
6.895 Randomness and Computation March 1, 2006

Lecture 7
Lecturer: Ronitt Rubinfeld Scribe: Jelani Nelson

1 Recap of Previous Lectures

1. Goldreich-Levin Algorithm:

Given θ and oracle access to f : {±1}n → {±1}, output a list L of subsets of [n] such that ∀S ⊆ [n],
S will be output if |f̂(S)| > θ, and will not be output if |f̂(S)| < θ/2. Both of these guarantees
are with high probability, and the algorithm runs in time poly(n, 1

θ).

2. Sampling Theorem:

O(k/δ2) samples allows us to produce an estimate f̃(S) of f̂(S) such that PrS [|f̃(S)−f̂(S)| > δ] ≤ e−k.

2 Decision Trees

��������
����

��������

��������
����

��������
����
(((((

hhhhh

cc ## cc

bb "" bb""

X3

X1X2

X1 X2−1

−1 +1 −1 +1

+1

-1 +1

-1

-1

-1

-1

+1

+1

+1

+1

Figure 1: A decision tree for computing the majority function on three variables.

A decision tree is simply a way to represent a function f : {±1}n → {±1}. It is a rooted binary
tree, where each node is a leaf or has exactly two children. Leaves contain the values {±1}, signifying
that all inputs whose prefixes match the edges taken from the root path are mapped by the function to
the value in the leaf. Nodes containing exactly two children contain a variable xi and have two edges
labeled +1 and −1, dictacting which way to branch based on the value of xi in the input.

Definition 1 The L1 norm of a function L1(f) is defined as
∑

S⊆[n] |f̂(S)|.

Theorem 2 If f is computable by an m-node decision tree, then L1(f) ≤ m.

Proof For each leaf ` define a function g` : {±1}n → {0, 1}. We would like to define g` so that g`(x)
is 1 if following x down the tree causes us to arrive at ` and 0 otherwise. Let V` be the set of variables
visited on the path from the tree’s root to `. We define

g`(x) =
∏
i∈V`

1± xi

2

The sign is a plus if x1 should be +1 to arrive at ` and is −1 otherwise. Notice that g`(x) can also
be written as

1

1
2|V`|

∑
S⊆V`

(±1)
∏
i∈S

xi

The sign within the sum is negative iff the number of times −1 taken is odd. Also note that
∏

i∈S xi

is just the definition of χS(x), so the above sum is simply 1
2|V`| · 2|V`| = 1.

Now, f(X) =
∑

` g`(x) · val(`) (where val(`) ∈ {±1}). So finally we have

L1(f) =
∑
T

|f̂(T)|

=
∑
T

∣∣∣∣∣∑
`

ĝ`(T)val(`)

∣∣∣∣∣
≤

∑
T

∑
`

|ĝ`(T)|

=
∑

`

∑
T

|ĝ`(T)|

= #leaves

Since the number of leaves is certainly at most the number of total nodes, the claim follows.

3 Weak Learning of Monotone Functions

First we will define the partial order � on {±1}n. For any x, y ∈ {±1}n, we say that x � y iff ∀i xi ≤ yi.

Definition 3 We say that f : {±1}n → {±1} is monotone if x � y ⇒ f(x) ≤ f(y).

Theorem 4 ∀f monotone, there is a function g ∈ {−1, 1, x1, x2, . . . , xn} such that Prx[f(x) = g(x)] ≥
1
2 + Ω(1

n).

Before we prove Theorem 4, we will introduce the notion of the influence of a variable.
In the following, let ui = (1, 1, . . . , 1,−1, 1, . . . , 1) be the vector that has a −1 in the ith location and

1’s elsewhere.

Definition 5 The influence of the variable xi on the function f : {±1}n → {±1} to be

Infi(f) = Prx[f(x) 6= f(x · ui)]

where the multiplication x · ui is component-wise. We then define the influence of f to be

Inf(f) =
n∑

i=1

Infi(f)

We will also refer to edges between points in {±1}n. There will be an edge between two points iff
all coordinates except for one match exactly. We say that the edge crosses the ith direction if the ith
coordinate is the one that differs. Also, we refer to the set of points where f is +1 as red points, points
where it is −1 as blue, and edges as red-blue if they are incident on one red and one blue point.

Then

2

Infi(f) =
total # red-blue edges in ith direction

total # edges in ith direction
=

total # red-blue edges in ith direction
2n−1

and

Inf(f) =
total # red-blue edges

total # edges
=

total # of red-blue edges
n2n−1

Lemma 6 If f is monotone, then Infi(f) = f̂({i}).

Proof of Theorem 4 Assume Pr[f(x) = 1] ∈ [14 , 3
4], else one of {±1} agrees with f with probability

at least 3
4 . Now we will use a canonical path argument. Suppose x is red and y is blue. A canonical

path from x to y is computed by scanning the bits left to right, following an edge where xi 6= yi. For
example, the following is a path from (+1,+1,−1,−1) to (−1,−1,+1,+1):

+1 +1 -1 -1
-1 +1 -1 -1
-1 -1 -1 -1
-1 -1 +1 -1
-1 -1 +1 +1

Now, if Pr[f(x) = 1] ∈ [14 , 3
4], then the numbers of red and blue nodes are each at least 1

42n. So
the number of red-blue pairs is at least 1

1622n. Now for any given edge, let us analyze the number of
x, y pairs whose canonical paths traverse that edge. We assume the edge crosses the ith direction. The
length (n− i) suffix of x must match that of the two vertices the edge is incident upon, and the length
i − 1 prefix of y must match the prefixes of those two vertices. Furthermore, the ith element of y is
constrained to be the opposite of that of x. Thus we have 2i choices for x and 2n−i choices for y, for a
total of at most 2n x, y pairs whose canonical paths cross a given edge. Each canonical path between a
red-blue pair must cross at least one red-blue edge. So, there are at least 1

162n red-blue edges, and thus
there are at least 1

16n2n red-blue edges in direction i, for some i. So now we have

f̂({i}) = Infi(f) ≥
1

16n2n

2n−1
=

1
8n

Since f̂(S) = 2Prx[f(x) = χS(x)], the above leads to Prx[f(x) = xi] ≥ 1
2 + 1

16n .

In fact, one can do better using the Kruskal-Katona theorem to show that one of the functions
{−1,+1,majority function} has 1

2 + Ω(1√
n
) agreement with any monotone function. Imagine that the

points of {±1}n are placed at vertices of a hypercube, rotated so that (+1,+1, . . . ,+1) is at the very
top. We then say that a point is at level i if it contains exactly i +1’s. Kruskal-Katona tells us about
the rate at which pk = Pr[f(x) = 1|x at level k] changes as k decreases. We will not go into the proof
details here though.

3

