
6.842 Randomness and Computation 04/04, 2012

Lecture 15
Lecturer: Ronitt Rubinfeld Scribe: Mohsen Ghaffari

1 Recap

Definition 1 Consider function f : {±1}n → R. We say f has α(ε, n)-Fourier Concentration if∑
S⊆[n] , |S|>α(ε,n)

f̂2(S) ≤ ε

Theorem 2 If C has Fourier Concentration at most d = α(ε, n), then there is an O(n
d

ε) sample-uniform
learning algorithm for C.

Definition 3 Let Nε(x) be what we get from randomly flipping each bit of x with probability ε (iid).
Then noise sensitivity of function f , nsε(f), is defined as nsε(f) = Prx∈{±1}n

[
f(x) 6= f(Nε(x))

]
.

Theorem 4 For any linear threshold function f , we have nsε(f) ≤ 8.8
√
ε.

2 Today

2.1 Noise Sensitity vs. Fourier Concentration

Theorem 5 Consider function f : {±1}n → {±1}. Then, we have

nsε(f) =
1

2
− 1

2

∑
S⊆[n]

(1− 2ε)|S|f̂2(S)

Proof By Definition 3, we have

nsε(f) = Pr
x∈{±1}n

[
f(x) 6= f(Nε(x))

]
= Pr

x∈{±1}n,y=Nε(x)

[
f(x) 6= f(y)

]
= Ex,y

[
1f(x)6=f(y)

]
= Ex,y

[(f(x)− f(y))2

4

]
= Ex,y

[2− 2f(x)f(y)

4

]
=

1

2
− 1

2
Ex,y

[
f(x)f(y)

]
=

1

2
− 1

2

∑
s,T⊆[n]

f̂(S)f̂(T) Ex,y
[
χS(x)χT (y)

]
=

1

2
− 1

2

∑
s,T⊆[n]

f̂2(S) Ex,y
[
χS(x)χS(y)

]
(1)

Now, we evaluate Ex,y
[
χS(x)χS(y)

]
. Let exi (resp. eyi) be the unit vector that has value xi (resp yi) at

position i and 1 at all the other places. Then, we have

Ex,y
[
χS(x)χS(y)

]
= Ex,y

[n∏
i=1

χS(exi)χS(eyi)
]

1

= Ex,y
[∏
i∈S

χS(exi)χS(eyi)
]

=
∏
i∈S

Ex,y
[
χS(exi)χS(eyi)

]
=

∏
i∈S

(Pr[χS(exi) = χS(eyi)]− Pr[χS(exi) 6= χS(eyi)])

=
∏
i∈S

(Pr[xi = yi]− Pr[xi 6= yi])

=
∏
i∈S

(1− 2ε)

= (1− 2ε)|S| (2)

Hence, substituting this into (1), we get

nsε(f) =
1

2
− 1

2

∑
S⊆[n]

(1− 2ε)|S|f̂2(S)

Using this result, we can get the following connection between noise sensitivity of a function and its
Fourier Concentration.

Theorem 6 Consider function f : {±1}n → {±1}. Then, for any 0 < γ < 1
2 , we have∑

S⊆[n],|S|≥ 1
γ

f̂2(S) ≤ 2.32 nsγ(f)

Proof Using Theorem 5, we have

2 nsγ(f) = 1−
∑
S⊆[n]

(1− 2γ)|S|f̂2(S)

=
∑
S⊆[n]

f̂2(S)−
∑
S⊆[n]

(1− 2γ)|S|f̂2(S)

=
∑
S⊆[n]

(
1− (1− 2γ)|S|

)
f̂2(S)

≥
∑

S⊆[n],|S|≥ 1
γ

(
1− (1− 2γ)|S|

)
f̂2(S)

≥
∑

S⊆[n],|S|≥ 1
γ

(
1− (1− 2γ)

1
γ
)
f̂2(S)

≥
∑

S⊆[n],|S|≥ 1
γ

(
1− e−2

)
f̂2(S)

(3)

Hence, ∑
S⊆[n],|S|≥ 1

γ

f̂2(S) ≤ 2

1− e−2
nsγ(f) ≤ 2.32 nsγ(f)

2

2.2 Application: Learning Half-Space Functions

The above result gives us a couple of interesting corollaries as follows.

