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Lecture 4
Lecturer: Ronitt Rubinfeld Scribe: Daniel Dumitran

1 Fourier Representation

Let us consider the functions f : {£1}" — {+1} and the following inner product (f, g) = 5= Z f(z
ze{t1}"
Definition 1 Let S € {£1}". We define xs : {£1}" — {£1} with xs(z) = H x;. Note that
i st s;=—

throughout the lectures, S is sometimes used as a subset of [n] instead of a vector. If S C [n] then

x) = Ha:t

i€S

Notice that functions xg form an orthonormal basis under inner product () (i.e. (xs,Xx7) = ds.7 ).

Definition 2 VS € {£1}" we define f(S) = (f, xs) Z f(z
acE{:i:l}"
Theorem 3 V[ we have f(x Z f )X (x
ze{il}"

Remark  f linear & 35 € {#1}" st VT € {+1}" we have f(T) = ds.r.

Definition 4 dist(f,g) = Prye(+1y-[f(z) # 9(2)]
Lemma 5 VS € {£1}" and f : {+1}" — {1}, we have f(S) =1 — 2« dist(f, xs)

Proof of Lemma 5:

i8) = 5 X fast

ze{£1}"
1
= ol > f@xs(z) + > f@)xs()]
z st f(z)=xs(z) z st f(z)#xs (@)

However, f(z)xs(z) is 1 for all terms in the first sum and —1 for all terms in the second sum. Therefore

iS) = ~pr-2 S

27l
x st f(z)#xs(x)
= 1-2Pr[f(z) # xs()]
1 —dist(f,xs(x))
|
1§(S,T) is 1 if S = T and 0 otherwise.




Let S # T be two elements in {£1}". We have

) 1—xr(S
dist(xs,xT) = %()
_ ]-_<X57XT>
2
_ 1
2

What this tells us is that two different linear functions agree on EXACTLY half of their inputs.

2 Parseval’s Identity (for Boolean functions only)

Lemma 6 Vf: {+1}" — {£1} we have Z [£(9))2 =1.
Se{+1}n

(For the general case, we have < f, f >= Z [F(S)].)
Se{£1}n

We are going to prove the lemma for Boolean functions only.
Proof of Lemma 6: If f is Boolean, we have < f, f >= 1 because

1
<ff> = 5 > @
cze{£l}"

1
= o Z 1
ze{£1}"

1
= _—9n
271
=1

However, we also have

<ff> = < > fOxs Y, f(Mxr>

Se{£1}n Te{£1}"

= Y fOAT) < x5 x1 >
S, T

- f(S)f(T)és,T

Therefore 2:[]5(5)]2 =10
g



3 More Linearity Testing

We have
fley) = f(@2)f(y) < [flo)f(y)f(zy) =
- 1—f(w)J2“(y)f(wy) 0
and
flzy) # (@) f(y) & f( V() f(zy) =
- f(x)J;( y)f(x ) _1

1*f(x)f(y)f(my)]
2

It is therefore a natural choice to use the indicator variable I| in order to measure the

probability of group law failure of a function f.

Eoylf@)fW)f ()] = Eoy{D_ F(S)xs@)]D>_ AT Zf )xv(ay)]
S T
= Euyl Y FOFT)FU)xs@)xr(y)xu(zy)]
S, T,U

> AFS AT F(U)Eaylxs(@)xr (y)xu (@)}

S,T,U

Let us first compute E, ,[xs(z)x7(y)xv(zy)]. There are two cases to analyze: (S =T =U) and (S # U
or T #U).
If S=T =U, we have

E.ylxs@)xr@)xv(zy)] = Eeylxs(@)xs(y)xs(zy)]

= ExnyzHZhH xlyz

€S €S €S

i€s
= E,[[]Ju=1
i€s

If S#U or T # U, then

Evylxs@xr@)xu(@y)] = Eeyl[To [Tw (1] 2 [Tw)

i€S  jET keU leUu

i€ESAU  JETAU

= By H zi] * By H yil
i€ESAU JETAU

= 0

because either E,[ H x;] or Ey H y;] is 0.
i€SAU JETAU
Having computed E, ,[xs(z)xr(y)xv(zy)], we come back to E, ,[f(z)f(y)f(zy)]:



Euylf @) fW)fep)] = D AFS) D) FU)Esylxs(@)xry)xo (@y)]}

S, T,U

SIS < maslf($)F 7(5)

S

= max[f(s))(due to Parseval's identity)
= 1 —2min[dist(f,xs)]

Therefore, we know that Prigroup law failure] > ming|dist(f, xs)]-

4 Learning functions with Sparse Fourier Representation

Definition 7 Let f: {£1}" — {£1} and g : {£1}" — K.
We say that g e-approximates f (in Lo-norm) if E.[(f(x) — g(x))?] <e.

We will use the sign of g to predict the values of f (we are not interested in the magnitude of g; just
its sign). If f(x) # sign(g(x)), we have a prediction error.

Claim 8 Pr(f(x) # sign(g(z))] < E.[(f(z) — g(z)?]

Proof of Claim 8:  We will analyze I[f(z) # sign(g(z))] = 1 = d(a),sign(g(z))-

Let us denote the indicator variable above by I. There are two cases to analyze depending if f(z) is
equal or not to sign(g(z)).

If f(x) = sign(g(z)) then obviously we have I = 0. We also know that (f(z) — g(x))? > 0, therefore

I<(f(x)—g(x))?*
If f(x) # sign(g(x)) then I = 1; however, in this case, (f(x) — g(x))? > 1. This means that I <

(f(x) = g(=))*.
We have seen that I < (f(x) — g(x))? regardless of .

Va I1f () # sign(g(@)] < (f(x) —9(2))* = ElI[f(2) # sign(g(2))]] < Eo[(f(2) — g(x))’]
& Pro[f(z) # sign(g(2))] < Es[(f(z) - g(x))?]



