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1 Trapdoor Sampling [MP12]

The GPV Signature scheme assumes that we can generate trapdoor matrices. This process has two
steps:

1. Construct a special purpose, “easy lattice”, G, 1 that is not random at all, as described in
the handout, and

2. Show how to sample a nearly-uniform A, together with a trapdoor that “maps” A to G

The “easy lattice” is G ∈ Zn×m′
q ,m′ = dnlog(q)e, such that:

(a) It is easy to sample DL⊥
~u

(G),s for any ~u ∈ Znq and parameter s ≥ 2
√
n. 2

(b) Given [~sG+ ~e], with small ||~e||∞ < q
4 , one can efficiently recover ~s.

1.1 Step (2): Mapping A to G

Definition 1. As in the first property, denote:

m′ = dnlog(q)e

In addition denote

m′′ = dnlog(q) +
√
ne

and

m = m′ +m′′ = d2nlog(q) +
√
ne

Let A ∈ Zn×m denote

A = [ A︸︷︷︸
m′′

| A1︸︷︷︸
m′

]

A matrix R ∈ Zm′′×m′
q is a trapdoor of A iff

• R is “small”

• A1︸︷︷︸
n×m′

= G︸︷︷︸
n×m′

− A︸︷︷︸
n×m′′

R︸︷︷︸
m′′×m′︸ ︷︷ ︸

n×m′

. In matrix notation: A = [A|G]

(
I −R
0 I

)

The algorithm to generate (A,R) proceeds as follows:

1ie. it is easy to solve LWE or SIS
2Recall the definition L⊥

~u (A) = {~x ∈ Znq |A~x = ~u mod q}
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• Choose R ∈ Zm′′×m′
q , where each entry in R is chosen at random from the discrete Gaussian,

DZ,
√
n. R is the trapdoor, and note that it is “small,” for example with high probability,

we have for all ~x, that ||~xR||∞ ≤ ||~x||∞2nlog(q), and the same applies for ||.||2 (so S1(R) <
2nlog(q)).

• To choose A, first draw a uniform matrix A ∈R Zn×m′′
q , then set

A = [A|G]

(
I −R
0 I

)
= [A|G−AR] ∈ Zn×(m′+m′′)

q

Fact 1. A is nearly uniform. Recall that fA = A~x mod q is a strong seeded extractor, and the
columns of R have high min-entropy, so AR is nearly uniform, even given A.

Fact 2. If we can solve LWE for G, then R lets us also solve for A. 3 Given input ~b = ~sA + ~e,
where we denote ~e = [ ~e1︸︷︷︸

m′′

| ~e2︸︷︷︸
m′

], we have

~b

(
I R
0 I

)
= (~sA+ [~e1|~e2])

(
I R
0 I

)
= ~s[A|G]

(
I −R
0 I

)(
I R
0 I

)
+ [~e1|~e2]

(
I R
0 I

)
= ~s[A|G] + [~e1|~e1R+ ~e2]

In particular, considering only the last m′ entries, we have

~b

(
R
I

)
= ~sG+ (~e1R+ ~e2)︸ ︷︷ ︸

~e′

As long as ||~e′||∞ ≤ ||~e1||∞2nlog(q) + ||~e2||∞ < q
4 , we can recover ~s from ~sG + ~e′. The first

inequality follows from the choice of a “small” R, and the second inequality is true as long as
||~e1||∞, ||~e2||∞ � q

nlog(q) .

Fact 3. If we can sample from DL⊥
~u

(G),s, then using R, we can sample DL⊥
~u

(A),s′, where s′ is not

much bigger than s.

• First attempt: Draw ~z ← DL⊥
~u

(G),s, output ~x =

(
R
I

)
~z. This “almost works”; we have

A~x = A

(
R
I

)
~z = G~z = ~u, and ||~x||∞ ≤ ||R~z||∞ + ||~z||∞ ≤ (2nlog(q) + 1)||~z||∞, as needed

for SIS. But if ~z is a spherical Gaussian, then ~x is an ellipsoid Gaussian. Even worse, the

covariance of ~x has the shape s2

(
R
I

)
[RT |I], so after enough samples, we can get the shape

of R and recover R itself.

• Better attempt: Use “perturbation” [Pei10]. Roughly, choose ~p from an ellipsoid that cancels
out that of ~x, and output ~p+ ~x:

3Given input A,~b = ~sA + ~e, for “secret” ~s, and “small” ~e, find ~s.
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– Define the covariance matrix Σ = s2I︸︷︷︸
what we aim for

−
(
R
I

)
[RT |I]︸ ︷︷ ︸

the “shape” of ~x

. Note that s must be

large enough so that Σ is positive (else it cannot be a covariance matrix). Specifically,
we need to have s > 1 + S1(R).

– Sample from the ellipsoid discrete Gaussian ~p← DZm,s
√
n
√

Σ︸ ︷︷ ︸
“perturbation”

– Calculate the syndrome ~v = ~u−A~p mod q

– Sample ~z ← DL⊥
~v

(G),2
√
n, then set ~x =

(
R
I

)
~z

– Output ~y = ~x+ ~p

Clearly we have A~y = A~x + A~p = ~v + A~p = ~u. Moreover, ~p has covariance 4nΣ, and ~x

has covariance 4n

(
R
I

)
[RT |I], so if they were independent, we would expect their covariance

matrices to add, and we get 4n(

(
R
I

)
[RT |I] + Σ) = 4ns2I.

They are not quite independent, since the mean of ~z depends on ~p, but only via A~p in ~v, which
does not give much information about ~p. We can think of first choosing ~v at random, then
drawing ~p from the discrete Gaussian. Once ~v is fixed, ~p and ~x are independent and their
covariances add; since we choose ~z from a Gaussian wider than ηε(L⊥(A)), for a negligible ε,
the covariance behaves as we expect.

2 Trapdoor Delegation

Given a trapdoor, R, for A ∈ Zn×mq , generate a trapdoor, R′, for an extension of A, A′ = [A|A1],

where A1 ∈ Zn×m′
q is an arbitrary matrix (eg. it can be random), and m′ ≥ dnlog(q)e.

TDelegate(A,R,A1):

• Calculate ∆ = G−A1. Denote the columns of ∆ by ∆ = (~δ1|~δ2| . . . |~δm′).

• For i ∈ {1, 2, . . . ,m′}, use R to sample from DL⊥
~δi

(A),s, where s = d2 + S1(R)e ≈ 2nlog(q) >

ηε(L⊥(A)) for some negligible ε. Denote ~r′i ← DL⊥
~δi

(A),s.

• Output the new trapdoor, R′ = (~r′1|~r′2| . . . |~r′m′) ∈ Zn×m′
q .

By construction A~r′i = ~δi mod q, so AR′ = ∆, and therefore we have

A′ = (A|A1) = (A|G−∆) = (A|G−AR′)

So R′ is indeed a trapdoor for A′. Also, R′ is “small”; roughly, the size of each column of R′ is
approximately

√
ms, so S1(R′) ≈

√
mS1(R) ≈ (nlog(q))

3
2 .

Note that if (A,A1) are random, the distribution of (A′, R′) is the same as the output of TGen,

except for larger parameters, m̃ = m+m′, and S1(R′) ≈ (nlog(q))
3
2 .
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