Attacking Cryptographic Schemes Based on
 'Perturbation Polynomials'

Martin Albrecht (Royal Holloway),
Craig Gentry (IBM), Shai Halevi (IBM), Jonathan Katz (Univ. of MD)

The moral

- Implementing secure protocols in MANETs/ sensor-networks can be challenging
- Low bandwidth, memory, computational power
- Limited battery life
- Much work designing new and highly efficient protocols tailored to this setting
\square Sometimes, rigorous security analysis sacrificed for better efficiency
- Replaced with heuristic analysis

This is a bad idea!

Outline of the talk

ם Key predistribution
\square An optimal, information-theoretic scheme
\square A modified scheme by Zhang et al.
\square Attacking the modified scheme
\square Extensions and conclusions

Key predistribution

- Goal: distribute keying material to N nodes, so each pair can compute a shared key
- Off-line key-predistribution
- On-line computation of shared keys
- Two trivial solutions:
- One key shared by all nodes
- Compromise of one node compromises entire network
- Independent key shared by each pair of nodes
$\square \mathrm{O}(\mathrm{N})$ storage per node
- A not-so-trivial solution [Sakai et al. 2000]:
- Identity-based key agreement
$\square \mathrm{O}(1)$ storage, full resilience
- But expensive computation (pairing)

‘Optimal’ storage/resilience tradeoff

ㅁ [Blom '84], [Blundo et al. '98]
\square These schemes guarantee the following:

- Any pair of nodes shares a key
- A key shared by uncompromised nodes is information-theoretically secret
- As long as t or fewer nodes are compromised
- Storage $O(t)$ per node
- This is optimal for schemes satisfying the above
\square Computation is "cheap"
- No "public key operations"

The scheme of Blundo et al.

- Choose a random symmetric polynomial $F(x, y)$ of degree t in each variable - $F(x, y)=F(y, x)$
\square Node i given coefficients of (univariate) polynomial $s_{i}(y)=F(i, y)$
\square Key shared by i and j is $s_{i}(j)=F(i, j)=s_{j}(i)$
- After compromising $t+1$ nodes, attacker can recover $F(x, y)$ by interpolation

Better than Blundo?

- If t large, even $O(t)$ storage is expensive
\square Can we do better?
■ E.g., by giving up info-theoretic security
■ Without paying in expensive operations?

Perturbation polynomial

- [Zhang et al., MobiHoc '07]
- Other variations by Zhang et al. (INFOCOM '08), Subramanian et al. (PerCom '07)
\square Basic idea:
- Give node i a polynomial $s_{i}(y)$ that is "close", but not equal, to $F(i, y)$
- Nodes i and j generate a shared key using the high-order bits of $s_{i}(j), s_{j}(i)$, respectively
- Harder(?) for an adversary to recover $F(x, y)$, even after compromising many nodes

The scheme of Zhang et al.

- pa prime, $r<p$ a "noise parameter"
- Choose random symmetric $\mathrm{F}(\mathrm{x}, \mathrm{y})$ as before
- Choose random degree-t univariate $g(y), h(y)$
- Find i's such that both $g(i)$ and $h(i)$ are small

$$
\text { SMALL }=\{\mathrm{i}: 0 \leq \mathrm{g}(\mathrm{i}), \mathrm{h}(\mathrm{i}) \leq \mathrm{r}\}(\bmod \mathrm{p})
$$

\square For $\mathrm{i} \in$ SMALL, choose random $\mathrm{b} \leftarrow\{0,1\}$

- Node is given "name" i and coefficients of

$$
\begin{array}{ll}
s_{i}(y)=F(i, y)+g(y) & \text { if } b=0 \\
s_{i}(y)=F(i, y)+h(y) & \text { if } b=1
\end{array}
$$

- $\left|s_{i}(j)-s_{j}(i)\right| \leq r$ for any $i, j \in \operatorname{SMALL}$
- Nodes i, j agree on a shared key using high-order bits

Suggested parameters
ㅁ $p \approx 2^{32}, r \approx 2^{22}, t=76$
\square Number of bits in key $=\log (p / r)=10$

- Run scheme many times for more key bits
\square Storage per node: $(t+1) \log p \approx 2460$ bits
- Storage per key bit ≈ 246 bits
- Blundo scheme with this much storage is resilient to ≈ 246 corruptions
\square Zhang et al. claim resistance against arbitrarily many corruptions

"Warm-up attack" using list decoding

- Compromise $\mathrm{n}=4 \mathrm{t}+1$ nodes
- Learn coefficients of $s_{1}(y), \ldots, s_{n}(y)$
\square For any victim j^{*}, set $y_{i}=s_{i}\left(j^{*}\right)$
\square Note: $\mathrm{y}_{\mathrm{i}} \in\left\{\mathrm{f}_{0}(\mathrm{i}), \mathrm{f}_{1}(\mathrm{i})\right\}$
- $\mathrm{f}_{0}(\mathrm{y})=\mathrm{F}\left(\mathrm{y}, \mathrm{j}^{*}\right)+\mathrm{g}\left(\mathrm{j}^{*}\right), \mathrm{f}_{1}(\mathrm{y})=\mathrm{F}\left(\mathrm{y}, \mathrm{j}^{*}\right)+\mathrm{h}\left(\mathrm{j}^{*}\right)$
- For some b, more than half the $y_{i}{ }^{\prime} s=f_{b}(i)$
- Use list decoding to recover this $f_{b}(y)$
- Algorithm of [Ar et al. 1998]
- Compute shared key between j^{*} and any i^{*}
$\square S_{j *}\left(i^{*}\right) \approx f_{b}\left(i^{*}\right)$

