February 21, 2006

Lecture 4

Scribe: Daniel Dumitran

Lecturer: Ronitt Rubinfeld

1 Fourier Representation

Let us consider the functions $f: \{\pm 1\}^n \to \{\pm 1\}$ and the following inner product $\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)g(x)$.

Definition 1 Let $S \in \{\pm 1\}^n$. We define $\chi_S : \{\pm 1\}^n \to \{\pm 1\}$ with $\chi_S(x) = \prod_{\substack{i \text{ st } s_i = -1 \\ i \text{ st } s_i = -1 }} x_i$. Note that throughout the lectures, S is sometimes used as a subset of [n] instead of a vector. If $S \subseteq [n]$ then $\chi_S(x) = \prod_{i \in S} x_i$.

Notice that functions χ_S form an orthonormal basis under inner product $\langle \rangle$ (i.e. $\langle \chi_S, \chi_T \rangle = \delta_{S,T}^{-1}$).

Definition 2 $\forall S \in \{\pm 1\}^n$ we define $\hat{f}(S) = \langle f, \chi_S \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x) \chi_S(x)$

Theorem 3 $\forall f$ we have $f(x) = \frac{1}{2^n} \sum_{z \in \{\pm 1\}^n} \hat{f}(x) \chi_z(x)$

Remark f linear $\Leftrightarrow \exists S \in \{\pm 1\}^n$ st $\forall T \in \{\pm 1\}^n$ we have $\hat{f}(T) = \delta_{S,T}$.

Definition 4 $dist(f,g) = Pr_{x \in \{\pm 1\}^n}[f(x) \neq g(x)]$

Lemma 5 $\forall S \in \{\pm 1\}^n$ and $f : \{\pm 1\}^n \to \{\pm 1\}$, we have $\hat{f}(S) = 1 - 2 * dist(f, \chi_S)$

Proof of Lemma 5:

$$\hat{f}(S) = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x) \chi_S(x) \\
= \frac{1}{2^n} [\sum_{x \ st \ f(x) = \chi_S(x)} f(x) \chi_S(x) + \sum_{x \ st \ f(x) \neq \chi_S(x)} f(x) \chi_S(x)]$$

However, $f(x)\chi_S(x)$ is 1 for all terms in the first sum and -1 for all terms in the second sum. Therefore

$$\hat{f}(S) = \frac{1}{2^n} [2^n - 2 \sum_{x \text{ st } f(x) \neq \chi_S(x)} -1]$$

= $1 - 2Pr[f(x) \neq \chi_S(x)]$
= $1 - dist(f, \chi_S(x))$

 ${}^{1}\delta(S,T)$ is 1 if S = T and 0 otherwise.

Let $S \neq T$ be two elements in $\{\pm 1\}^n$. We have

$$dist(\chi_S, \chi_T) = \frac{1 - \hat{\chi_T}(S)}{2}$$
$$= \frac{1 - \langle \chi_S, \chi_T \rangle}{2}$$
$$= \frac{1}{2}$$

What this tells us is that two different linear functions agree on EXACTLY half of their inputs.

2 Parseval's Identity (for Boolean functions only)

Lemma 6 $\forall f : \{\pm 1\}^n \to \{\pm 1\}$ we have $\sum_{S \in \{\pm 1\}^n} [\hat{f}(S)]^2 = 1.$ (For the general case, we have $\langle f, f \rangle = \sum_{S \in \{\pm 1\}^n} [\hat{f}(S)]^2.$)

We are going to prove the lemma for Boolean functions only. **Proof** of Lemma 6: If f is Boolean, we have $\langle f, f \rangle = 1$ because

$$\langle f, f \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f^2(x)$$

 $= \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} 1$
 $= \frac{1}{2^n} 2^n$
 $= 1$

However, we also have

$$\langle f, f \rangle = \langle \sum_{S \in \{\pm 1\}^n} \hat{f}(S) \chi_S, \sum_{T \in \{\pm 1\}^n} \hat{f}(T) \chi_T \rangle$$

$$= \sum_{S,T} \hat{f}(S) \hat{f}(T) \langle \chi_S, \chi_T \rangle$$

$$= \sum_{S,T} \hat{f}(S) \hat{f}(T) \delta_{S,T}$$

$$= \sum_{S} [\hat{f}(S)]^2 * 1$$

$$= \sum_{S} [\hat{f}(S)]^2$$

Therefore $\sum_{S} [\hat{f}(S)]^2 = 1 \blacksquare$

3 More Linearity Testing

We have

$$\begin{split} f(xy) &= f(x)f(y) &\Leftrightarrow \quad f(x)f(y)f(xy) = 1 \\ &\Leftrightarrow \quad \frac{1-f(x)f(y)f(xy)}{2} = 0 \end{split}$$

and

$$\begin{aligned} f(xy) \neq (x)f(y) & \Leftrightarrow \quad f(x)f(y)f(xy) = -1 \\ & \Leftrightarrow \quad \frac{1 - f(x)f(y)f(xy)}{2} = 1 \end{aligned}$$

