key�expansion algorithm initializes
S from the user�s given secret key parameter K� �We note that the S table in
RC� encryption is not an �S�box� such as is used by DES� RC� uses the entries
in S sequentially� one at a time��

We assume standard little�endian conventions for packing bytes into input�output
blocks� the �rst byte occupies the low�order bit positions of register A� and so on�
so that the fourth byte occupies the high�order bit positions in A� the �fth byte
occupies the low�order bit positions in B� and the eighth �last� byte occupies the
high�order bit positions in B�



��� Encryption

We assume that the input block is given in two w�bit registers A and B� We
also assume that key�expansion has already been performed� so that the array
S�����t��� has been computed� Here is the encryption algorithm in pseudo�code�

A � A � S����
B � B � S����
for i � � to r do

A � ��A� B� ��� B� � S�� � i��
B � ��B � A� ��� A� � S�� � i� ���

The output is in the registers A and B�
We note the exceptional simplicity of this ��line algorithm�
We also note that each RC� round updates both registers A and B� whereas

a �round� in DES updates only half of its registers� An RC� �half�round� �one
of the assignment statements updating A or B in the body of the loop above� is
thus perhaps more analogous to a DES round�

��� Decryption

The decryption routine is easily derived from the encryption routine�

for i � r downto � do
B � ��B � S�� � i � ��� ��� A�� A�
A � ��A� S�� � i�� ��� B� � B�

B � B � S����
A � A � S����

��� Key Expansion

The key�expansion routine expands the user�s secret key K to �ll the expanded
key array S� so that S resembles an array of t � ��r � �� random binary words
determined by K� The key expansion algorithm uses two �magic constants�� and
consists of three simple algorithmic parts�

De�nition of the Magic Constants The key�expansion algorithm uses two
word�sized binary constants Pw and Qw� They are de�ned for arbitrary w as
follows�

Pw � Odd��e � ���w� ���

Qw � Odd��� � ���w� ���

where

e � �����������
� ��� �base of natural logarithms�

� � ��	����� ���
 ��� �golden ratio� �



and where Odd�x� is the odd integer nearest to x �rounded up if x is an even in�
teger� although this won�t happen here�� For w � �	� ��� and 	
� these constants
are given below in binary and in hexadecimal�

P�� � ���������������� � b�e�

Q�� � ���������������� � �e	�

P	
 � �������������������������������� � b�e����	

Q	
 � �������������������������������� � �e	���b�

P�� � ����������������������������������������������������������������

� b�e����

aed
a�b

Q�� � ����������������������������������������������������������������

� �e	���b��f�a�c��

Converting the Secret Key from Bytes to Words� The �rst algorithmic
step of key expansion is to copy the secret keyK�����b��� into an array L�����c���
of c � db�ue words� where u � w�� is the number of bytes�word� This operation
is done in a natural manner� using u consecutive key bytes of K to �ll up each
successive word in L� low�order byte to high�order byte� Any un�lled byte posi�
tions of L are zeroed� In the case that b � c � � we reset c to � and set L��� to
zero�

On �little�endian� machines such as an Intel �
�	� the above task can be
accomplished merely by zeroing the array L� and then copying the string K
directly into the memory positions representing L� The following pseudo�code
achieves the same e�ect� assuming that all bytes are �unsigned� and that array
L is initially zeroed everywhere�

c � dmax�b� ���ue
for i � b� � downto � do

L�i�u� � �L�i�u� ��� �� �K�i��

Initializing the Array S� The second algorithmic step of key expansion is
to initialize array S to a particular �xed �key�independent� pseudo�random bit
pattern� using an arithmetic progression modulo �w determined by the �magic
constants� Pw and Qw� Since Qw is odd� the arithmetic progression has period
�w�

S��� � Pw�
for i � � to t� � do

S�i� � S�i � �� �Qw�



Mixing in the Secret Key� The third algorithmic step of key expansion is
to mix in the user�s secret key in three passes over the arrays S and L� More
precisely� due to the potentially di�erent sizes of S and L� the larger array will
be processed three times� and the other may be handled more times�

i � j � ��
A � B � ��
do � �max�t� c� times�

A � S�i� � �S�i� �A �B� ��� ��
B � L�j� � �L�j� � A� B� ��� �A� B��
i � �i� �� mod�t��
j � �j � �� mod�c��

