
6.895 Randomness and Computation February 27, 2006

Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: Benjamin Snyder

Our general goal over the course of the next few lectures will be the following: given some f : {±1} →
{±1}, output h : {±1} → < s.t. Prx[f(x) 6= sgn(h(x))] ≤ ε.

In particular, we will be working in the framework known as “Learning with Queries under the Uniform
distribution.”

1. We are allowed queries of the form, “what is f(x)?” (some learning frameworks allow more general
questions). In fact, we will see that in our first example we will only require query access for
randomly chosen values of x, instead of for arbitrary values of our own choosing.

2. Error is computed under a uniform distribution. i.e. no “special inputs”

3. We won’t know which inputs are likely to produce errors – we just have a bound on the total error.

4. If f is random (in the sense that a bit is chosen at random to be the output for a particular input),
then there is no way to find such an h in less than exponential time, as we would have to sample
each possible input. Instead we will look at learning f when it comes from certain special families
of functions such as (i) constant depth polysize circuits, and (ii) the set of “small” decision trees.

5. Finally, it should be noted that the resulting function h need not be from the same special family
as f .

Our algorithms will find a function that approximates f by approximating certain subsets of the Fourier
coefficients. In the case of small depth circuits, we will approximate all Fourier coefficients correspond-
ing to small sets S, and in the case of decision trees, we will approximate all Fourier coefficients that
have large enough absolute value. Thus we will have two potential sources of error – the first is that
we are completely ignoring most Fourier coefficients and the second is that even for those that we are
considering, we only get an approximation.

Note however, that we can approximate any Fourier coefficient with arbitrary precision using sam-
pling in the following way: for any given set S ⊆ [n], with O(k

δ2) samples we can approximate
f̂(S) = 1 − 2 Prx[f(x) 6= χS(x)] (an equality proved in a previous lecture) with some value f̃ , where
Pr[|f̃(S) − f̂(S)| > δ] ≤ e−k. This is done by sampling values of x and estimating Prx[f(x) 6= χS(x)].
The proof proceeds with a straighforward application of Chernoff bounds.

Of course, we will still need to analyze the effect these approximations have on the overall error of
the outputted function h for each of the individual algorithms.

1 Learning Circuits

First we take up the issue of learning f when it is in the family of constant depth polysize circuits.

input: X1, X2, ..., Xn ∈ {0, 1}n

gates: ∨,∧,¬

Our ∨ and ∧ will have unbounded fan-in (i.e. they can take any subset of the variables as inputs).

Also, by DeMorgan’s law we can always push negation into conjunctive and disjunctive expressions
(e.g. ¬(X1 ∧X2) = ¬X1 ∨ ¬X2). We will assume that that this has been and that the negation gates

1

will always occur (if at all) at the first level of the circuit, and we will therefore not include negation
gates in its size.

Now we will switch back to the bit notation of {±1} and assume that ∧, ∨ and ¬ have been mapped
to operations with equivalent truth-tables (i.e. where +1 takes the place of 0, and−1 takes the place of 1).

Definition 1 Let F(s, d) be the family of functions computable via circuits of size ≤ s and depth ≤ d

For example, F(2n, 2) is the set of all n-bit functions (since the entire truth-table can be directly encoded
using 2n gates).

Question: does F(poly(n), d) (known as AC0) contain the parity function?

This problem was answered in the negative by a series of works due to several authors. In fact, what
this line of work was able to show was the following:

Theorem 2 (Hastad, Linial Mansour Nisan) For any function f in F(s, d), and for t = 28× (14×
log(2s

α))d−1, we have
∑
|S|>t f̂2(S) ≤ α.

To make sense of the value of t as we will use it, consider the case where s = poly(n), d is a constant, and
α is an error constant. Then we have t = O(logd(n

α)), and we can understand the theorem intuitively as
saying that Fourier coefficients of large sets S (i.e. of linear functions with large multipliers) can’t have
too much energy.

