Lecture 8

Lecturer: Ronitt Rubinfeld Scribe: Matthew Ince

1 DNF formulas

Definition 1 Given n variables x_{1}, \ldots, x_{n}, a DNF formula $F=F_{1} \vee F_{2} \vee \ldots \vee F_{m}$ on m clauses and n variables is a boolean formula where each clause F_{i} is of the form $F_{i}=y_{j_{1}} \wedge y_{j_{2}} \wedge \ldots$, and where the y_{j} are literals x_{k} or $\overline{x_{k}}$.

Our goal is to uniformly randomly generate satisfying assignments of DNF formulas. Every nontrivial DNF formula has a satisfying assignment, because satisfying the formula reduces to satisfying a single clause F_{i}. For instance, to satisfy the formula

$$
F=x_{1} x_{2} \overline{x_{3}} \vee \overline{x_{1}} x_{2} x_{4},
$$

we could satisfy the first clause by choosing $x_{1}=x_{2}=T, x_{3}=F$. As an aside, note that if the \vee are replaced by XORs \oplus, then F becomes a polynomial in the variables over \mathbb{Z}_{2}, and finding satisfying assignments reduces to random polynomial zero-finding.

Not surprisingly, generating satisfying assignments for a DNF formula is closely related to counting the number of such assignments. However, exact answers to this problem are difficult to obtain: the negation of a DNF formula is a so-called CNF formula, e.g. $(x \vee y \vee \bar{z}) \wedge(x \vee \bar{x} \vee y)$. CNF formulas are the subject of the famous $3 C N F-S A T$ problem, which shows that finding satisfying assignments for CNF formulas with three variables per clause is NP-complete. Since counting the number of satisfying assignments of a DNF formula would reveal the existence of a satisfying assignment of its negation, counting the number of assignments is a problem of class \#P.

We first find satisfying assignments when $m=1$. In this case, F only has a single clause, e.g. $F_{1}=$ $x_{1} x_{2} \overline{x_{3}}$. We may generate all satisfying assignments of this clause by choosing $x_{1}=T, x_{2}=T, x_{3}=F$, and arbitrary values for each other x_{i}. Note that there are 2^{n-3} satisfying assignments in all.

If we have more than one clause, we could simply pick a clause, then pick a random satisfying assigment for that clause. However, this procedure is biased toward assignments satisfying several different clauses. Because we want a uniform distribution of outputs, we use a slightly more complicated selection routine. For convenience, let S_{i} be the set of assignments satisfying F_{i}.

Algorithm A

To randomly generate π satisfying F :
Step i: Pick $i \in[m]$ with probability $\frac{\left|S_{i}\right|}{\sum\left|S_{i}\right|}$.
Then pick a random satisfying assignment π of F_{i}.
Step ii: Compute $\ell=\left|\left\{j \in\{1,2, \ldots, m\}: \pi \in S_{j}\right\}\right|$.
Then toss a coin with bias $1 / \ell$.
If the coin is "Heads", OUTPUT π and halt.
Otherwise, restart at step I.

Intuitively, step i is the naive selection routine, and step ii compensates for assignments π in several S_{i} : if π is in ℓ different sets S_{i}, then each of these S_{i} should be $1 / \ell$ times as likely to select π to ensure a uniform distribution. We now prove some claims about algorithm A:

Claim 2 Algorithm A outputs satisfying assignments uniformly at random.

Proof of Claim 2: It suffices to show that each loop iteration is equally likely to output all satisfying assignments π. For a given π, as before let $\ell=\left|\left\{j \in\{1,2, \ldots, m\}: \pi \in S_{j}\right\}\right|$. By conditional probability,

$$
\begin{aligned}
\operatorname{Pr}[\pi \text { picked in step 1] } & =\sum_{j \in[m] \text { s.t. } \pi \in S_{j}} \operatorname{Pr}[\text { Step i picks clause } j] \frac{1}{\left|S_{j}\right|} \\
& =\sum_{j \in[m] \text { s.t. } \pi \in S_{j}} \frac{\left|S_{j}\right|}{\sum\left|S_{j}\right|} \cdot \frac{1}{S_{j}} \\
& =\sum_{j \in[m] \text { s.t. } \pi \in S_{j}}\left(\sum\left|S_{j}\right|\right)^{-1} \\
& =\frac{\ell}{\sum\left|S_{j}\right|} .
\end{aligned}
$$

So the probability that this loop iteration actually outputs π is $\frac{1}{\ell} \frac{\ell}{\sum\left|S_{j}\right|}=\frac{1}{\sum\left|S_{j}\right|}$, which is independent of π.

Claim 3 The number of loops needed to choose π satisfies

$$
E[\# \text { loops until OUTPUT }] \leq m
$$

Proof of Claim 3: For each π examined, we have $\ell \leq m$, giving $1 / \ell \geq 1 / m$. A coin with bias p has $1 / p$ expected runs until it outputs "Heads", so

$$
E[\# \text { loops }]=1 / \text { bias } \leq m
$$

2 P-relations

Definition 4 Let R be a binary relation $R \subset\{0,1\}^{*} \times\{0,1\}^{*}$ on strings. We say R is a P-relation if

1. For each $(x, y) \in R$, we have $|y|=O(\operatorname{poly}(|x|))$.
2. There exists a polynomial time procedure for deciding if $(x, y) \in R$.

For example, consider $R_{S A T}=\{(x, y) \mid x$ a boolean formula, y a satisfying assignment of $x\}$.
Claim 5 We have $L \in N P$ if and only if there exists a P-relation R such that $x \in L$ holds if and only if there exists y with $(x, y) \in R$.

The (trivial) proof of this fact comes next time. Note that y can be thought of as "corroborating" whether $x \in L$.