Corollary 7 Consider function f : {±1}n → {±1}. Also define function β : [0, 0.5]→ [0, 0.5] such that
nsγ(f) ≤ β(γ) for every γ ∈ [0, 0.5]. Then, we have∑

S⊆[n],|S|≥ 1

β−1(ε
2.32

)

f̂2(S) ≤ ε

Proof By Theorem 6, we have∑
S⊆[n],|S|≥ 1

β−1(ε
2.32

)

f̂2(S) ≤ 2.32 nsβ−1(ε
2.32)(f) ≤ 2.32 β(β−1(

ε

2.32
)) = ε

Corollary 8 Consider half-space function h : {±1}n → {±1}. Then, we have∑
S⊆[n],|S|≥Θ(1

ε2
)

f̂2(S) ≤ ε

Proof From previous lecture, we know that for a half-space function h, we have nsε(h) ≤ 8.8
√
ε. Let

β(ε) = 8.8
√
ε. Thus, using Corollary 7 we have∑

S⊆[n],|S|≥ 1

β−1(ε
2.32

)

f̂2(S) ≤ ε

Noting the definition of the β(.) function, we have β−1(x) = (x
8.8)2, and in particular, β−1(ε

2.32) =
(ε

20.4166)2 ≥ (ε
21)2. Therefore, 1

β−1(ε
2.32) ≤

441
ε2 . Hence, we can conclude that∑

S⊆[n],|S|≥ 441
ε2

f̂2(S) ≤
∑

S⊆[n],|S|≥ 1

β−1(ε
2.32

)

f̂2(S) ≤ ε

Note that this corollary, along with our low-degree learning algorithm, gives us a nO(1
ε2

) sample-
uniform learning algorithm for half-spaces. As a side note, we add that one can also learn half-space
functions in polynomial time, via linear programming.

2.3 Application: Learning Boolean Functions of k Half-Space Functions

Theorem 9 Consider half-space functions h1, h2, . . ., hk, and boolean functions f, g : {±1}k → {±1}
such that f(x) = g(h1(x), h2(x), . . . , hk(x)). Then, we have nsε(f) ≤ 8.8k

√
ε.

Proof The main idea of the proof is simple Union bound. We have

nsε(f) = Pr
[
f(x) 6= f(Nε(x))

]
= Pr

[
g(h1(x), h2(x), . . . , hk(x)) 6= g(h1(Nε(x)), h2(Nε(x)), . . . , hk(Nε(x)))

]
≤ Pr

[
h1(x) 6= h1(Nε(x)) or h2(x) 6= h2(Nε(x)) or . . . or hk(x) 6= hk(Nε(x))

]
≤ Pr

[
h1(x) 6= h1(Nε(x))

]
+ Pr

[
h2(x) 6= h2(Nε(x))

]
+ . . .+ Pr

[
hk(x) 6= hk(Nε(x))

]
≤ 8.8k

√
ε (4)

where the least inequality follows from Theorem 4.

3

Corollary 10 Consider half-space functions h1, h2, . . ., hk, and boolean functions f, g : {±1}k → {±1}
such that f(x) = g(h1(x), h2(x), . . . , hk(x)). Then, we have∑

S⊆[n],|S|≥Θ(k
2

ε2
)

f̂2(S) ≤ ε

Proof Follows immediately from Corollary 7 and Theorem 9.

Again, this corollary, along with our low-degree learning algorithm, gives us a nO(k
2

ε2
) sample-uniform

learning algorithm for any boolean function of k half-space functions. Side note is that, in contrast to
learning half-space functions, it is not known how to learn arbitrary functions of k half-space functions
in polynomial time via linear programming.

2.4 Learning Parity Functions

In this model, we assume that there is a black box which contains an unknown parity function f :
{0, 1}n → {0, 1} and the goal is to learn this function. Speaking differently, the black box calculates
some function f = χS and we want to figure out what S is. For this, we have access to samples of this
function, i.e., (x1, f(x1)), (x2, f(x2)), . . ., (xm, f(xm)).

The case without noise: If there is no noise, i.e., we have access to exact evaluations, then this
problem can be solved simply by solving a system of linear equations, where we have n unknowns such
that the ith unknown is zero if i /∈ S and one otherwise.

The case with noise: In the sequel, we focus on the problem of learning parity functions in the
presence of noise. This means that for each sample-point xi, we have Pr

[
f(xi) = χS(xi)

]
≥ 0.5 + δ

where δ is some possibly small positive probability. In this scenario, the goal might be either to find
χS(.) that is closest to f(.) or find all χS(.) that are close enough to f(.). The former case is just finding
the largest Fourier coefficient while the latter is finding all large enough Fourier coefficients.

There are different variants to this problem. When sample-points x1, x2, . . ., xm are chosen ad-
verserially, the problem is equivalent to “maximum likelihood decoding of linear codes” which is known
to be NP-hard. When sample-points x1, x2, . . ., xm are chosen randomly at uniform, the problem is
equivalent to “hardness of decoding linear codes”, or also often called “hardness of parity with noise”. A
possibly slightly easier version asks what happens if the noise just flips every bit with some probability.
This version is often called “hardness of decoding random linear codes” which is usually used as an
assumption in cryptography and coding. A theorem by Blum, Kalai, and Wasserman gives a slightly
sub-exponential (2

n
logn) algorithm for this variant. Next time, we will study the question that “what

happens if one can make queries into desired sample-points?”.

4