The key�expansion function has a certain amount of �one�wayness�� it is not
so easy to determine K from S�

� Discussion

A distinguishing feature of RC� is its heavy use of data�dependent rotations�
the amount of rotation performed is dependent on the input data� and is not
predetermined�

The encryption�decryption routines are very simple� While other operations
�such as substitution operations� could have been included in the basic round
operations� our objective is to focus on the data�dependent rotations as a source
of cryptographic strength�

Some of the expanded key table S is initially added to the plaintext� and
each round ends by adding expanded key from S to the intermediate values just
computed� This assures that each round acts in a potentially di�erent manner�
in terms of the rotation amounts used�

The xor operations back and forth between A and B provide some avalanche
properties� causing a single�bit change in an input block to cause multiple�bit
changes in following rounds�

� Implementation

The encryption algorithm is very compact� and can be coded e�ciently in assem�
bly language on most processors� The table S is both quite small and accessed
sequentially� minimizing issues of cache size�

A reference implementation of RC���������	� together with some sample
input�output pairs� is provided in the Appendix�

This �non�optimized� reference implementation encrypts ���K bytes�second
on a ��Mhz �
�	 laptop ��	�bit Borland C�� compiler�� and ��
M bytes�second
on a Sparc � �gcc compiler�� These speeds can certainly be improved� In assem�
bly language the rotation operator is directly accessible� an assembly�language



routine for the �
�	 can perform each half�round with just four instructions� An
initial assembly�language implementation runs at ���M bytes�sec on a ��MHz
�
�	 SLC� A Pentium should be able to encrypt at several megabytes�second�

� Analysis

This section contains some preliminary results on the strength of RC�� Much
more work remains to be done� Here we report the results of two experiments
studying how changing the number of rounds a�ects properties of RC��

The �rst test involved examining the uniformity of correlation between in�
put and output bits� We found that four rounds su�ced to get very uniform
correlations between individual input and output bits in RC�����

The second test checked to see if the data�dependent rotation amounts de�
pended on every plaintext bit� in ��� million trials with random plaintext and
keys� That is� we checked whether �ipping a plaintext bit caused some intermedi�
ate rotation to be a rotation by a di�erent amount�We found that eight rounds in
RC���� were su�cient to cause each message bit to a�ect some rotation amount�

The number of rounds chosen in practice should always be at least as great
�if not substantially greater� than these simple tests would suggest� As noted
above� we suggest �� rounds as a �nominal� choice for RC����� and �	 rounds
for RC��	
�

RC��s data�dependent rotations may help frustrate di�erential cryptanalysis
�Biham�Shamir ���� and linear cryptanalysis �Matsui ����� since bits are rotated
to �random� positions in each round�

There is no obvious way in which an RC� key can be �weak�� other than by
being too short�

I invite the reader to help determine the strength of RC��

� Acknowledgements

I�d like to thank Burt Kaliski� Yiqun Lisa Yin� Paul Kocher� and everyone else
at RSA Laboratories for their comments and constructive criticisms� and Mikael
Pettersson for pointing out an error in an earlier version of this paper �zero�
length keys were handled incorrectly�� I thank Ray Sydney for pointing out that
in the earlier version of this paper� the test examples were incorrectly printed
out in byte�reversed order� I�d also like to thank Karl A� Siil for bringing to
my attention a cipher due to W� E� Madryga ��� that also uses data�dependent
rotations� albeit in a rather di�erent manner�

References

�� E� Biham and A� Shamir� A Di�erential Cryptanalysis of the Data Encryption Stan�

dard� Springer
Verlag� �		��



�� W� E� Madryga� A high performance encryption algorithm� In Computer Security�

A Global Challenge� pages �������� North Holland� Elsevier Science Publishers�
�	���

�� Mitsuru Matsui� The �rst experimental cryptanalysis of the Data Encryption Stan

dard� In Yvo G� Desmedt� editor� Proceedings CRYPTO ��� pages ����� Springer�
�		�� Lecture Notes in Computer Science No� ��	�



