
6.895 Randomness and Computation May 3, 2006

Lecture 21
Lecturer: Ronitt Rubinfeld Scribe: Benjamin Rossman

Definition 1 (Computational indistinguishability) Let X = (Xn) and Y = (Yn) be sequences of
random variables on {0, 1}n. We say X and Y are ε(n)-indistinguishable for time t(n) if for every
probabilistic algorithm T running in time t(n),

|Pr[T (Xn) = 1]− Pr[T (Yn) = 1]| ≤ ε(n)

for all large enough n. The quantity |Pr[T (Xn) = 1]− Pr[T (Yn) = 1]| is called the advantage of T ; it is a
measure of how much better T is than random guessing at distinguishing Xn from Yn. We write X

c≡ Y
if X and Y are 1

nc -indistinguishable for time nc, for all c > 0. T ’s advantage is said to be negligible if
it is < 1

nc for all c.

The following definition is due to Blum, Micali and Yao.

Definition 2 (Pseudorandom generator, or PRG) A function G : {0, 1}`(n) −→ {0, 1}n is a PRG
if

(1) `(n) < n

(2) G(U`(n))
c≡ Un

where Un is the uniform distribution on {0, 1}n and G(U`(n)) is the distribution on {0, 1}n induced as
the image under G of the uniform distribution U`(n) on {0, 1}`(n).

The function `(n) is called the seed length of G.
G is efficient if it is computable in time poly(n) (not poly(`(n))).
It is pseudorandom against nonuniform time t(n) if G(U`(n)) and Un are computationally indistin-

guishable with respect to probabilistic algorithms T that run in nonuniform polynomial time (i.e., T is
computable by a non-uniform family of polynomial-size circuits).

Definition 3 (BPP complexity class) L ∈ BPP if there is a p.p.t. (probabilistic polynomial time)
algorithm A such that for all inputs x,

• if x ∈ L then Pr[A accepts x] ≥ 2
3 ;

• if x /∈ L then Pr[A accepts x] ≤ 1
3 .

That is, A outputs the correct answer with probability ≥ 2
3 . (A tolerates two-sided errors.)

Theorem 4 If there exists an efficient PRG against nonuniform time n with seed length `(n), then
BPP ⊆

⋃
c>0

DTIME(2`(nc)nc) and in particular

`(n) = O(log n) =⇒ BPP ⊆ P

`(n) = O(logc n) =⇒ BPP ⊆ DTIME(npolylog(n))
`(n) = O(nε) =⇒ BPP ⊆ Subexponential Time.

Note that BPP ⊆ ExpTime since an exponential time algorithm can enumerate all seeds to a PRG
and output the majority answer.

Proof Suppose G : {0, 1}`(n) −→ {0, 1}n is a PRG against nonuniform time n whose runtime is
O(nc1). Let A be a p.p.t. algorithm in BPP whose runtime is O(nc2). We define a deterministic

1

algorithm A′ ∈ DTIME(2`(nc2)(nc1 + nc2)) equivalent to A as follows: run A on input x with random
bits G(s) for all seeds s ∈ {0, 1}`(n), and output the majority answer.

Toward a contradiction, assume A′ gives the wrong answer on input x. That is, Pr
s∈U`(nc2)

[A(x,G(s))

is correct] ≤ 1
2 . Since A ∈ BPP, we know Pr

y∈Unc2

[A(x, y) is correct] ≥ 2
3 . But now we have an efficiently

computable test TA,x(∗) := A(x, ∗) with advantage 1
6 . This contradicts the fact that G is a PRG.

Therefore, A′ is equivalent to A. We conclude that BPP =
⋃
c>0

DTIME(2`(nc2)(nc1 + nc2)).

Remark In the proof of Theorem 4, it is enough to assume we have a PRG G such that G(U`(n))
is computationally indistinguishable from Un for linear time algorithms T . Note that the runtime of G
has to be poly(nc), but isn’t required to match the runtime of A.

It can be shown, via a probabilistic proof, that:

Theorem 5 There exists a PRG against nonuniform time t(n) with seed length O(log t(n))

Note that Theorem 5 says nothing about the efficiency of the PRG. The existence of an efficient PRG
satisfying the condition of Theorem 5 implies BPP 6= P, by Theorem 4.

Theorem 6 If there exists an efficient PRG, then P 6= NP.

Proof Toward a contradiction, suppose G : {0, 1}`(n) −→ {0, 1}n is an efficient PRG and assume
P = NP. Define test T (x) by

T (x) =

{
0 if ∃y s.t. G(y) = 1,

1 otherwise.

T distinguishes distributions G(U`(n)) and Un with advantage ≥ 1
2 , as

Pr[T (G(U`(n))) = 1] = 1,

Pr[T (Un) = 1] ≤ 2`(n)

2n
≤ 1

2
since `(n) < n.

Notice that T is computable in NP, since a nondeterministic algorithm can guess y and then verify
that G(y) = 1 in polynomial time. Since we are assuming P = NP, it follows that T is efficient. But
this contradicts the assumption that G is a PRG, since T distinguishes G(U`(n)) from the uniform
distribution Un.

In the previous lecture, we discussed three different notions of randomness. We now add a fourth:
unpredictability.

