
Lecture 9

More applications of pairwise independence

• Interactive proofs .

Public coins vs. private coins

Derandomization via method of conditional

expectations

1

Another setting in which K- wise independence is useful :

Interactive Proofs

NP= all decision problems for which
" Yes" answers

can be verified in polytime by a
deterministic TM (

" verifier
"

)

IP :

generalization of NP

short proofs ⇒ short interactive proofs
"

conversations that convince "

IP Model

"

All-powerful
"

- Prover P ::• unbounded
time

poly - time Input but recursive
verifier V T?⃝ e.g. can't solveR R

Private halting
workspace ④

< >
problem,

W Conversation tapes R >
a > I e

n s

v R L W
r
,

random bits Private
$ workspace

can show that
Private?? " all-powerful

"

prover
doesn't need random coins

lie. anything
it can do

with coins,

it can also do without coins)

def
.

[Goldwasser Micali Rackoff]

An Interactive Proof System 11ps)

for language L is protocol sit
.

• if ✗ c- L t both YP follow protocol then

Pr [V accepts ×] 2213
v's coins

• if XEIL TV follows protocol then (no matter what Pdoes)

Prpscoins [V recjets ✗3>-2/3

Time [Goldwasser Sipser] 65's Answer : No !

IP = IP anything that has

private public protocol with private
coins

coins coins

also has (possibly different)

protocol with public coins .

today we will see a building block for theorem :

informants :
• Given sets s.t.se Ip ← interesting even ifsep

• Protocol in which P can convince V that size

of set S is
"

big
"

can
be

Let Sq = { ✗ I ✗ satisfies formula of} } EP
""d

byany
LEIP

(note Sp EP)

Claim 7 protocol sit
. on input of

• if lspl > K & it YP follow protocol
then Pr[V accepts] 2213

even if

• if 15µL ¥ & if V follows protocol
←Patients !

→ then Pr[V accepts] < 43for now assume 0--4

N¥ "

can use protocol to show that # random strings
which cause algorithm d- to accept
on input ✗ 2213

First idea Random Sampling

Repeat ? times :

V picks random assignment ✗

& evaluates 41×1

Output #satisfying✗'s_
total # repetition's

how many repetitions ?

I. (#totalassignments_ rbi)# satisfying assignment,
)
←

could be

All assignments

problem :
what if § is small ?

☒
SAT assignments
top

FXI : Universal hashing
Recall :

Family of fetus H={ h
, ha " }

for hi :[N] → IM] is

"

pairwise independent
" if

any
loch ✗

when heft is mappeduniformly

(1) FX c- IN]
,

hlx) -Cu[M] any pair
of

/ loans 4=1×2
mapped(2) FX

, -1-112 c- IN]
,
4,1×1 ,hW)Eu[MR uniformly

&

independently

equivalently :
FX

,
-1-112 c- [N]

ty , ,yzE[M]

Pr[hlx,)=y ,
+ hasty.)=¥

heh

How does it help ?
Need :

all assignments 1. lhlspl~nls.pl

2. h computable insp
h
> had poly time
size 21

size 2
" T

picklst.
2h > K >¥

idea
this is a very nice

✗ property of
pie ,

hash

• clearly /hlsp) / £1591 fctns .

• hopefully lhlsq)1 is not too much smaller than 15g /

(we will show that whp lhlsqll > 1¥)

⇒ if l s .t
.

2h is roughly 1h15PM
then most of 1.21 gets mapped to by hlsq)

(uses that H is pi .)

A comment about pi . hash fdns

typical use : s his

•

map set S into

smaller
"

space
"

•

good for storage , reducing size of
"

names
"

of
elements . . .

• need property of " few collisions "

-

since collisions cause

problems , so need to

minimize
(e.g.

in hash tables
,

collisions ⇒ chaining length)
• here

"

few collisions
"

⇒ that is not too

much smaller than 1st

Why is that good ?
• pick ayn pt in range , say ol

• if hlsl big , it will probably hit 0h
uses that

→

hlxl is unit dist

Protocol : for distinguishing set of size K

from set of size K/o

Given H Cpi . fetus mapping { 0,13
"
→ { 0,131)

1. V picks htr It

2. ✓ → p : h

3. P→V : ✗ c- Syst. hlx)=ol

4. V accepts iff ✗ c- Sq

Ideas : hope : hlsp) fills " random
"

portion
of range , so can distinguish 1h18PM

large or small
.

cased lsql > K :

hopefully Ihlsq) / 2k so Ol is
"hit "

with reasonable G- ya?) probability .

Then all - powerful P can find pre image in Sp

case-a-lsqlo.kz :

Ihlsq) / < 140 so less likely ol hit .

if not hit
,
P can't find preimage .