	 Appendix

�� RC�REF�C �� Reference implementation of RC��	
��
��� in C� ��

�� Copyright �C� ���� RSA Data Security� Inc� ��

�include �stdio�h�

typedef unsigned long int WORD� �� Should be 	
�bit � � bytes ��

�define w 	
 �� word size in bits ��

�define r �
 �� number of rounds ��

�define b �� �� number of bytes in key ��

�define c � �� number words in key ��

�� c � max���ceil�
�b�w�� ��

�define t 
� �� size of table S � 
��r��� words ��

WORD S�t�� �� expanded key table ��

WORD P � �xb�e����	� Q � �x�e	���b�� �� magic constants ��

�� Rotation operators� x must be unsigned� to get logical right shift��

�define ROTL�x�y� ���x����y��w����� � ��x����w��y��w�������

�define ROTR�x�y� ���x����y��w����� � ��x����w��y��w�������

void RC��ENCRYPT�WORD �pt� WORD �ct� �� 
 WORD input pt�output ct ��

� WORD i� A�pt����S���� B�pt����S����

for �i��� i��r� i���

� A � ROTL�A�B�B��S�
�i��

B � ROTL�B�A�A��S�
�i����

 

ct��� � A� ct��� � B�

 

void RC��DECRYPT�WORD �ct� WORD �pt� �� 
 WORD input ct�output pt ��

� WORD i� B�ct���� A�ct����

for �i�r� i��� i���

� B � ROTR�B�S�
�i����A��A�

A � ROTR�A�S�
�i��B��B�

 

pt��� � B�S���� pt��� � A�S����

 

void RC��SETUP�unsigned char �K� �� secret input key K�����b��� ��

� WORD i� j� k� u�w�
� A� B� L�c��

�� Initialize L� then S� then mix key into S ��

for �i�b���L�c������ i!���� i��� L�i�u� � �L�i�u���
��K�i��

for �S����P�i��� i�t� i��� S�i� � S�i����Q�

for �A�B�i�j�k��� k�	�t� k���i��i���"t�j��j���"c� �� 	�t � 	�c ��

� A � S�i� � ROTL�S�i���A�B��	��

B � L�j� � ROTL�L�j���A�B���A�B���

 

 



void printword�WORD A�

� WORD k�

for �k���k�w�k��
� printf�#"�
�
lX#��A��k���xFF��

 

void main��

� WORD i� j� k� pt��
�� pt
�
�� ct�
� � ���� �

unsigned char key�b��

if �sizeof�WORD�!���

printf�#RC� error$ WORD has "d bytes�%n#�sizeof�WORD���

printf�#RC��	
��
��� examples$%n#��

for �i���i���i���

� �� Initialize pt� and key pseudorandomly based on previous ct ��

pt�����ct���� pt�����ct����

for �j���j�b�j��� key�j� � ct���"�
���j��

�� Setup� encrypt� and decrypt ��

RC��SETUP�key��

RC��ENCRYPT�pt��ct��

RC��DECRYPT�ct�pt
��

�� Print out results� checking for decryption failure ��

printf�#%n"d� key � #�i��

for �j��� j�b� j��� printf�#"�
�
X#�key�j���

printf�#%n plaintext #�� printword�pt������ printword�pt������

printf�# ���� ciphertext #�� printword�ct����� printword�ct�����

printf�#%n#��

if �pt����!�pt
��� �� pt����!�pt
����

printf�#Decryption Error!#��

 

 

������������������������������������������������������������������

RC��	
��
��� examples$

�� key � ��������������������������������

plaintext ���������������� ���� ciphertext 
�A�DBEE���B
F�D


� key � ���F����BE��B
���	��A�����A�CE��

plaintext 
�A�DBEE���B
F�D ���� ciphertext F�C��	AC�B
B
��


	� key � �
		�
E��AEB�F
FD�B���BB
DC���
�

plaintext F�C��	AC�B
B
��
 ���� ciphertext 
F�
B	B��	��FC�


�� key � DC��DB�	��A��
�F��
�B��	B�F�
BAF

plaintext 
F�
B	B��	��FC�
 ���� ciphertext ��C��
B

�D���CC

�� key � �
��F���D��BA���
������D�F��	�
�

plaintext ��C��
B

�D���CC ���� ciphertext EB��E���DA	��

�

This article was processed using the LaTEX macro package with LLNCS style