It is therefore a natural choice to use the indicator variable $I[\frac{1-f(x)f(y)f(xy)}{2}]$ in order to measure the probability of group law failure of a function f.

$$\begin{split} E_{x,y}[f(x)f(y)f(xy)] &= E_{x,y}\{[\sum_{S}\hat{f}(S)\chi_{S}(x)][\sum_{T}\hat{f}(T)\chi_{T}(y)][\sum_{U}\hat{f}(U)\chi_{U}(xy)]\}\\ &= E_{x,y}[\sum_{S,T,U}\hat{f}(S)\hat{f}(T)\hat{f}(U)\chi_{S}(x)\chi_{T}(y)\chi_{U}(xy)]\\ &= \sum_{S,T,U}\{\hat{f}(S)\hat{f}(T)\hat{f}(U)E_{x,y}[\chi_{S}(x)\chi_{T}(y)\chi_{U}(xy)]\} \end{split}$$

Let us first compute $E_{x,y}[\chi_S(x)\chi_T(y)\chi_U(xy)]$. There are two cases to analyze: (S = T = U) and $(S \neq U)$ or $T \neq U$. If S = T = U, we have

$$E_{x,y}[\chi_S(x)\chi_T(y)\chi_U(xy)] = E_{x,y}[\chi_S(x)\chi_S(y)\chi_S(xy)]$$

= $E_{x,y}[\prod_{i\in S} x_i \prod_{i\in S} y_i \prod_{i\in S} (x_iy_i)]$
= $E_{x,y}[\prod_{i\in S} (x_iy_i)^2]$
= $E_{x,y}[\prod_{i\in S} 1] = 1.$

If $S \neq U$ or $T \neq U$, then

$$E_{x,y}[\chi_S(x)\chi_T(y)\chi_U(xy)] = E_{x,y}[\prod_{i\in S} x_i \prod_{j\in T} y_j(\prod_{k\in U} x_k \prod_{l\in U} y_l)]$$

$$= E_{x,y}[\prod_{i\in S\Delta U} x_i \prod_{j\in T\Delta U} y_j]$$

$$= E_x[\prod_{i\in S\Delta U} x_i] * E_y[\prod_{j\in T\Delta U} y_j]$$

$$= 0$$

because either $E_x[\prod_{i\in S\Delta U} x_i]$ or $E_y[\prod_{j\in T\Delta U} y_j]$ is 0. Having computed $E_{x,y}[\chi_S(x)\chi_T(y)\chi_U(xy)]$, we come back to $E_{x,y}[f(x)f(y)f(xy)]$:

$$\begin{split} E_{x,y}[f(x)f(y)f(xy)] &= \sum_{S,T,U} \{\hat{f}(S)\hat{f}(T)\hat{f}(U)E_{x,y}[\chi_S(x)\chi_T(y)\chi_U(xy)]\} \\ &= \sum_S [\hat{f}(S)]^3 \le \max[\hat{f}(S)\sum_S \hat{f}^2(S)] \\ &= \max[\hat{f}(s)](due \ to \ Parseval's \ identity) \\ &= 1 - 2\min[dist(f,\chi_S)]. \end{split}$$

Therefore, we know that $Pr[group \ law \ failure] \ge min_S[dist(f, \chi_S)].$

4 Learning functions with Sparse Fourier Representation

Definition 7 Let $f : \{\pm 1\}^n \to \{\pm 1\}$ and $g : \{\pm 1\}^n \to \Re$. We say that g ϵ -approximates f (in L_2 -norm) if $E_x[(f(x) - g(x))^2] \le \epsilon$.

We will use the sign of g to predict the values of f (we are not interested in the magnitude of g; just its sign). If $f(x) \neq sign(g(x))$, we have a *prediction error*.

Claim 8 $Pr[f(x) \neq sign(g(x))] \leq E_x[(f(x) - g(x)^2]]$

Proof of Claim 8: We will analyze $I[f(x) \neq sign(g(x))] = 1 - \delta_{f(x),sign(g(x))}$. Let us denote the indicator variable above by *I*. There are two cases to analyze depending if f(x) is equal or not to sign(g(x)).

If f(x) = sign(g(x)) then obviously we have I = 0. We also know that $(f(x) - g(x))^2 \ge 0$, therefore $I \le (f(x) - g(x))^2$.

If $f(x) \neq sign(g(x))$ then I = 1; however, in this case, $(f(x) - g(x))^2 \geq 1$. This means that $I \leq (f(x) - g(x))^2$.

We have seen that $I \leq (f(x) - g(x))^2$ regardless of x.

$$\forall x \ I[f(x) \neq sign(g(x))] \leq (f(x) - g(x))^2 \quad \Rightarrow \quad E_x[I[f(x) \neq sign(g(x))]] \leq E_x[(f(x) - g(x))^2] \\ \Leftrightarrow \quad Pr_x[f(x) \neq sign(g(x))] \leq E_x[(f(x) - g(x))^2]$$