Obtaining Universally Composable Security:
Towards the Bare Bones of Trust

Ran Canetti
IBM

‘-

Assertlng Secuntyof Protocols~

A desired property: Composability

Meta-definition:

A notion of security iIs composable if the security
guarantees it provides remain valid even when
the analysed protocol iIs composed with (i.e., runs
alongside) other protocoils.

The advantages of composable security

e Simplifies the analysis:

Can partition a complex system to small
components, analyze each component separately
as a “stand alone” protocol, and then deduce the
security of the overall system.

The advantages of composable security

e Simplifies the analysis:

Can partition a complex system to small
components, analyze each component separately
as a “stand alone” protocol, and then deduce the
security of the overall system.

* Provides stronger security:

Provides security even in unknown/dynamic
systems where some of the components are
unknown at the time of analysis.

How to assert composable security

Need:

e Composition operation(s) that capture common
ways in which protocols are combined in actual
systems.

* A way to argue that security properties of
protocols are preserved under these
composition operations.

The UC security framework

Provides:

* A general methodology for asserting security properties
of protocols.

The UC security framework

Provides:

* A general methodology for asserting security properties
of protocols.

* A general composition operation - universal composition -

that captures most standard composition methods.
(E.g.: sequential, concurrent, subroutine calls, on same/different
inputs, by same/different parties)

The UC security framework

Provides:

* A general methodology for asserting security properties
of protocols.

* A general composition operation - universal composition -

that captures most standard composition methods.
(E.g.: sequential, concurrent, subroutine calls, on same/different
inputs, by same/different parties)

* A guarantee that security properties asserted within the
framework are preserved even under universal
composition with arbitrary other protocols.

The strength of UC security

Can:

e Analyze security of a protocol in a stand alone
setting

e Be guaranteed that the security properties of the
protocol remain intact in an arbitrary, multi-party,
multi-protocol, multi-instance system.

The strength of UC security

Can:

e Analyze security of a protocol in a stand alone
setting

e Be guaranteed that the security properties of the
protocol remain intact in an arbitrary, multi-party,
multi-protocol, multi-instance system.

However...

Impossibility of UC security

e Authenticated communication cannot be achieved
In the bare model.

But, this is true even for “basic” (non-composable) security...
Some sort of initial authentication is necessary.

Impossibility of UC security

* Many two-party tasks (e.g., commitment, zero-
knowledge, coin tossing, oblivious transfer) are
impossible to realize even given ideal
authentication.

This is NOT true for “basic” security (e.g. [GMW87]).

* Impossibility generalizes to multi-party tasks with
dishonest majority.

Relaxations of UC security

Some proposed relaxations:
* “Angel-Based” UC [Prabhakaran-Sahai04]

* UC with Quasi-polynomial simulation
Barak-Sahai09]

* Indistinguishability-based security
Micali-Pass-Rosen06]

These notions avoid the above impossibility.
But, neither notion provides all that we want...

Can UC security be relaxed, while maintaining
both security and composability ?

Can we have an alternative definition of security that:
e Guarantees basic (stand-alone) security

* |s preserved under universal composition

* |s more relaxed than UC-security?

No, if one takes “basic security” to mean
simulation-based security, e.g. a la [COO0]:

Thm [Lindell03,04,C06]: Assume protocol 1T realizes a
task (ideal functionality) F with basic security, even
when composed with arbitrary protocols. Then Tt
UC-realizes F.

Conclusion

e UC-security is too strong a notion.

* Obtaining security that remains intact under
general composition operations with arbitrary
protocols is not possible. We should make do with
weaker notions.

Thank you!

An alternative approach:
Use trusted set-up

e Design and analyze protocols in an idealized
model where some system components are
trusted to behave in a certain way.

e Security will be guaranteed in actual systems
where the idealizations are physically guaranteed.

An alternative approach:
Use trusted set-up

e Design and analyze protocols in an idealized
model where some system components are
trusted to behave in a certain way.

e Security will be guaranteed in actual systems
where the idealizations are physically guaranteed.

Several trusted set-up models for realizing UC
security have been proposed.

