Lattices and Homomorphic Encryption, Spring 2013

Instructors: Shai Halevi, Tal Malkin

Trapdoor Sampling

March 26, 2013

Scribe: Yuan Kang

1 Trapdoor Sampling [MP12]

The GPV Signature scheme assumes that we can generate trapdoor matrices. This process has two steps:

- 1. Construct a special purpose, "easy lattice", G, ¹ that is not random at all, as described in the handout, and
- 2. Show how to sample a nearly-uniform A, together with a trapdoor that "maps" A to G

The "easy lattice" is $G \in \mathbb{Z}_q^{n \times m'}, m' = \lceil n \log(q) \rceil$, such that:

- (a) It is easy to sample $\mathcal{D}_{\mathcal{L}_{\vec{u}}^{\perp}(G),s}$ for any $\vec{u} \in \mathbb{Z}_q^n$ and parameter $s \ge 2\sqrt{n}$.²
- (b) Given $[\vec{s}G + \vec{e}]$, with small $||\vec{e}||_{\infty} < \frac{q}{4}$, one can efficiently recover \vec{s} .

1.1 Step (2): Mapping A to G

Definition 1. As in the first property, denote:

$$m' = \lceil n \log(q) \rceil$$

In addition denote

$$m'' = \lceil n \log(q) + \sqrt{n} \rceil$$

and

$$m = m' + m'' = \lceil 2n \log(q) + \sqrt{n} \rceil$$

Let $A \in \mathbb{Z}^{n \times m}$ denote

$$A = [\underbrace{\overline{A}}_{m''} | \underbrace{A_1}_{m'}]$$

1 -

-

A matrix $R \in \mathbb{Z}_q^{m'' \times m'}$ is a trapdoor of A iff

• R is "small"

•
$$\underbrace{A_1}_{n \times m'} = \underbrace{G}_{n \times m'} - \underbrace{\overline{A}}_{n \times m''} \underbrace{R}_{n' \times m'}$$
. In matrix notation: $A = [\overline{A}|G] \begin{pmatrix} I & -R \\ 0 & I \end{pmatrix}$

The algorithm to generate (A, R) proceeds as follows:

¹ie. it is easy to solve LWE or SIS

²Recall the definition $\mathcal{L}_{\vec{u}}^{\perp}(A) = \{ \vec{x} \in \mathbb{Z}_q^n | A\vec{x} = \vec{u} \mod q \}$

- Choose $R \in \mathbb{Z}_q^{m'' \times m'}$, where each entry in R is chosen at random from the discrete Gaussian, $\mathcal{D}_{\mathbb{Z},\sqrt{n}}$. R is the trapdoor, and note that it is "small," for example with high probability, we have for all \vec{x} , that $||\vec{x}R||_{\infty} \leq ||\vec{x}||_{\infty} 2n\log(q)$, and the same applies for $||.||_2$ (so $S_1(R) < 2n\log(q)$).
- To choose A, first draw a uniform matrix $\overline{A} \in_R \mathbb{Z}_q^{n \times m''}$, then set

$$A = [\overline{A}|G] \begin{pmatrix} I & -R \\ 0 & I \end{pmatrix}$$
$$= [\overline{A}|G - \overline{A}R] \in \mathbb{Z}_q^{n \times (m' + m'')}$$

Fact 1. A is nearly uniform. Recall that $f_{\overline{A}} = \overline{A}\vec{x} \mod q$ is a strong seeded extractor, and the columns of R have high min-entropy, so $\overline{A}R$ is nearly uniform, even given \overline{A} .

Fact 2. If we can solve LWE for G, then R lets us also solve for A. ³ Given input $\vec{b} = \vec{s}A + \vec{e}$, where we denote $\vec{e} = [\underbrace{\vec{e}_1}_{m''} | \underbrace{\vec{e}_2}_{m'}]$, we have

$$\vec{b} \begin{pmatrix} I & R \\ 0 & I \end{pmatrix} = (\vec{s}A + [\vec{e_1}|\vec{e_2}]) \begin{pmatrix} I & R \\ 0 & I \end{pmatrix}$$
$$= \vec{s}[\overline{A}|G] \begin{pmatrix} I & -R \\ 0 & I \end{pmatrix} \begin{pmatrix} I & R \\ 0 & I \end{pmatrix} + [\vec{e_1}|\vec{e_2}] \begin{pmatrix} I & R \\ 0 & I \end{pmatrix}$$
$$= \vec{s}[\overline{A}|G] + [\vec{e_1}|\vec{e_1}R + \vec{e_2}]$$

In particular, considering only the last m' entries, we have

$$\vec{b} \begin{pmatrix} R \\ I \end{pmatrix} = \vec{s}G + \underbrace{(\vec{e_1}R + \vec{e_2})}_{\vec{e'}}$$

As long as $||\vec{e'}||_{\infty} \leq ||\vec{e_1}||_{\infty} 2n\log(q) + ||\vec{e_2}||_{\infty} < \frac{q}{4}$, we can recover \vec{s} from $\vec{s}G + \vec{e'}$. The first inequality follows from the choice of a "small" R, and the second inequality is true as long as $||\vec{e_1}||_{\infty}, ||\vec{e_2}||_{\infty} \ll \frac{q}{n\log(q)}$.

Fact 3. If we can sample from $\mathcal{D}_{\mathcal{L}_{\vec{u}}^{\perp}(G),s}$, then using R, we can sample $\mathcal{D}_{\mathcal{L}_{\vec{u}}^{\perp}(A),s'}$, where s' is not much bigger than s.

