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1 Fourier Representation

Let us consider the functions f : {±1}n → {±1} and the following inner product 〈f, g〉 = 1
2n

∑
x∈{±1}n

f(x)g(x).

Definition 1 Let S ∈ {±1}n. We define χS : {±1}n → {±1} with χS(x) =
∏

i st si=−1

xi. Note that

throughout the lectures, S is sometimes used as a subset of [n] instead of a vector. If S ⊆ [n] then
χS(x) =

∏
i∈S

xi.

Notice that functions χS form an orthonormal basis under inner product 〈〉 (i.e. 〈χS , χT 〉 = δS,T
1).

Definition 2 ∀S ∈ {±1}n we define f̂(S) = 〈f, χS〉 = 1
2n

∑
x∈{±1}n

f(x)χS(x)

Theorem 3 ∀f we have f(x) = 1
2n

∑
z∈{±1}n

f̂(x)χz(x)

Remark f linear ⇔ ∃S ∈ {±1}n st ∀T ∈ {±1}n we have f̂(T ) = δS,T .

Definition 4 dist(f, g) = Prx∈{±1}n [f(x) 6= g(x)]

Lemma 5 ∀S ∈ {±1}n and f : {±1}n → {±1}, we have f̂(S) = 1− 2 ∗ dist(f, χS)

Proof of Lemma 5:

f̂(S) =
1
2n

∑
x∈{±1}n

f(x)χS(x)

=
1
2n

[
∑

x st f(x)=χS(x)

f(x)χS(x) +
∑

x st f(x) 6=χS(x)

f(x)χS(x)]

However, f(x)χS(x) is 1 for all terms in the first sum and −1 for all terms in the second sum. Therefore

f̂(S) =
1
2n

[2n − 2
∑

x st f(x) 6=χS(x)

−1]

= 1− 2Pr[f(x) 6= χS(x)]
= 1− dist(f, χS(x))

1δ(S, T ) is 1 if S = T and 0 otherwise.
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Let S 6= T be two elements in {±1}n. We have

dist(χS , χT ) =
1− χ̂T (S)

2

=
1− 〈χS , χT 〉

2

=
1
2

What this tells us is that two different linear functions agree on EXACTLY half of their inputs.

2 Parseval’s Identity (for Boolean functions only)

Lemma 6 ∀f : {±1}n → {±1} we have
∑

S∈{±1}n

[f̂(S)]2 = 1.

(For the general case, we have < f, f >=
∑

S∈{±1}n

[f̂(S)]2.)

We are going to prove the lemma for Boolean functions only.
Proof of Lemma 6: If f is Boolean, we have < f, f >= 1 because

< f, f > =
1
2n

∑
x∈{±1}n

f2(x)

=
1
2n

∑
x∈{±1}n

1

=
1
2n

2n

= 1

However, we also have

< f, f > = <
∑

S∈{±1}n

f̂(S)χS ,
∑

T∈{±1}n

f̂(T )χT >

=
∑
S,T

f̂(S)f̂(T ) < χS , χT >

=
∑
S,T

f̂(S)f̂(T )δS,T

=
∑
S

[f̂(S)]2 ∗ 1

=
∑
S

[f̂(S)]2

Therefore
∑
S

[f̂(S)]2 = 1
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3 More Linearity Testing

We have

f(xy) = f(x)f(y) ⇔ f(x)f(y)f(xy) = 1

⇔ 1− f(x)f(y)f(xy)
2

= 0

and

f(xy) 6= (x)f(y) ⇔ f(x)f(y)f(xy) = −1

⇔ 1− f(x)f(y)f(xy)
2

= 1.

It is therefore a natural choice to use the indicator variable I[ 1−f(x)f(y)f(xy)
2 ] in order to measure the

probability of group law failure of a function f .

Ex,y[f(x)f(y)f(xy)] = Ex,y{[
∑
S

f̂(S)χS(x)][
∑
T

f̂(T )χT (y)][
∑
U

f̂(U)χU (xy)]}

= Ex,y[
∑

S,T,U

f̂(S)f̂(T )f̂(U)χS(x)χT (y)χU (xy)]

=
∑

S,T,U

{f̂(S)f̂(T )f̂(U)Ex,y[χS(x)χT (y)χU (xy)]}

Let us first compute Ex,y[χS(x)χT (y)χU (xy)]. There are two cases to analyze: (S = T = U) and (S 6= U
or T 6= U).
If S = T = U , we have

Ex,y[χS(x)χT (y)χU (xy)] = Ex,y[χS(x)χS(y)χS(xy)]

= Ex,y[
∏
i∈S

xi

∏
i∈S

yi

∏
i∈S

(xiyi)]

= Ex,y[
∏
i∈S

(xiyi)2]

= Ex,y[
∏
i∈S

1] = 1.

If S 6= U or T 6= U , then

Ex,y[χS(x)χT (y)χU (xy)] = Ex,y[
∏
i∈S

xi

∏
j∈T

yj(
∏
k∈U

xk

∏
l∈U

yl)]

= Ex,y[
∏

i∈S∆U

xi

∏
j∈T∆U

yj ]

= Ex[
∏

i∈S∆U

xi] ∗ Ey[
∏

j∈T∆U

yj ]

= 0

because either Ex[
∏

i∈S∆U

xi] or Ey[
∏

j∈T∆U

yj ] is 0.

Having computed Ex,y[χS(x)χT (y)χU (xy)], we come back to Ex,y[f(x)f(y)f(xy)]:
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Ex,y[f(x)f(y)f(xy)] =
∑

S,T,U

{f̂(S)f̂(T )f̂(U)Ex,y[χS(x)χT (y)χU (xy)]}

=
∑
S

[f̂(S)]3 ≤ max[f̂(S)
∑
S

f̂2(S)]

= max[f̂(s)](due to Parseval′s identity)
= 1− 2min[dist(f, χS)].

Therefore, we know that Pr[group law failure] ≥ minS [dist(f, χS)].

4 Learning functions with Sparse Fourier Representation

Definition 7 Let f : {±1}n → {±1} and g : {±1}n → <.
We say that g ε-approximates f (in L2-norm) if Ex[(f(x)− g(x))2] ≤ ε.

We will use the sign of g to predict the values of f (we are not interested in the magnitude of g; just
its sign). If f(x) 6= sign(g(x)), we have a prediction error.

Claim 8 Pr[f(x) 6= sign(g(x))] ≤ Ex[(f(x)− g(x)2]

Proof of Claim 8: We will analyze I[f(x) 6= sign(g(x))] = 1− δf(x),sign(g(x)).
Let us denote the indicator variable above by I. There are two cases to analyze depending if f(x) is
equal or not to sign(g(x)).
If f(x) = sign(g(x)) then obviously we have I = 0. We also know that (f(x) − g(x))2 ≥ 0, therefore
I ≤ (f(x)− g(x))2.
If f(x) 6= sign(g(x)) then I = 1; however, in this case, (f(x) − g(x))2 ≥ 1. This means that I ≤
(f(x)− g(x))2.
We have seen that I ≤ (f(x)− g(x))2 regardless of x.

∀x I[f(x) 6= sign(g(x))] ≤ (f(x)− g(x))2 ⇒ Ex[I[f(x) 6= sign(g(x))]] ≤ Ex[(f(x)− g(x))2]
⇔ Prx[f(x) 6= sign(g(x))] ≤ Ex[(f(x)− g(x))2]
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