Evaluating trusted set-up models

Main parameters:
e Ease of constructing and analyzing protocols
e Ease of physical realization, or “level of trust”

In the rest of this talk

Review the UC framework
Review impossibility of UC commitment w/o set-up

Review possibility in some trusted set-up models:
« Common reference string (CRS)
e “Sunspot” model
» Key registration model
e Tamper-proof hardware
e Global and augmented CRS
Discuss set-up models for authentication

The trusted-party paradigm
[Goldreich-Micali-Wigderson87]

(

‘A protocol is secure for some task if it “emulates” an
“Ideal process” where the parties hand their inputs
to a “trusted party”, who locally computes the
desired outputs and hands them back to the
parties.’

Many formalizations exist, with varying levels of composability
guarantees, e.g. [Goldwasser-Levin 90, Micali-Rogaway
91, Beaver 91, Canetti 93,95,00,01, Pfitzmann-Waidner
94,00,01, Hirt-Maurer 00, Dodis-Micali 00]

UC security:

Protocol execution:

UC security:

Ideal process: Protocol execution:

e
\ ">

«

‘P

4

UC security:

“

Ideal process: Protocol execution:

‘P

P. |«

TZ
T3 :
Protocol TT UC-realizes F if;
For any adversary A
F

There exists an adversary S
Such that no environment E can tell
whether it interacts with:

- A run of Ttwith A

- Anideal runwith Fand S

The commitment functionality, F__
(simplified)

Upon receiving (“commit”,C,R,x) from party C,
record x, and send (C, “receipt”) to R.

Upon receiving (“open”) from C,
send (C,x) to R and halt.

Recall
« R is assured that the value it received in step 2 was fixed in step 1.
 Cis assured that R learns nothing about x before it is opened.

Impossibility of UC commitment

Theorem [C-FischlinO1]: There exist no two-party
protocols that UC-realize F___, even when given

iIdeal authentication.

com

Proof idea:

Let TT be a two-party protocol that UC-realize F___. .
Then...

Consider E.and A, :

Protocol execution:

\ “receipt”
C e

*The committer C is corrupted
A, delivers all messages between R and E..

*E. behaves as an honest committer C on random input b.

Consider E.and A, :

Protocol execution:

\ i
@._,K

*The committer C is corrupted
A delivers all messages to/from E..

*E. behaves as an honest committer C on random input b.
«After getting “receipt” from R, E, honestly opens b and checks if b=b'.

The simulator S, :

Ideal process: Protocol execution:

N

com

S, needs to:
eInteract with E; as an honest receiver.

eProvide the correct bitb to F

com

Thatis, S; is forced to “extract” b when communicating with C,

Consider E, and A.:

Protocol execution:

*The receiver R is corrupted
*E. gives a random b to the honest committer, and never opens

*A. runs S and can thus guess b.

Consider E; and A

Ideal process: Protocol execution:

Tcom

*The receiver R is corrupted
*E. gives a random b to the honest committer, and never opens

*A. runs S and can thus guess b.
But S, 's view is independent from b...

The crux of the proof:

The simulator must be able to extract the committed
bit by simple interaction with the honest committer,
just as an adversary would.

» Any useful set-up model had better get around this
limitation.

The common reference string model

The idea:

 All protocol participants obtain a value r that is
trusted to be taken from a known distribution D.

* No “side information” related to D is known.

Potential realizations:
* Measurements of the physical environment
 Trusted entities or devices

The formal modeling:
The common reference string functionality

Functionality F_.

(with prescribed distribution D and set R of recipients)

Choose a value r from distribution D, and send
r to the adversary.

Upon receiving (“CRS”) from party P in R,
return r to P.

Realizing F_ ., given F_,

com

Ideal process:

com

Protocol execution:

e

*E expects to learn the CRS from A
|n the ideal process, S can make up its own CRS
*Very similar to the CRS model of [Blum-Feldman-Micali89]

eImpossibility no longer holds

DI
N

Crs

Realizing F_., given F_.

com

* Roughly speaking, we need to make sure that S can:

— Extract the committed value from a corrupted
committer.

— Generate commitments that can be opened in
multiple ways to a corrupted receiver.

— Explain internal state of committer and verifier upon
corruption (for adaptive security).

The [C-Fischlin01] protocol

(for static adversaries)

CRS: - a claw-free pair f,f, ,of traproor permutations
- an encryption key e of a CCA-secure scheme
To commit to b:
— choose random x,r,,I,

- send f,(x),E(r,,x|sid),E(r,_,,0)

To open: send b,x,r,. (don't sendr,,)

Analysis idea:
— To extract, simulator decrypts both ciphertexts and finds x.

- To equivocate, simulator chooses x,,x;,r,,I;, such that
f)(%,)=f,(x,)=y and sends y,E (f,X,).E.(r,.X,).