Definition 7 (Next-bit unpredictability) Let X = (X1, . . . , Xn) be a distribution on {0, 1}n. X
is next-bit unpredictable if for every p.p.t. “predictor” algorithm P , there exists a negligible function
ε(n) (where negligible means ε(n) = O(1

nc) for all c > 0) such that

Pr
i∈R[n]

coins of P

[P (X1, . . . , Xi−1) = Xi] ≤
1
2

+ ε(n)

Surprisingly, next-bit unpredictability turns out to be an equivalent notion to pseudorandomness.

Theorem 8 X is pseudorandom if, and only if, it is next-bit unpredictable.

2

Proof (=⇒) Suppose P is not next-bit unpredictable. Then for some c > 0,

Pr
i∈R[n]

[P (X1, . . . , Xi−1) = Xi] >
1
2

+
1
nc

.

In particular, there exists i ∈ [n] such that

Pr[P (X1, . . . , Xi−1) = Xi] >
1
2

+
1
nc

.

We now define an efficient test T (y1, . . . , yn) by

T (y1, . . . , yn) =

{
0 if P (y1, . . . , yi−1) 6= yi,

1 if P (y1, . . . , yi−1) = yi.

We have

Pr
y∈Un

[T (y) = 1] =
1
2

Pr
y∈X

[T (y) = 1] >
1
2

+
1
nc

.

So T distinguishes between distributions X and Un with advantage > 1
nc . Therefore, X is not pseudo-

random.

(⇐=) Suppose X is not pseudorandom. Then there is a p.p.t. algorithm T such that

advantage(T) = |Pr[T (X) = 1]− Pr[T (Un) = 1]| > 1
nc

.

Without loss of generality, we assume that Pr[T (X) = 1] > Pr[T (Un) = 1]; for if the inequality goes
the other way, then we substitute T with its complement.

We use a “hybrid argument” to construct a next-bit predictor algorithm. Let U1, . . . , Un be uni-
form independent random variables on {0, 1}, so that Un = (U1, . . . , Un). We define a sequence of
distributions:

D0 = (U1, . . . , Un) = Un

D1 = (X1, U2, . . . , Un)
D2 = (X1, X2, U3, . . . , Un)

...
Di = (X1, . . . , Xi, Ui+1, . . . , Un)

...
Dn = (X1, . . . , Xn) = X .

Notice that
T (Di−1) =

1
2

(
T (Di) + T (X1, . . . , Xi−1, 1−Xi, Ui+1, . . . , Un)

)
(?)

Now, we have

1
nc

< Pr[T (Dn) = 1]− Pr[T (D0) = 1] =
∑
i∈[n]

Pr[T (Di) = 1]− Pr[T (Di−1) = 1].

3

Therefore, there exists i ∈ [n] such that Pr[T (Di) = 1]− Pr[T (Di−1) = 1] > 1
nc+1 .

We define p.p.t. “predictor” algorithm P (x1, . . . , xi−1, yi, . . . , yn) with input bits x1, . . . , xi−1 and
random bits (coins) yi, . . . , yn ∈R {0, 1} by

P (x1, . . . , xi−1, yi, . . . , yn) =

{
yi if T (x1, . . . , xi−1, yi, . . . , yn) = 1
1− yi otherwise.

Pr[P (X1, . . . , Xi−1, Ui, . . . , Un) = Xi]

=
1
2

(
Pr[P (X1, . . . , Xi−1, Ui, . . . , Un) = Xi | Ui = Xi] + Pr[P (X1, . . . , Xi−1, Ui, . . . , Un) = Xi | Ui 6= Xi]

)
=

1
2

(
Pr[P (X1, . . . , Xi, Ui+1, . . . , Un) = Xi] + Pr[P (X1, . . . , Xi−1, 1−Xi, Ui+1 . . . , Un) = Xi]

)
=

1
2

(
Pr[T (X1, . . . , Xi, Ui+1 . . . , Un) = 1] + Pr[T (X1, . . . , Xi−1, 1−Xi, Ui+1 . . . , Un) = 0]

)
=

1
2

(
Pr[T (Di) = 1] +

(
1− Pr[T (X1, . . . , Xi−1, 1−Xi, Ui+1 . . . , Un) = 1]

))
=

1
2

+
1
2

(
Pr[T (Di) = 1]− Pr[T (X1, . . . , Xi−1, 1−Xi, Ui+1 . . . , Un) = 1]︸ ︷︷ ︸

= 2Pr[T (Di−1) = 1]− Pr[T (Di) = 1] by (?)

)

=
1
2

+
(

Pr[T (Di) = 1]− Pr[T (Di−1 = 1)]
)

>
1
2

+
1

nc+1
.

By defining P (x1, . . . , xj) ∈R {0, 1} for values of j ∈ [n]− {i}, we get

Pr
j∈R[n]

[P (X1, . . . , Xj−1) = Xj]

=
1
n

(
Pr[P (X1, . . . , Xi−1) = Xi] +

∑
j∈R[n]−{i}

Pr[P (X1, . . . , Xj−1) = Xj]
)

>
1
n

(n

2
+

1
nc+1

)
=

1
2

+
1

nc+2
.

Thus, we have shown that X is not next-bit unpredictable.

4

