## Lecture 21

Lecturer: Ronitt Rubinfeld
Scribe: Benjamin Rossman

Definition 1 (Computational indistinguishability) Let $X=\left(X_{n}\right)$ and $Y=\left(Y_{n}\right)$ be sequences of random variables on $\{0,1\}^{n}$. We say $X$ and $Y$ are $\epsilon(n)$-indistinguishable for time $t(n)$ if for every probabilistic algorithm $T$ running in time $t(n)$,

$$
\left|\operatorname{Pr}\left[T\left(X_{n}\right)=1\right]-\operatorname{Pr}\left[T\left(Y_{n}\right)=1\right]\right| \leq \epsilon(n)
$$

for all large enough $n$. The quantity $\left|\operatorname{Pr}\left[T\left(X_{n}\right)=1\right]-\operatorname{Pr}\left[T\left(Y_{n}\right)=1\right]\right|$ is called the advantage of $T$; it is a measure of how much better $T$ is than random guessing at distinguishing $X_{n}$ from $Y_{n}$. We write $X \xlongequal{\equiv} Y$ if $X$ and $Y$ are $\frac{1}{n^{c}}$-indistinguishable for time $n^{c}$, for all $c>0$. T's advantage is said to be negligible if it is $<\frac{1}{n^{c}}$ for all $c$.

The following definition is due to Blum, Micali and Yao.
Definition 2 (Pseudorandom generator, or PRG) A function $G:\{0,1\}^{\ell(n)} \longrightarrow\{0,1\}^{n}$ is a PRG if
(1) $\ell(n)<n$
(2) $\quad G\left(\mathscr{U}_{\ell(n)}\right) \stackrel{\mathrm{c}}{\equiv} \mathscr{U}_{n}$
where $\mathscr{U}_{n}$ is the uniform distribution on $\{0,1\}^{n}$ and $G\left(\mathscr{U}_{\ell(n)}\right)$ is the distribution on $\{0,1\}^{n}$ induced as the image under $G$ of the uniform distribution $\mathscr{U}_{\ell(n)}$ on $\{0,1\}^{\ell(n)}$.

The function $\ell(n)$ is called the seed length of $G$.
$G$ is efficient if it is computable in time poly $(n)(n o t \operatorname{poly}(\ell(n)))$.
It is pseudorandom against nonuniform time $t(n)$ if $G\left(\mathscr{U}_{\ell(n)}\right)$ and $\mathscr{U}_{n}$ are computationally indistinguishable with respect to probabilistic algorithms $T$ that run in nonuniform polynomial time (i.e., $T$ is computable by a non-uniform family of polynomial-size circuits).

Definition 3 (BPP complexity class) $L \in$ BPP if there is a p.p.t. (probabilistic polynomial time) algorithm $A$ such that for all inputs $x$,

- if $x \in L$ then $\operatorname{Pr}[A$ accepts $x] \geq \frac{2}{3}$;
- if $x \notin L$ then $\operatorname{Pr}[A$ accepts $x] \leq \frac{1}{3}$.

That is, $A$ outputs the correct answer with probability $\geq \frac{2}{3}$. ( $A$ tolerates two-sided errors.)
Theorem 4 If there exists an efficient PRG against nonuniform time $n$ with seed length $\ell(n)$, then $\operatorname{BPP} \subseteq \bigcup_{c>0} \operatorname{DTIME}\left(2^{\ell\left(n^{c}\right)} n^{c}\right)$ and in particular

$$
\begin{aligned}
\ell(n)=O(\log n) & \Longrightarrow \mathrm{BPP} \subseteq \mathrm{P} \\
\ell(n)=O\left(\log ^{c} n\right) & \Longrightarrow \mathrm{BPP} \subseteq \mathrm{DTIME}\left(n^{\text {polylog }(n)}\right) \\
\ell(n)=O\left(n^{\epsilon}\right) & \Longrightarrow \mathrm{BPP} \subseteq \text { Subexponential Time. }
\end{aligned}
$$

Note that $\mathrm{BPP} \subseteq \operatorname{Exp}$ Time since an exponential time algorithm can enumerate all seeds to a PRG and output the majority answer.