Other works in the CRS model

e Can realize ZK, any “well formed” functionality
[C-Lindell-Ostrovsky-Sahai02,...]

* Many other protocols with a variety of nice
properties

But have to put much trust in the CRS...

“Have nlo fear” .salc[the cat.
“I will not let you fall”

Difficulties in implementing the CRS
model in actual systems

* The reference string must come
from a precisely specified
distribution

 All parties must put trust in a
single, external construct (entity)

* Need to have a different
reference string for each protocol
session

“Have no fear” said the cat.

We'll address these one by one... "I will not let you fall”

How to deal with an “imperfect” CRS?

In the CRS model the reference string is guaranteed
to be taken from a known distribution.

This is hard to implement in reality:

- Does not allow for “noisy” physical measurements
where the actual distribution is not known.

- Does not al
leak partia
adversaria

ow for “semi-trusted” processes that may
trapdoor information or allow partial
iInfluence.

Initial thoughts

* A partial solution: Allow only very simple distributions
(e.g. the uniform distribution)

But, even the uniform distribution is hard to
guarantee precisely...

Can we have protocols that work even if the distribution
of the CRS is unknown?

Modeling a CRS with unknown distribution:

The “sunspot” functionality
(simplified)

Functionality F_

(with a set R of recipients)

At activation, receive a sampling algorithm D from

the adversary, set s=D(r) for random r, and return
s to the adversary.

Upon receiving (“CRS”) from party P iIn R, return
s to P.

Realizing F_,, given F_

Theorem [C-Pass-shelat07]:

Assume CRHF, dense cryptosystems, OWFs with
sub-exponential hardness. Then there exists a
two-party protocol that UC-realizes F__, given

F... If and only if it is guaranteed that:
- D's runtime i1s polynomial in n=|s|
- Minentropy(D) > Description(D) + polylog n

un

Proof idea of positive result
(A ZK protocol, for non-adaptive corruptions)

The idea (following [Feige-Shamir89,Barak01]):

The prover will prove “either the theorem is true or the
CRS has a short description”. (here “short” = polylog n)

Soundness:

The CRS has min-entropy > polylog n, so can cheat only
with negligible probability

Zero-Knowledge:

The simulator will give E a CRS s=D(PRG(I')),
where |r'|=polylog n. Now:

-E cannot tell the simulated s from a real one (PRG)
-S knows a short description for s

How to minimize trust in a single entity?

In the CRS model, all parties must
put full trust a single external
entity(mechanism)...

.}[ave no fear sau[the cat.
“I will not let you fall”

The Key Registration modelsarax-cieisen-passos)

The ldea:

» Parties obtain public keys from “registration
authorities”.

e There can be multiple authorities, each party registers
with one.

* A party needs to trust:
* [ts own authority to keep its secret key secret

e Other authorities to have seen the secret keys of
its reqgistrants

-> No single entity needs to be fully trusted by all...

The Key Registration functionality, F

(with function f and set R of participants)

Upon receiving (“Register”) from a party P in R do:
— If P is uncorrupted, then record (P,f(r)) for random r.
— If P i1s corrupted, and provides value s, record (P,f(s)).

Upon receiving (“retrieve”, P), from a party in R:
If there Is a recorded entry (P,s), then return s.

Only “corrupted parties” see their private keys. This means that:
— Protocols in this model cannot use the secret keys.

- Parties can know (and choose) their keys, by deviating from the
protocol.

Realizing F_ ., given F,

An idea:
Use the [CFO1] protocol, but replace the CRS with PKs.

- The verifier PK is a claw-free pair f,.f, ,of traproor
permutations

—- The committer PK is an encryption key e of a
CCA-secure scheme.

Analysis goes through, for non-adaptive corruptions.

Other works in the KR model

e Can construct UC NIZK (for non-adaptive
corruptions) [BCPR04]

e Can construct UC commitments against adaptive

corruptions, at the price of more interaction
[C-Dodis-Pass-Walfish07]

How to eliminate trust in external entities?

In all models so far, the parties had
to trust an external entity or
mechanism.

Can we eliminate that?

.}[ave no fear sau[the cat.
“I will not let you fall”

The “hardware token” model [Katz07]

The idea:

Parties can encapsulate a program in a tamper-proof
hardware device (“token”), and hand the device to
other parties.

