
Lecture 16

learning Boolean functions

• a model

• an example : conjunctions
• Occam's razor

• Fourier - based learning algorithms
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How to formalize?
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After seeing several examples , learner should output

hypothesis h .



what do we hope h satisfies ?

• hopefully h=f ← asking too much ?

• at least distlh
,
EE

un

Pra ,[hlxl -1-1-1×1]
aValiant's what distribution on inputs do we use ?

pac { today uniform
model

in general , match distribution of
"

probably example oracle

approximately
correct

"

common terms for same thing:

• distlh
,
f)

✗c- D

•

error (h)
*pg

(writ
.

f is understood from context)

• his E-close to f- (dist D understood from
context)



Note in above :

XED can be chosen according to
uniform or any other prespecified
distribution

if f- is arbitrary ,
there is nothing you Landy

that is "efficient" in terms of sample complexity

(e.g. you can't learn a random fctn f

without seeing the value of f for most inputs)

However
,

if you know something about f
,

there may be hope.

here : what if
you know that f

is a member of fctn family C ?

e.g. [
= linear films

K - term DNF

÷



def uniform distribution learning algorithm
for concept class C is algorithm
d- sit

.

• d- given 98>0
access to Ex (f) for f- c- C

- d- outputs h sit
.
with prob 21-8

e÷÷÷÷:
"

Parameters of interest :

• m # samples used by d-
"

sample complexity
"

• E
accuracy parameter

- of confidence parameter

• runtime? hope for polyllogldomainsize) , ¥1s)



• description of h ?

• should it be similar to description
of fetus in C ? "

proper learning
"

• at least should be relatively

compact + efficient to evaluate

in

01kg191

Remarks

•

as before
, dependence on 8 needn't be

more than 01kg481) why ?

• uniform case is special case of PAC-model :

given Exjglf) for unknown D

output h with small error with

respect to same D

(some D can be harder than others)



Efficient learning algorithm for conjunctions :

C = conjunctions over {0,13h

i.e
.

flx )=XiXjTk

note :

• can't hope for 0 - error from subexponential #

of random examples

e. g.
how to distinguish flxt-X.la - - - Xn

from = O th ?



Poly time algorithm :

• draw poly (E) random examples

• estimate Pr[ fat =D to additive error ±E
,

• if estimate < 42
, output

"

hlx.to
"

that

else estimate 242 so Pr[f-A)=L] > E
T

⇒ see new random positive
example every latmostf) 01k)

examples
• collect more positive examples
• let V= { vars set same way in each positive

example}

• Output hW= A Xabi ' bi tells us itxi
itv complemented or not



Behavior of poly time algorithm :

for i in conjunction !

must be set same way
in each

positive example ⇒ in V

for i not in conjunction :

pr[ iev] a- Pr [ i set same way in

each of K positive
examples]

£ ¥
Prlanyi riot in conjunction manages

to survive]

£1
2kt

c- 8 if pick k=logF

So if use shlkghq) positive examples
or I. ( I logF) total examples, will

suffice

to rule out all it conjunction .



Occam's Razor

" high level claim
"

:

if ignore runtime
,
then learning is easy

with respect to sample complexity

Brute force algorithm
- draw M='z( In / Cl +1nF) uniform examples

- search over all HEC until find one

consistent with all examples .

Output it . ( choose arbitrarily if =L such h

works)



Behavior of brute force algorithm
what should behavior be ?

• f- is a good thing to output ✓
• what is a bad thing to output?

h is
"

bad" if error (h) wet . f z E

Pr [ bad h consistent with examples]
⇐ ( 1- e)

M

Pr [ any bad h consistent with examples]

1- ICI .li - E)M union bnd

£19 ( 1-e)£4
let +1nF)

I 8

.

: unlikely to output any bad h



divine inspiration ?

Coincidence ?

not enough samples to kill off union bound?



Comments:

• proof didn't use anything special
about uniform distribution

actually works for any dist D

as long as error defined w.r.tn same &
as sample generator

• Once have good h

1) can predict values of f on

new random inputs since

aIFding Pr [-11×1--41×1]>-1-8
to D ✗ED

2) can compress description of samples range

✗ Of

(1,1-1×11) 1×2,1-1×2)), . . . Hm , ftxm) mHog1DlHog1RDf
* He

4. " Xm ,
description of tha m

• log IN + loylcl



so learning , prediction t compression are related

learning ⇒ prediction & compression

formal relations in other direction too

Occam's razor :

simplest explanation is best