Proof Suppose $G:\{0,1\}^{\ell(n)} \longrightarrow\{0,1\}^{n}$ is a PRG against nonuniform time $n$ whose runtime is $O\left(n^{c_{1}}\right)$. Let $A$ be a p.p.t. algorithm in BPP whose runtime is $O\left(n^{c_{2}}\right)$. We define a deterministic
algorithm $A^{\prime} \in \operatorname{DTIME}\left(2^{\ell\left(n^{c_{2}}\right)}\left(n^{c_{1}}+n^{c_{2}}\right)\right)$ equivalent to $A$ as follows: run $A$ on input $x$ with random bits $G(s)$ for all seeds $s \in\{0,1\}^{\ell(n)}$, and output the majority answer.

Toward a contradiction, assume $A^{\prime}$ gives the wrong answer on input $x$. That is, $\operatorname{Pr}_{\left.s \in \mathscr{U}_{\ell\left(n^{c}\right)}\right)}[A(x, G(s))$ is correct $] \leq \frac{1}{2}$. Since $A \in \mathrm{BPP}$, we know $\operatorname{Pr}_{y \in \mathscr{U}_{n} c_{2}}[A(x, y)$ is correct $] \geq \frac{2}{3}$. But now we have an efficiently computable test $T_{A, x}(*):=A(x, *)$ with advantage $\frac{1}{6}$. This contradicts the fact that $G$ is a PRG. Therefore, $A^{\prime}$ is equivalent to $A$. We conclude that $\operatorname{BPP}=\bigcup_{c>0} \operatorname{DTIME}\left(2^{\ell\left(n^{c_{2}}\right)}\left(n^{c_{1}}+n^{c_{2}}\right)\right)$.

Remark In the proof of Theorem 4, it is enough to assume we have a PRG $G$ such that $G\left(U_{\ell(n)}\right)$ is computationally indistinguishable from $\mathscr{U}_{n}$ for linear time algorithms $T$. Note that the runtime of $G$ has to be poly $\left(n^{c}\right)$, but isn't required to match the runtime of $A$.

It can be shown, via a probabilistic proof, that:
Theorem 5 There exists a PRG against nonuniform time $t(n)$ with seed length $O(\log t(n))$
Note that Theorem 5 says nothing about the efficiency of the PRG. The existence of an efficient PRG satisfying the condition of Theorem 5 implies BPP $\neq \mathrm{P}$, by Theorem 4.

Theorem 6 If there exists an efficient $P R G$, then $\mathrm{P} \neq \mathrm{NP}$.
Proof Toward a contradiction, suppose $G:\{0,1\}^{\ell(n)} \longrightarrow\{0,1\}^{n}$ is an efficient PRG and assume $\mathrm{P}=$ NP. Define test $T(x)$ by

$$
T(x)= \begin{cases}0 & \text { if } \exists y \text { s.t. } G(y)=1 \\ 1 & \text { otherwise }\end{cases}
$$

$T$ distinguishes distributions $G\left(\mathscr{U}_{\ell(n)}\right)$ and $\mathscr{U}_{n}$ with advantage $\geq \frac{1}{2}$, as

$$
\begin{aligned}
& \operatorname{Pr}\left[T\left(G\left(\mathscr{U}_{\ell(n)}\right)\right)=1\right]=1 \\
& \operatorname{Pr}\left[T\left(\mathscr{U}_{n}\right)=1\right] \leq \frac{2^{\ell(n)}}{2^{n}} \leq \frac{1}{2} \text { since } \ell(n)<n .
\end{aligned}
$$

Notice that $T$ is computable in NP, since a nondeterministic algorithm can guess $y$ and then verify that $G(y)=1$ in polynomial time. Since we are assuming $\mathrm{P}=\mathrm{NP}$, it follows that $T$ is efficient. But this contradicts the assumption that $G$ is a PRG, since $T$ distinguishes $G\left(\mathscr{U}_{\ell(n)}\right)$ from the uniform distribution $\mathscr{U}_{n}$.

In the previous lecture, we discussed three different notions of randomness. We now add a fourth: unpredictability.

