
6.895 Randomness and Computation March 6,2006

Lecture 8
Lecturer: Ronitt Rubinfeld Scribe: Matthew Ince

1 DNF formulas

Definition 1 Given n variables x1, . . . , xn, a DNF formula F = F1 ∨ F2 ∨ . . . ∨ Fm on m clauses and
n variables is a boolean formula where each clause Fi is of the form Fi = yj1 ∧ yj2 ∧ . . ., and where the
yj are literals xk or xk.

Our goal is to uniformly randomly generate satisfying assignments of DNF formulas. Every non-
trivial DNF formula has a satisfying assignment, because satisfying the formula reduces to satisfying a
single clause Fi. For instance, to satisfy the formula

F = x1x2x3 ∨ x1x2x4,

we could satisfy the first clause by choosing x1 = x2 = T , x3 = F . As an aside, note that if the ∨
are replaced by XORs ⊕, then F becomes a polynomial in the variables over Z2, and finding satisfying
assignments reduces to random polynomial zero-finding.

Not surprisingly, generating satisfying assignments for a DNF formula is closely related to counting
the number of such assignments. However, exact answers to this problem are difficult to obtain: the
negation of a DNF formula is a so-called CNF formula, e.g. (x ∨ y ∨ z) ∧ (x ∨ x ∨ y). CNF formulas are
the subject of the famous 3CNF − SAT problem, which shows that finding satisfying assignments for
CNF formulas with three variables per clause is NP-complete. Since counting the number of satisfying
assignments of a DNF formula would reveal the existence of a satisfying assignment of its negation,
counting the number of assignments is a problem of class #P.

We first find satisfying assignments when m = 1. In this case, F only has a single clause, e.g. F1 =
x1x2x3. We may generate all satisfying assignments of this clause by choosing x1 = T, x2 = T, x3 = F ,
and arbitrary values for each other xi. Note that there are 2n−3 satisfying assignments in all.

If we have more than one clause, we could simply pick a clause, then pick a random satisfying
assigment for that clause. However, this procedure is biased toward assignments satisfying several
different clauses. Because we want a uniform distribution of outputs, we use a slightly more complicated
selection routine. For convenience, let Si be the set of assignments satisfying Fi.

Algorithm A
To randomly generate π satisfying F :

Step i: Pick i ∈ [m] with probability |Si|P
|Si| .

Then pick a random satisfying assignment π of Fi.
Step ii: Compute ` = |{j ∈ {1, 2, . . . ,m} : π ∈ Sj}|.

Then toss a coin with bias 1/`.
If the coin is “Heads”, OUTPUT π and halt.
Otherwise, restart at step I.

Intuitively, step i is the naive selection routine, and step ii compensates for assignments π in several
Si: if π is in ` different sets Si, then each of these Si should be 1/` times as likely to select π to ensure
a uniform distribution. We now prove some claims about algorithm A:

Claim 2 Algorithm A outputs satisfying assignments uniformly at random.

1

Proof of Claim 2: It suffices to show that each loop iteration is equally likely to output all satisfying
assignments π. For a given π, as before let ` = |{j ∈ {1, 2, . . . ,m} : π ∈ Sj}|. By conditional probability,

Pr[π picked in step 1] =
∑

j∈[m] s.t. π∈Sj

Pr[Step i picks clause j]
1
|Sj |

=
∑

j∈[m] s.t. π∈Sj

|Sj |∑
|Sj |

· 1
Sj

=
∑

j∈[m] s.t. π∈Sj

(
∑

|Sj |)−1

=
`∑
|Sj |

.

So the probability that this loop iteration actually outputs π is 1
`

`P
|Sj | = 1P

|Sj | , which is independent
of π.

Claim 3 The number of loops needed to choose π satisfies

E[# loops until OUTPUT] ≤ m.

Proof of Claim 3: For each π examined, we have ` ≤ m, giving 1/` ≥ 1/m. A coin with bias p has
1/p expected runs until it outputs “Heads”, so

E[# loops] = 1/bias ≤ m.

2 P-relations

Definition 4 Let R be a binary relation R ⊂ {0, 1}∗ × {0, 1}∗ on strings. We say R is a P-relation if

1. For each (x, y) ∈ R, we have |y| = O(poly(|x|)).

2. There exists a polynomial time procedure for deciding if (x, y) ∈ R.

For example, consider RSAT = {(x, y) | x a boolean formula, y a satisfying assignment of x}.

Claim 5 We have L ∈ NP if and only if there exists a P-relation R such that x ∈ L holds if and only
if there exists y with (x, y) ∈ R.

The (trivial) proof of this fact comes next time. Note that y can be thought of as “corroborating”
whether x ∈ L.

2

