March 6,2006

Lecture 8

Lecturer: Ronitt Rubinfeld

Scribe: Matthew Ince

1 DNF formulas

Definition 1 Given n variables x_1, \ldots, x_n , a DNF formula $F = F_1 \lor F_2 \lor \ldots \lor F_m$ on m clauses and n variables is a boolean formula where each clause F_i is of the form $F_i = y_{j_1} \land y_{j_2} \land \ldots$, and where the y_j are literals x_k or $\overline{x_k}$.

Our goal is to uniformly randomly generate satisfying assignments of DNF formulas. Every nontrivial DNF formula has a satisfying assignment, because satisfying the formula reduces to satisfying a single clause F_i . For instance, to satisfy the formula

$$F = x_1 x_2 \overline{x_3} \vee \overline{x_1} x_2 x_4,$$

we could satisfy the first clause by choosing $x_1 = x_2 = T$, $x_3 = F$. As an aside, note that if the \vee are replaced by XORs \oplus , then F becomes a polynomial in the variables over \mathbb{Z}_2 , and finding satisfying assignments reduces to random polynomial zero-finding.

Not surprisingly, generating satisfying assignments for a DNF formula is closely related to counting the number of such assignments. However, exact answers to this problem are difficult to obtain: the negation of a DNF formula is a so-called CNF formula, e.g. $(x \lor y \lor \overline{z}) \land (x \lor \overline{x} \lor y)$. CNF formulas are the subject of the famous 3CNF - SAT problem, which shows that finding satisfying assignments for CNF formulas with three variables per clause is NP-complete. Since counting the number of satisfying assignments of a DNF formula would reveal the existence of a satisfying assignment of its negation, counting the number of assignments is a problem of class #P.

We first find satisfying assignments when m = 1. In this case, F only has a single clause, $e.g. F_1 = x_1 x_2 \overline{x_3}$. We may generate all satisfying assignments of this clause by choosing $x_1 = T, x_2 = T, x_3 = F$, and arbitrary values for each other x_i . Note that there are 2^{n-3} satisfying assignments in all.

If we have more than one clause, we could simply pick a clause, then pick a random satisfying assignment for that clause. However, this procedure is biased toward assignments satisfying several different clauses. Because we want a uniform distribution of outputs, we use a slightly more complicated selection routine. For convenience, let S_i be the set of assignments satisfying F_i .

Algorithm A

To randomly generate π satisfying F: Step i: Pick $i \in [m]$ with probability $\frac{|S_i|}{\sum |S_i|}$. Then pick a random satisfying assignment π of F_i . Step ii: Compute $\ell = |\{j \in \{1, 2, ..., m\} : \pi \in S_j\}|$. Then toss a coin with bias $1/\ell$. If the coin is "Heads", OUTPUT π and halt. Otherwise, restart at step I.

Intuitively, step i is the naive selection routine, and step ii compensates for assignments π in several S_i : if π is in ℓ different sets S_i , then each of these S_i should be $1/\ell$ times as likely to select π to ensure a uniform distribution. We now prove some claims about algorithm A:

Claim 2 Algorithm A outputs satisfying assignments uniformly at random.

Proof of Claim 2: It suffices to show that each loop iteration is equally likely to output all satisfying assignments π . For a given π , as before let $\ell = |\{j \in \{1, 2, ..., m\} : \pi \in S_j\}|$. By conditional probability,

$$\begin{aligned} \Pr[\pi \text{ picked in step 1}] &= \sum_{j \in [m] \ s.t. \ \pi \in S_j} \Pr[\text{Step i picks clause } j] \frac{1}{|S_j|} \\ &= \sum_{j \in [m] \ s.t. \ \pi \in S_j} \frac{|S_j|}{\sum |S_j|} \cdot \frac{1}{S_j} \\ &= \sum_{j \in [m] \ s.t. \ \pi \in S_j} (\sum |S_j|)^{-1} \\ &= \frac{\ell}{\sum |S_j|}. \end{aligned}$$

So the probability that this loop iteration actually outputs π is $\frac{1}{\ell} \frac{\ell}{\sum |S_j|} = \frac{1}{\sum |S_j|}$, which is independent of π .

Claim 3 The number of loops needed to choose π satisfies

 $E[\# loops until OUTPUT] \leq m.$

Proof of Claim 3: For each π examined, we have $\ell \leq m$, giving $1/\ell \geq 1/m$. A coin with bias p has 1/p expected runs until it outputs "Heads", so

$$E[\# \text{ loops}] = 1/bias \le m.$$

2 P-relations

Definition 4 Let R be a binary relation $R \subset \{0,1\}^* \times \{0,1\}^*$ on strings. We say R is a P-relation if

- 1. For each $(x, y) \in R$, we have |y| = O(poly(|x|)).
- 2. There exists a polynomial time procedure for deciding if $(x, y) \in R$.

For example, consider $R_{SAT} = \{(x, y) \mid x \text{ a boolean formula, } y \text{ a satisfying assignment of } x\}.$

Claim 5 We have $L \in NP$ if and only if there exists a P-relation R such that $x \in L$ holds if and only if there exists y with $(x, y) \in R$.

The (trivial) proof of this fact comes next time. Note that y can be thought of as "corroborating" whether $x \in L$.