Definition 7 (Next-bit unpredictability) Let $\mathscr{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a distribution on $\{0,1\}^{n}$. $\mathscr{X}$ is next-bit unpredictable if for every p.p.t. "predictor" algorithm $P$, there exists a negligible function $\epsilon(n)$ (where negligible means $\epsilon(n)=O\left(\frac{1}{n^{c}}\right)$ for all $\left.c>0\right)$ such that

$$
\operatorname{Pr}_{\substack{i \in \in_{\mathrm{R}}[n] \\ \text { coins of } P}}\left[P\left(X_{1}, \ldots, X_{i-1}\right)=X_{i}\right] \leq \frac{1}{2}+\epsilon(n)
$$

Surprisingly, next-bit unpredictability turns out to be an equivalent notion to pseudorandomness.
Theorem $8 \mathscr{X}$ is pseudorandom if, and only if, it is next-bit unpredictable.

Proof $(\Longrightarrow)$ Suppose $P$ is not next-bit unpredictable. Then for some $c>0$,

$$
\operatorname{Pr}_{i \in_{\mathrm{R}}[n]}\left[P\left(X_{1}, \ldots, X_{i-1}\right)=X_{i}\right]>\frac{1}{2}+\frac{1}{n^{c}} .
$$

In particular, there exists $i \in[n]$ such that

$$
\operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i-1}\right)=X_{i}\right]>\frac{1}{2}+\frac{1}{n^{c}}
$$

We now define an efficient test $T\left(y_{1}, \ldots, y_{n}\right)$ by

$$
T\left(y_{1}, \ldots, y_{n}\right)= \begin{cases}0 & \text { if } P\left(y_{1}, \ldots, y_{i-1}\right) \neq y_{i} \\ 1 & \text { if } P\left(y_{1}, \ldots, y_{i-1}\right)=y_{i}\end{cases}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}_{y \in \mathscr{U}_{n}}[T(y)=1]=\frac{1}{2} \\
& \operatorname{Pr}_{y \in \mathscr{X}}[T(y)=1]>\frac{1}{2}+\frac{1}{n^{c}} .
\end{aligned}
$$

So $T$ distinguishes between distributions $\mathscr{X}$ and $\mathscr{U}_{n}$ with advantage $>\frac{1}{n^{c}}$. Therefore, $X$ is not pseudorandom.
$(\Longleftarrow)$ Suppose $\mathscr{X}$ is not pseudorandom. Then there is a p.p.t. algorithm $T$ such that

$$
\operatorname{advantage}(T)=\left|\operatorname{Pr}[T(\mathscr{X})=1]-\operatorname{Pr}\left[T\left(\mathscr{U}_{n}\right)=1\right]\right|>\frac{1}{n^{c}} .
$$

Without loss of generality, we assume that $\operatorname{Pr}[T(\mathscr{X})=1]>\operatorname{Pr}\left[T\left(\mathscr{U}_{n}\right)=1\right]$; for if the inequality goes the other way, then we substitute $T$ with its complement.

We use a "hybrid argument" to construct a next-bit predictor algorithm. Let $U_{1}, \ldots, U_{n}$ be uniform independent random variables on $\{0,1\}$, so that $\mathscr{U}_{n}=\left(U_{1}, \ldots, U_{n}\right)$. We define a sequence of distributions:

$$
\begin{aligned}
& \mathscr{D}_{0}=\left(U_{1}, \ldots, U_{n}\right)=\mathscr{U}_{n} \\
& \mathscr{D}_{1}=\left(X_{1}, U_{2}, \ldots, U_{n}\right) \\
& \mathscr{D}_{2}=\left(X_{1}, X_{2}, U_{3}, \ldots, U_{n}\right) \\
& \vdots \\
& \mathscr{D}_{i}=\left(X_{1}, \ldots, X_{i}, U_{i+1}, \ldots, U_{n}\right) \\
& \vdots \\
& \mathscr{D}_{n}=\left(X_{1}, \ldots, X_{n}\right)=\mathscr{X} .
\end{aligned}
$$

Notice that

$$
T\left(\mathscr{D}_{i-1}\right)=\frac{1}{2}\left(T\left(\mathscr{D}_{i}\right)+T\left(X_{1}, \ldots, X_{i-1}, 1-X_{i}, U_{i+1}, \ldots, U_{n}\right)\right)
$$