- <u>First attempt</u>: Draw $\vec{z} \leftarrow \mathcal{D}_{\mathcal{L}_{\vec{u}}^{\perp}(G),s}$, output $\vec{x} = \binom{R}{I}\vec{z}$. This "almost works"; we have $A\vec{x} = A\binom{R}{I}\vec{z} = G\vec{z} = \vec{u}$, and $||\vec{x}||_{\infty} \leq ||R\vec{z}||_{\infty} + ||\vec{z}||_{\infty} \leq (2n\log(q) + 1)||\vec{z}||_{\infty}$, as needed for SIS. But if \vec{z} is a spherical Gaussian, then \vec{x} is an ellipsoid Gaussian. Even worse, the covariance of \vec{x} has the shape $s^2\binom{R}{I}[R^T|I]$, so after enough samples, we can get the shape of R and recover R itself.
- <u>Better attempt</u>: Use "perturbation" [Pei10]. Roughly, choose \vec{p} from an ellipsoid that cancels out that of \vec{x} , and output $\vec{p} + \vec{x}$:

³Given input $A, \vec{b} = \vec{s}A + \vec{e}$, for "secret" \vec{s} , and "small" \vec{e} , find \vec{s} .

- Define the covariance matrix $\Sigma = \underbrace{s^2 I}_{\text{what we aim for}} - \underbrace{\binom{R}{I}}_{[R^T|I]} \cdot Note \text{ that s must be}$

large enough so that Σ is positive (else it cannot be a covariance matrix). Specifically, we need to have $s > 1 + S_1(R)$.

- Sample from the ellipsoid discrete Gaussian $\vec{p} \leftarrow \underbrace{\mathcal{D}}_{\mathbb{Z}^m, s\sqrt{n}\sqrt{\Sigma}}$

- Calculate the syndrome $\vec{v} = \vec{u} A\vec{p} \mod q$
- Sample $\vec{z} \leftarrow \mathcal{D}_{\mathcal{L}_{\vec{v}}^{\perp}(G), 2\sqrt{n}}$, then set $\vec{x} = \begin{pmatrix} R \\ I \end{pmatrix} \vec{z}$
- Output $\vec{y} = \vec{x} + \vec{p}$

Clearly we have $A\vec{y} = A\vec{x} + A\vec{p} = \vec{v} + A\vec{p} = \vec{u}$. Moreover, \vec{p} has covariance $4n\Sigma$, and \vec{x} has covariance $4n \binom{R}{I} [R^T|I]$, so if they were independent, we would expect their covariance matrices to add, and we get $4n(\binom{R}{I}[R^T|I] + \Sigma) = 4ns^2I.$

They are not quite independent, since the mean of \vec{z} depends on \vec{p} , but only via $A\vec{p}$ in \vec{v} , which does not give much information about \vec{p} . We can think of first choosing \vec{v} at random, then drawing \vec{p} from the discrete Gaussian. Once \vec{v} is fixed, \vec{p} and \vec{x} are independent and their covariances add; since we choose \vec{z} from a Gaussian wider than $\eta_{\epsilon}(\mathcal{L}^{\perp}(A))$, for a negligible ϵ , the covariance behaves as we expect.

$\mathbf{2}$ **Trapdoor Delegation**

Given a trapdoor, R, for $A \in \mathbb{Z}_q^{n \times m}$, generate a trapdoor, R', for an extension of A, $A' = [A|A_1]$, where $A_1 \in \mathbb{Z}_q^{n \times m'}$ is an arbitrary matrix (eg. it can be random), and $m' \ge \lceil n \log(q) \rceil$.

 $TDelegate(A, R, A_1):$

- Calculate $\Delta = G A_1$. Denote the columns of Δ by $\Delta = (\vec{\delta}_1 | \vec{\delta}_2 | \dots | \vec{\delta}_{m'})$.
- For $i \in \{1, 2, \ldots, m'\}$, use R to sample from $\mathcal{D}_{\mathcal{L}_{\vec{\delta_i}}^{\perp}(A), s}$, where $s = \lceil 2 + S_1(R) \rceil \approx 2n \log(q) > 1$ $\eta_{\epsilon}(\mathcal{L}^{\perp}(A))$ for some negligible ϵ . Denote $\vec{r'_i} \leftarrow \mathcal{D}_{\mathcal{L}_{\vec{s}}^{\perp}(A),s}$.
- Output the new trapdoor, $R' = (\vec{r'_1} | \vec{r'_2} | \dots | \vec{r'_{m'}}) \in \mathbb{Z}_a^{n \times m'}$.

By construction $A\vec{r'}_i = \vec{\delta}_i \mod q$, so $AR' = \Delta$, and therefore we have

$$A' = (A|A_1) = (A|G - \Delta) = (A|G - AR')$$

So R' is indeed a trapdoor for A'. Also, R' is "small"; roughly, the size of each column of R' is approximately \sqrt{ms} , so $S_1(R') \approx \sqrt{mS_1(R)} \approx (n\log(q))^{\frac{3}{2}}$.

Note that if (A, A_1) are random, the distribution of (A', R') is the same as the output of TGen, except for larger parameters, $\tilde{m} = m + m'$, and $S_1(R') \approx (n\log(q))^{\frac{3}{2}}$.

References

- Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In David Pointcheval and Thomas Johansson (editors) Advances in Cryptology, EUROCRYPT 2012, pages 700-718, Heidelberg, Germany, 2012. Springer.
- [2] Chris Peikert. An Efficient and Parallel Gaussian Sampler for Lattices. In Tal Rabin (editor) Advances in Cryptology, CRYPTO 2010, pages 80-97, Heidelberg, Germany, 2010. Springer.