Lecture 4

Lecturer: Ronitt Rubinfeld

1 Fourier Representation

Let us consider the functions $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and the following inner product $\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x)$.
Definition 1 Let $S \in\{ \pm 1\}^{n}$. We define $\chi_{S}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ with $\chi_{S}(x)=\prod_{i \text { st } s_{i}=-1} x_{i}$. Note that throughout the lectures, S is sometimes used as a subset of $[n]$ instead of a vector. If $S \subseteq[n]$ then $\chi_{S}(x)=\prod_{i \in S} x_{i}$.

Notice that functions χ_{S} form an orthonormal basis under inner product $\left\rangle\right.$ (i.e. $\left\langle\chi_{S}, \chi_{T}\right\rangle=\delta_{S, T}{ }^{1}$).
Definition $2 \forall S \in\{ \pm 1\}^{n}$ we define $\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) \chi_{S}(x)$
Theorem $3 \forall f$ we have $f(x)=\frac{1}{2^{n}} \sum_{z \in\{ \pm 1\}^{n}} \hat{f}(x) \chi_{z}(x)$
Remark $\quad f$ linear $\Leftrightarrow \exists S \in\{ \pm 1\}^{n}$ st $\forall T \in\{ \pm 1\}^{n}$ we have $\hat{f}(T)=\delta_{S, T}$.

Definition $4 \operatorname{dist}(f, g)=\operatorname{Pr}_{x \in\{ \pm 1\}^{n}}[f(x) \neq g(x)]$
Lemma $5 \forall S \in\{ \pm 1\}^{n}$ and $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, we have $\hat{f}(S)=1-2 * \operatorname{dist}\left(f, \chi_{S}\right)$
Proof of Lemma 5:

$$
\begin{aligned}
& \hat{f}(S)=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) \chi_{S}(x) \\
&=\frac{1}{2^{n}}\left[\sum _ { x \text { st } } \left[(x)=\chi_{S}(x)\right.\right. \\
& f(x) \chi_{S}(x)+\sum_{x \text { st }} f(x) \neq \chi_{S}(x) \\
&\left.f(x) \chi_{S}(x)\right]
\end{aligned}
$$

However, $f(x) \chi_{S}(x)$ is 1 for all terms in the first sum and -1 for all terms in the second sum. Therefore

$$
\begin{aligned}
\hat{f}(S) & =\frac{1}{2^{n}}\left[2^{n}-2 \sum_{x \text { st } f(x) \neq \chi_{S}(x)}-1\right] \\
& =1-2 \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right] \\
& =1-\operatorname{dist}\left(f, \chi_{S}(x)\right)
\end{aligned}
$$

[^0]Let $S \neq T$ be two elements in $\{ \pm 1\}^{n}$. We have

$$
\begin{aligned}
\operatorname{dist}\left(\chi_{S}, \chi_{T}\right) & =\frac{1-\hat{\chi_{T}}(S)}{2} \\
& =\frac{1-\left\langle\chi_{S}, \chi_{T}\right\rangle}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

What this tells us is that two different linear functions agree on EXACTLY half of their inputs.

2 Parseval's Identity (for Boolean functions only)

Lemma $6 \forall f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ we have $\sum_{S \in\{ \pm 1\}^{n}}[\hat{f}(S)]^{2}=1$.
(For the general case, we have $<f, f\rangle=\sum_{S \in\{ \pm 1\}^{n}}[\hat{f}(S)]^{2}$.)
We are going to prove the lemma for Boolean functions only.
Proof of Lemma 6: If f is Boolean, we have $<f, f\rangle=1$ because

$$
\begin{aligned}
<f, f> & =\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f^{2}(x) \\
& =\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} 1 \\
& =\frac{1}{2^{n}} 2^{n} \\
& =1
\end{aligned}
$$

However, we also have

$$
\begin{aligned}
<f, f> & =<\sum_{S \in\{ \pm 1\}^{n}} \hat{f}(S) \chi_{S}, \sum_{T \in\{ \pm 1\}^{n}} \hat{f}(T) \chi_{T}> \\
& =\sum_{S, T} \hat{f}(S) \hat{f}(T)<\chi_{S}, \chi_{T}> \\
& =\sum_{S, T} \hat{f}(S) \hat{f}(T) \delta_{S, T} \\
& =\sum_{S}[\hat{f}(S)]^{2} * 1 \\
& =\sum_{S}[\hat{f}(S)]^{2}
\end{aligned}
$$

Therefore $\sum_{S}[\hat{f}(S)]^{2}=1$

3 More Linearity Testing

We have

$$
\begin{aligned}
f(x y)=f(x) f(y) & \Leftrightarrow f(x) f(y) f(x y)=1 \\
& \Leftrightarrow \frac{1-f(x) f(y) f(x y)}{2}=0
\end{aligned}
$$

and

$$
\begin{aligned}
f(x y) \neq(x) f(y) & \Leftrightarrow f(x) f(y) f(x y)=-1 \\
& \Leftrightarrow \frac{1-f(x) f(y) f(x y)}{2}=1 .
\end{aligned}
$$

It is therefore a natural choice to use the indicator variable $I\left[\frac{1-f(x) f(y) f(x y)}{2}\right]$ in order to measure the probability of group law failure of a function f.