If P sends ✓ a fake preimage, ✓ will detect
.

if U=Sq th

res maps Sp
1-1

(whichis
unlikely)

Lemma_ It is pi . ,
HE { 0,13

"

,
a = ¥ then a

is

then a- ¥ a- Prn [olthla)) a- a fraction
mapped to

Proof
RHS :

V-xprh.fi?l--hlx))--2-l since It is pi .

so Prn [olc-hluy.EE?jfO--hlxD-- ¥ = a

4
Union bnd

LHS : Pr[VA;] 7- §Pr[A ;] - E Pr [AIAA;]
" ta

p i=j As

inclusion
exclusion

Prue.q[olc-hlUDZEPrlct-hlxD-ZPrlol-hlxt-hlydxc-UIX-1-yc-UJ-F.fr
pairwise indep

= ¥ - Jae > ¥. - III. Jae
2 a- 972

•

Finishing up :

Pick l st
.

2h - ' c- 1<=21

let a = ⇒
If 141 > K then a > 42

so Pr[Ol c- hlsp)) >_ a -122318
on Kit lsql < 1% than a <kg.gg?ssmPtwnsoPrIolc-hlsqDa-

a # to
e.g. picking8=4

gives
C- Yy

If repeat 0110g 'ts) times
,

Chernoff ⇒ with prob > 1-B

if 15g / 2k then P is successful 2318 - old
of repetitions

if Kyle Ko then P is successful e- Yy told
of repetitions

Comments • can improve so 8- te Chow ??)

• can use same idea to prove

IP
private

=/Ppublrc
coins coins

argue that I. b. protocol can be

used to show size of accept region
probability mass is large .

(need that V can verify a

conversation /random coin flips transcripts
falls into accept region) .

Derandomization via the method of

conditional expectations

idea : view coin tosses of algorithm
as path down tree of depth m

"

coin tosses

IT
.

'
^

•%Ñ•
depth M = # coin tosses

0

:

¥4
.
•Ñ
.

• • • 81.1
good bad bad bad good good

V

alternatively ! coo.io Go." GO.no Go " "
cnn.io 41--1

cutvalves

good -_ correct /reachwitness /good approximation /Pass . . .

good randomized algorithm ⇒ most leaves good

idea : find a good path to leaf " bit - by-bit
"

more formal 'iyi :

Fix randomized algorithm of

input ✗
m= # random bits used by d- on ✗

for K-ic-mtri.ir; c- { 0,13

let plr , . . . ri) = fraction of continuations §%dpprox)
set lsti bits- that end in "

goof"ka①to ri
" ri

pick ¢+11
" to

mµ bits
random'T ② (ri " ri) = average cut value if set

first i nodes to ri -ri

plr, " ' ri)= 12 . plr, " Rio)
+ tjplri " drill

by averaging , F setting of rim to o orb
-

Sit
. plr, - " rim)=p (r, . . - f)

can we

figure out
which one?

if plr , . . .ri+,)z plri ' ri) fi

then plr, . . - rm) zplr, - " rm- 1) 2 . . . Zplr,) > fraction of
goodpaths

T 7- 213
this is a w

arbitraryleaf so
value is / or 0 constzya

but if 2213
it must be 1

mainissve :

how do we choose best rit, setting at
each step ?

Examples Max cut (second way to de randomize)

recall algorithm :

flip n coins rinrn

put node i in s if ri t T if ri=1

Output 5 ,-1

Recall from lecture 7 :

Analysis : yup
on opposite
sides of cut

Let Lu
, :{

1 if ritrr

0 0 .
W

.

Cut size = E Iup
(up)tE

E- [cut size] = ELE 1mi
(up)EE

= E E[Iup] =3 Pr[In
,
-
- I]

1441 EE Caylee

= E Pr [Kitaro :o) or lriiorrv =D]
& ,4tE

=/ El . [4+4] ± 1¥
2

So expect ¥ the edges to cross cut!

Note i E- [cut size] = 11¥ ⇒ F cut of size ¥2
Turgut
-

must be one

size produced that is at least

by algorithm as big as the

average

derandomization :

elri.ir;) = E [/ Cutts , -1) / given ri.ir; choices made]
Rin '

- Rn

e (no choices fixed yet) 2 k¥ (previous lecture)

how do we calculate elr
,
- " rim?

Let
Sµ={ nodes jl j±i+1 , rj=o}

⇐ ErTin -- { nodes j I jei , g. = , }
}"

Vin = { nodes j / j > it2- jen } } undecided

so : main

insight
fact elri . rim)= (# edges between Sint -1in) /

* l

t 1-2 (# edges touching Vin)
(follows from same reasoning as last lecture)

main

Note: don't need to calculate elr
,
" ring ✓ insight#2

just need to figure out which is bigger
elr

,

- i. riot or elr
,
- "Fil)

how do we do this ?

edges between sit,&Ti+, same for
both

Ui is same for both

Hit , differs only on edges to node it

-

to maximize this
,

Si Ti place node in to

•Vin maximize cut size :

compare
hi #edges between Viti + Si

V5
.

" " " " "

Ti
⇒ can deterministically pick which choice gives

yields : bigger # edges touching Him
⇒ if do this for each i

, getGreedy Algorithm solution which is -_ expected value
in deterministic way

1) s ← 9 , -1<-0

2) For i-oi.in -1

place Vi in 5 if #edges between Vitt
2

" " " '
'

"

g

else place Vi in T