Now note that the parity function places all its weight on the single Fourier coefficient f̂([n]) and
therefore by Parseval’s identity, for any t < n,

∑
|S|>t f̂2(S) = 1. Then, by Theorem 2, AC0 does not

contain parity.

This is the bad news. However, some good news can also be found in Theorem 2 as the following
results shows.

Theorem 3 (LMN) For any function f ∈ F(s, d),∃ an algorithm that in time only nO(log(s
ε))d−1

re-
turns a function g s.t. Prx[f(x) 6= sgn(g(x))] ≤ ε.

Corollary 4 For any function f ∈ F(poly(n), d),∃ an algorithm that in time only nO(log(n
ε))d−1

returns
a function g s.t. Prx[f(x) 6= sgn(g(x))] ≤ ε.

Algorithm
Input: function f , computable by some circuit of size s = poly(n), constant depth d.
Let α = ε/2, t = 28× (14× log(2s

α))d−1, and δ =
√

ε
2nt

Use sampling to compute f̃(S), for S s.t. |S| < t, to within error δ of f̂(S).
Return g(x) =

∑
|S|<t f̃(S)χS(x).

We need O(k
δ2) = O(nt

ε) samples to estimate each f̃(S) within error δ of f̂(S) with confidence 1− e−k.

Now,

Pr
x

[g(x) 6= f(x)] ≤ Exp[(f(x)− g(x))2]

=
∑
S

(f̂(S)− ĝ(S))2

2

=
∑
|S|<t

(f̂(S)− f̃(S))2 +
∑
|S|>t

f̂(S)2

≤
∑
|S|<t

δ2 + α

=
t∑

i=1

(
n

i

)
δ2 + α

≤ ntδ2 + α

= ε/2 + ε/2
= ε

2 Learning Decision Trees

Recall from last time the Goldreich-Levin (GL) algorithm, whose existence can be stated as the following
theorem:

Theorem 5 ∃ an algorithm that given parameters Θ and oracle access to f : {±1}n → {±1}, outputs
in time poly(n, 1

Θ) a list L of subsets of [n] that with high probability finds all S ⊆ [n] with |f̂(S)| ≥ Θ
(and contains no S s.t. |f̂(S)| ≤ Θ

2)

Definition 6 An m-node decision tree is any tree of size m whose internal nodes are labeled by values
i ∈ [n] and whose leaf nodes are labeled by values j ∈ {±1}.

Definition 7 A function f : {±1}n → {±1} is computable by an m-node decision tree if for ∀x ∈
{±1}n,∃ an m-node decision tree s.t. the leaf reached from the traversal of x down the tree has value
f(x). A traversal is governed by the rule that at a node labeled with i, if xi = −1, the traversal continues
down the left child, and if xi = +1, the traversal continues down the right child.

Claim 8 For any function f computable by an m-node decision tree, the L1 norm of f (defined to be∑
Z |f̂(Z)|) is small (i.e. ≤ m).

Claim 9 When L1(f) is small, the large Fourier coefficients are enough to approximate f . i.e., g(x) =∑
Ss.t.|f̂(S)|≥ε/2L1(f) f̂(S)χS(x) is s.t. Exp[(f − g)2] ≤ ε/2

As a result of these claims (which we will prove), we can run the GL algorithm with threshhold parameter
ε/2L1(f) to obtain a list L of large coefficients. However, there are two apparent difficulties with this
approach. (i) GL returns only the identity of the large Fourier coefficients, but not their actual values,
and (ii) we do not know the value of L1(f).

To solve the first problem, we will again use sampling to estimate the Fourier coefficients (of the sets
S ⊆ [n] which GL returns).

To circumvent the latter problem, we can run GL with a sequence of decreasing parameters:
{

ε/2L̃i
1(f)

}
i=0

,

where L̃i
1 = 2i, stopping after obtaining a function h s.t. Prx[f(x) 6= sgn(h(x))] ≤ ε (to be determined

by sampling x). By Claim 8, after at most log(m) tries, we will have L̃i
1 ≥ L1(f). In our exposition of

the algorithm, we will assume for the sake of simplicity that L̃i
1 = L1(f)

3

Algorithm
Let τ = ε/2L1(f), δ =

√
ε

2|L| . (Note: |L| = poly(n
τ))

Use GL to find L, the list of all S s.t. |f̂(S)| ≥ τ .
Use sampling to compute f̃(S) within error δ of f̂(S).
Return h(x) =

∑
S∈L f̃(S)χS(x).