Need to trust that:

e Parties cannot see or modify the internal state of
a given device.

e Parties can prevent a given device from
communicating directly with other parties.

Parties need not trust the code run by a given device!

The hardware token functionality, F
(simplified)

wrap

Upon receiving (“wrap”,M,B) from party A do:
— Internally invoke an instance of program M
— Output (“initialized”,A,B) to party B and the adversary.
Upon receiving (“input”, x), from B:
- Hand x to M, and forward to B any output of M.

Note:
— M can maintain state and have its own randomness
— M can communicate only with B

Realizing F_ . given F

wrap

Theorem [Katz07]:

Under the DDH assumption, there exists a two-
party protocol that UC-realizes F__ given F

com wrap®

How to use a “globally known” trusted
mechanism?

In all models so far, the parties had
to use a different instance of the
trusted mechanism per protocol
iInstance.

Can we use a single global trusted
mechanism, while maintaining
composability ?

ﬂave no fear” said the cat.
“I will not let you fall”

Towards a globally known trusted set-up

Questions:

 How to model the situation where the same set-up
information is known to and trusted by all ---
iIncluding other parties that run arbitrary protocols?

* How to construct protocols that use such set-up?

Realizing F_.. given F_,

Ideal process: Protocol execution:
L C |e» {% <«
% com Fers
Recall:

Fcrs gives the reference string only to the participants of this instance.

>E expects to learn the CRS only from A.
>|n the ideal process, S can make up its own CRS.

How to extend the CRS model?

Option 1: Model all protocol instances that use the
same CRS as a single instance of a larger protocol
(used in, e.g. [CLOS02]).

Drawbacks:

* Modularity of analysis is lost. (Can be mostly
regained using UC with joint state [C-Rabin03].)

* Composability with other protocols that use the
same CRS is lost (e.g. “deniability”).

How to extend the CRS model?

Option 1: Model all protocol instances that use the
same CRS as a single instance of a larger protocol
(used in, e.g. [CLOS02]).

Drawbacks:

* Modularity of analysis is lost. (Can be mostly
regained using UC with joint state [C-Rabin03].

* Composability with other protocols that use the
same CRS is lost (e.g. “deniability”).

Option 2: Directly model the fact that the CRS is
available globally to all parties.

The global common reference string
functionality

Functionality F_.
(with prescribed distribution D)

e (Choose a value r from distribution D, and send
r to the adversary.

e Upon receiving (“CRS”) from party P
return r to P.

Note: This modeling requires an extension to the original UC formalism
(to allow a subroutine to exchange I/O with external entities).
This is the Generalized UC framework of [CDPWO07].

Realizing F,,, given F_,
Ideal process: Protocol execution:
€ <«
Fcom Fers Ters

E has access to the CRS independently of the protocol, and even
In the ideal process.

> Consequently, S has to work with an externally determined CRS.
> The impossibility result of [CF01] again holds...

> Can be extended to any “public-only set-up”

Realizing F__ ., given a “global F,

F . (for “global F,”):
Modify F, so that any party can register and retrieve keys.

Then, modify the CF/BCNP protocol so that each party
registers a key once for the lifetime of the system.

Analysis still works, assuming “party-wise, non-adaptive
corruptions”.

Extensions [CDPWO7]:

* Can have a short reference string with “ID-based secret
keys” for corrupted parties (Augmented CRS model)

* Can withstand adaptive corruptions (by adding interaction)

Set-up models | didn't talk about
* Timing assumption [Kalai,Lindell,Prabhakaran 05]

 Many CRSs, some of which are corrupted
[Groth,Ostrovsky 07]

* The “Signature card” setup
[Hofheinz,Quade-Muller,Unruh 06]

e Set-up models for obtaining authentication

Modeling authentication with global registration

e All results until now assume ideal authentication
(captured as an ideal functionality F_).

e Obtaining authentication via a protocol requires some
trusted set-up.

« Can realize F_, using a simple registration set-up, F .

- But, F, Is not modeled as a global service (it hands the
registered values only to the protocol participants [C04].)

Questions:

 How to model and obtain authentication with globally
available registration (a “public bulletin board”)?

e Deniable authentication?
e Standard (non-deniable) authentication?

Conclusion

» Obtaining composable security requires some
form of trusted set-up.

e There are many different trusted set-up models,
each requiring trusting different components and
In different ways.

e Our understanding of the nature of security and
composability keeps evolving.

e This is a fun and fascinating research areal!