The "real attack"

- Breaks "generalized" version of scheme with more noise:
- $s_{i}(y)=F(i, y)+\alpha_{i} g(y)+\beta_{i} h(y)$
- Small $\alpha_{i}, \beta_{i} \in[-u, u]$
- Only needs to corrupt t+3 nodes
- Takes time $O\left(t^{3}+t u^{3}\right)$
- Note: u cannot be too large, to share even a 1-bit key we need 4ur < p
- Attack is faster than key setup

Implementation

- Attack implemented on a desktop PC

p	r	t	setup time	attack time
2^{32-5}	2^{22}	76	60 min	10 min
2^{36-5}	2^{24}	77	1060 min	8 min

It takes a long time to compute the set SMALL $=\{i: 0 \leq g(i), h(i) \leq r\}$

The info-theoretic protection

Noise dimension

- The "noise S_{β} e" is span ed by $g(), h()$
- Two dimensiona space, can be identified after corrupting $(\mathrm{t}+1)+2=\mathrm{t}+3$ nodes
\square For $\mathrm{i} \in$ SMALL, $g(i), h(i)$ are small
- Use lattice-reduction to find $g(), h()$
- Low-dimensional noise-space
\rightarrow only need to reduce lattices of low dimension
\square Dimension < 20 for the suggested parameters
- Once g()$, \mathrm{h}()$ are found, easy to recover the master polynomial $F(x, y)$

Step 1: identify the noise space

- Corrupt $\mathrm{n}=\mathrm{t}+3$ nodes, get

$$
\mathbf{s}_{\mathrm{i}}=\mathbf{f}_{\mathrm{i}}+\alpha_{\mathrm{i}} \mathbf{g}+\beta_{\mathrm{i}} \mathbf{h}
$$

- We know

$$
\mathbf{f}_{\mathrm{t}+1}=\Sigma_{\mathrm{i}=0 \ldots \mathrm{t}} \lambda_{\mathrm{i}} \mathbf{f}_{\mathrm{i}} \text { and } \mathbf{f}_{\mathrm{t}+2}=\Sigma_{\mathrm{i}=0 \ldots \mathrm{t}} \lambda_{\mathrm{i}}^{\prime} \mathbf{f}_{\mathrm{i}}
$$

■So: $\mathbf{v}=\mathbf{s}_{\mathrm{t}+1}-\Sigma_{\mathrm{i}=0 \ldots . \mathrm{t}} \lambda_{\mathrm{i}} \mathbf{s}_{\mathrm{i}} \in \operatorname{span}(\mathbf{g}, \mathbf{h})$

$$
\mathbf{v}^{\prime}=\mathbf{s}_{\mathrm{t}+2}-\Sigma_{\mathrm{i}=0 \ldots \mathrm{t}} \lambda_{\mathrm{i}}^{\prime} \mathbf{s}_{\mathrm{i}} \in \operatorname{span}(\mathbf{g}, \mathbf{h})
$$

$\square \mathbf{V}, \mathbf{v}^{\prime}$ likely to be linearly independent

- Likely to be a basis for $\operatorname{span}(\mathbf{g}, \mathbf{h})$!

Step 2: find g and h

\square We have $\mathbf{v}, \mathbf{v}^{\prime}$ s.t. $\operatorname{span}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)=\operatorname{span}(\mathbf{g}, \mathbf{h})$
\square Find g, h using the fact that $g(i d), h(i d)$ are "small" modulo p

- To do this, find short vectors in the lattice:

$$
\left(\begin{array}{cccc}
v\left(x_{1}\right) & v\left(x_{2}\right) & \ldots & v\left(x_{k}\right) \\
v^{\prime}\left(x_{1}\right) & v^{\prime}\left(x_{2}\right) & \ldots & v^{\prime}\left(x_{k}\right) \\
\mathrm{p} & 0 & \ldots & 0 \\
0 & \mathrm{p} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \mathrm{p}
\end{array}\right)
$$

k can be small
(k < 20)

Step 3: find F

- F is symmetric, so for all i, j

$$
s_{i}(j)-\alpha_{i} g(j)-\beta_{i} h(j)=s_{j}(i)-\alpha_{j} g(i)-\beta_{j} h(i)
$$

- Gives $O\left(n^{2}\right)$ equations in $2 n$ unknowns (α_{i}, β_{i})
- But under-determined!
- Exactly 3 degrees of freedom
\square Exhaustive search for three of the α_{i}, β_{i} in [-u, u]
- Total time $\mathrm{O}\left(\mathrm{t}^{3}+\mathrm{t} \mathrm{u}^{3}\right)$
- Or use lattices to do it even faster..

Other Perturbation Polynomial Schemes

- Authentication scheme by Zhang et al. from INFOCOM 2008
\square Access-control scheme by Subramanian et al. from PerCom 2007
- The same type of attacks apply there too
- Attacks are actually easier

Conclusions

The 'perturbation polynomials' approach is dead

Moral: rigorous security analysis is crucial

Thank you!