Now, we have

$$
\frac{1}{n^{c}}<\operatorname{Pr}\left[T\left(\mathscr{D}_{n}\right)=1\right]-\operatorname{Pr}\left[T\left(\mathscr{D}_{0}\right)=1\right]=\sum_{i \in[n]} \operatorname{Pr}\left[T\left(\mathscr{D}_{i}\right)=1\right]-\operatorname{Pr}\left[T\left(\mathscr{D}_{i-1}\right)=1\right] .
$$

Therefore, there exists $i \in[n]$ such that $\operatorname{Pr}\left[T\left(\mathscr{D}_{i}\right)=1\right]-\operatorname{Pr}\left[T\left(\mathscr{D}_{i-1}\right)=1\right]>\frac{1}{n^{c+1}}$.
We define p.p.t. "predictor" algorithm $P\left(x_{1}, \ldots, x_{i-1}, y_{i}, \ldots, y_{n}\right)$ with input bits $x_{1}, \ldots, x_{i-1}$ and random bits (coins) $y_{i}, \ldots, y_{n} \in_{\mathrm{R}}\{0,1\}$ by

$$
P\left(x_{1}, \ldots, x_{i-1}, y_{i}, \ldots, y_{n}\right)= \begin{cases}y_{i} & \text { if } T\left(x_{1}, \ldots, x_{i-1}, y_{i}, \ldots, y_{n}\right)=1 \\ 1-y_{i} & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i-1}, U_{i}, \ldots, U_{n}\right)=X_{i}\right] \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i-1}, U_{i}, \ldots, U_{n}\right)=X_{i} \mid U_{i}=X_{i}\right]+\operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i-1}, U_{i}, \ldots, U_{n}\right)=X_{i} \mid U_{i} \neq X_{i}\right]\right) \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i}, U_{i+1}, \ldots, U_{n}\right)=X_{i}\right]+\operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i-1}, 1-X_{i}, U_{i+1} \ldots, U_{n}\right)=X_{i}\right]\right) \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[T\left(X_{1}, \ldots, X_{i}, U_{i+1} \ldots, U_{n}\right)=1\right]+\operatorname{Pr}\left[T\left(X_{1}, \ldots, X_{i-1}, 1-X_{i}, U_{i+1} \ldots, U_{n}\right)=0\right]\right) \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[T\left(\mathscr{D}_{i}\right)=1\right]+\left(1-\operatorname{Pr}\left[T\left(X_{1}, \ldots, X_{i-1}, 1-X_{i}, U_{i+1} \ldots, U_{n}\right)=1\right]\right)\right) \\
& =\frac{1}{2}+\frac{1}{2}(\operatorname{Pr}\left[T\left(\mathscr{D}_{i}\right)=1\right]-\underbrace{\left.\operatorname{Pr}\left[X_{1}, \ldots, X_{i-1}, 1-X_{i}, U_{i+1} \ldots, U_{n}\right)=1\right]}_{=2 \operatorname{Pr}\left[T\left(\mathscr{D}_{i-1}\right)=1\right]-\operatorname{Pr}\left[T\left(\mathscr{D}_{i}\right)=1\right] \text { by }(\star)}) \\
& =\frac{1}{2}+\left(\operatorname{Pr}\left[T\left(\mathscr{D}_{i}\right)=1\right]-\operatorname{Pr}\left[T\left(\mathscr{D}_{i-1}=1\right)\right]\right) \\
& >\frac{1}{2}+\frac{1}{n^{c+1}} .
\end{aligned}
$$

By defining $P\left(x_{1}, \ldots, x_{j}\right) \in_{\mathrm{R}}\{0,1\}$ for values of $j \in[n]-\{i\}$, we get

$$
\begin{aligned}
& \operatorname{Pr}_{j \in \mathrm{R}}[n] \\
& =\frac{1}{n}\left(P\left(X_{1}, \ldots, X_{j-1}\right)=X_{j}\right] \\
& \left.\operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{i-1}\right)=X_{i}\right]+\sum_{j \in \mathrm{R}[n]-\{i\}} \operatorname{Pr}\left[P\left(X_{1}, \ldots, X_{j-1}\right)=X_{j}\right]\right)>\frac{1}{n}\left(\frac{n}{2}+\frac{1}{n^{c+1}}\right)=\frac{1}{2}+\frac{1}{n^{c+2}} .
\end{aligned}
$$

Thus, we have shown that $\mathscr{X}$ is not next-bit unpredictable.