We need O(k
δ2) = O(2poly(n

τ)

ε) = O(poly(nm
ε)) samples to estimate each f̃(S) within δ of f̂(S) with

confidence 1− e−k.

Now, let g(x) =
∑

Ss.t.|f̂(S)|≥τ f̂(S)χS(x).

Then,

Pr
x

[h(x) 6= f(x)] ≤ Pr
x

[h(x) 6= g(x)] + Pr
x

[g(x) 6= f(x)]

≤ Exp[(h(x)− g(x))2] + Exp[(g(x)− f(x))2]

≤
∑
S∈L

(ĥ(S)− ĝ(S))2 + ε/2

=
∑
S∈L

(f̃(S)− f̂(S))2 + ε/2

≤
∑
S∈L

δ2 + ε/2

= |L|δ2 + ε/2
= ε/2 + ε/2
= ε

We restate Claim 9 as a lemma and prove the lemma.

Lemma 10 For ε > 0, Let S = {Zs.t.|f̂(Z)| ≥ ε
L1(f)}, and let g(x) =

∑
Z∈S f̂(Z)χZ(x). Then,

Exp[(f − g)2(x)] ≤ ε

Proof of Lemma 10:

(f − g)(x) =
∑
S /∈S

f̂(Z)χZ(x),

so,

Exp[(f − g)2] =
∑
S /∈S

f̂2(Z)

≤ max
Z

|f̂(Z)|
∑
Z /∈S

|f̂(Z)|

=
ε

L1(f)
L1(f)

= ε

Proof of Claim 8:

4

For a fixed leaf `, define g` : {±1}n → {0, 1} to be

g(x) =
{ 1 if x reaches `

0 o.w.
.

First we will calculate L1(g`).

Let V` be the set of indices of variables viewed on the path to `. So if ` is of depth k in the tree,
then |V`| = k (assuming of course that no variable is seen multiple times on a path down a tree – any
function computable by a decision tree is computable by a decision tree that has this property).

To get a sense of the form of g, consider how we can represent g for the leftmost and rightmost leaves:

g(`−left)(x) =
1− x`1

2
1− x`2

2
· · · 1− x`k

2

g(`−right)(x) =
1 + x`1

2
1 + x`2

2
· · · 1 + x`n

2

where `i is the index of the ith variable seen on the path to `. In general, g`(x) can be represented in
this product form, where a + or − is chosen for each factor depending on whether the path to ` makes
a right or left turn after viewing the corresponding variable. i.e.,

g`(x) =
1

2|V`|

∏
i∈V`

(1± xi)

=
∑

S⊆V`

(±1)
∏
i∈S

xi(multivariate polynomial expansion)

=
1

2|V`|

∑
S⊆V`

χS(x)

So,

L1(g`) =
1

2|V`|

∑
S⊆V`

=
2|V`|

2|V`|
= 1

Now notice that since f is computable by the decision tree in question, and each x follows exactly
one path, we can represent it as follows:

f(x) =
∑

`

g(x)val(`)

(where val(`) is the value of the label of l).
Then, by linearity of Fourier coefficients (i.e. ̂f + g = f̂ + ĝ), the triangle inequality, and the fact that
val(l) ∈ {±1}, we have for any T ⊆ [n]

|f̂(T)| = |
∑

`

ĝ`(T)val(`)| ≤
∑

`

|ĝ`(T)|

5

Then finally,

L1(f) =
∑
T

|f̂(T)| ≤
∑
T

∑
`

|ĝ`(T)|

=
∑

`

∑
T

|ĝ`(T)|

=
∑

`

L1(g)

=
∑

`

1

= m

6