$$
\begin{aligned}
E_{x, y}[f(x) f(y) f(x y)] & =E_{x, y}\left[\left[\sum_{S} \hat{f}(S) \chi_{S}(x)\right]\left[\sum_{T} \hat{f}(T) \chi_{T}(y)\right]\left[\sum_{U} \hat{f}(U) \chi_{U}(x y)\right]\right\} \\
& =E_{x, y}\left[\sum_{S, T, U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] \\
& =\sum_{S, T, U}\left\{\hat{f}(S) \hat{f}(T) \hat{f}(U) E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]\right\}
\end{aligned}
$$

Let us first compute $E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]$. There are two cases to analyze: $(S=T=U)$ and $(S \neq U$ or $T \neq U$).
If $S=T=U$, we have

$$
\begin{aligned}
E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] & =E_{x, y}\left[\chi_{S}(x) \chi_{S}(y) \chi_{S}(x y)\right] \\
& =E_{x, y}\left[\prod_{i \in S} x_{i} \prod_{i \in S} y_{i} \prod_{i \in S}\left(x_{i} y_{i}\right)\right] \\
& =E_{x, y}\left[\prod_{i \in S}\left(x_{i} y_{i}\right)^{2}\right] \\
& =E_{x, y}\left[\prod_{i \in S} 1\right]=1 .
\end{aligned}
$$

If $S \neq U$ or $T \neq U$, then

$$
\begin{aligned}
E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] & =E_{x, y}\left[\prod_{i \in S} x_{i} \prod_{j \in T} y_{j}\left(\prod_{k \in U} x_{k} \prod_{l \in U} y_{l}\right)\right] \\
& =E_{x, y}\left[\prod_{i \in S \Delta U} x_{i} \prod_{j \in T \Delta U} y_{j}\right] \\
& =E_{x}\left[\prod_{i \in S \Delta U} x_{i}\right] * E_{y}\left[\prod_{j \in T \Delta U} y_{j}\right] \\
& =0
\end{aligned}
$$

because either $E_{x}\left[\prod_{i \in S \Delta U} x_{i}\right]$ or $E_{y}\left[\prod_{j \in T \Delta U} y_{j}\right]$ is 0 .
Having computed $E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]$, we come back to $E_{x, y}[f(x) f(y) f(x y)]$:

$$
\begin{aligned}
E_{x, y}[f(x) f(y) f(x y)] & =\sum_{S, T, U}\left\{\hat{f}(S) \hat{f}(T) \hat{f}(U) E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]\right\} \\
& =\sum_{S}[\hat{f}(S)]^{3} \leq \max \left[\hat{f}(S) \sum_{S} \hat{f}^{2}(S)\right] \\
& =\max [\hat{f}(s)](\text { due to Parseval's identity }) \\
& =1-2 \min \left[\operatorname{dist}\left(f, \chi_{S}\right)\right] .
\end{aligned}
$$

Therefore, we know that $\operatorname{Pr}[$ group law failure $] \geq \min _{S}\left[\operatorname{dist}\left(f, \chi_{S}\right)\right]$.

4 Learning functions with Sparse Fourier Representation

Definition 7 Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $g:\{ \pm 1\}^{n} \rightarrow \Re$.
We say that $g \epsilon$-approximates f (in L_{2}-norm) if $E_{x}\left[(f(x)-g(x))^{2}\right] \leq \epsilon$.
We will use the sign of g to predict the values of f (we are not interested in the magnitude of g; just its sign). If $f(x) \neq \operatorname{sign}(g(x))$, we have a prediction error.

Claim $8 \operatorname{Pr}[f(x) \neq \operatorname{sign}(g(x))] \leq E_{x}\left[\left(f(x)-g(x)^{2}\right]\right.$
Proof of Claim 8: We will analyze $I[f(x) \neq \operatorname{sign}(g(x))]=1-\delta_{f(x), \operatorname{sign}(g(x))}$.
Let us denote the indicator variable above by I. There are two cases to analyze depending if $f(x)$ is equal or not to $\operatorname{sign}(g(x))$.
If $f(x)=\operatorname{sign}(g(x))$ then obviously we have $I=0$. We also know that $(f(x)-g(x))^{2} \geq 0$, therefore $I \leq(f(x)-g(x))^{2}$.
If $f(x) \neq \operatorname{sign}(g(x))$ then $I=1$; however, in this case, $(f(x)-g(x))^{2} \geq 1$. This means that $I \leq$ $(f(x)-g(x))^{2}$.
We have seen that $I \leq(f(x)-g(x))^{2}$ regardless of x.

$$
\begin{aligned}
\forall x I[f(x) \neq \operatorname{sign}(g(x))] \leq(f(x)-g(x))^{2} & \Rightarrow E_{x}[I[f(x) \neq \operatorname{sign}(g(x))]] \leq E_{x}\left[(f(x)-g(x))^{2}\right] \\
& \Leftrightarrow \operatorname{Pr}_{x}[f(x) \neq \operatorname{sign}(g(x))] \leq E_{x}\left[(f(x)-g(x))^{2}\right]
\end{aligned}
$$

[^0]: ${ }^{1} \delta(S, T)$ is 1 if $S=T$ and 0 otherwise.

