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Definition 1 (Computational indistinguishability) Let X = (X,,) and Y = (Y,) be sequences of
random variables on {0,1}". We say X and Y are e(n)-indistinguishable for time t(n) if for every
probabilistic algorithm T running in time t(n),

[Pr[T(X,)) = 1] - Pr{T(Y,) = 1]| < e(n)

for all large enough n. The quantity |Pr[T(X,,) = 1] — Pr[T(Y,,) = 1] is called the advantage of T'; it is a

measure of how much better T is than random gquessing at distinguishing X,, fromY,,. We write X Zy
if X and Y are %—indistmguishable for time n¢, for all ¢ > 0. T’s advantage is said to be negligible if
it 1s < % for all c.

The following definition is due to Blum, Micali and Yao.

Definition 2 (Pseudorandom generator, or PRG) A function G : {0,1}*(™ — {0,1}" is a PRG
if

(1) £(n)<n

where U, is the uniform distribution on {0,1}" and G(%yy)) is the distribution on {0,1}" induced as
the image under G of the uniform distribution %y on {0, 1},

The function £(n) is called the seed length of G.

G s efficient if it is computable in time poly(n) (not poly(£(n))).

It is pseudorandom against nonuniform time t(n) if G(%(n)) and %, are computationally indistin-
guishable with respect to probabilistic algorithms T that run in nonuniform polynomial time (i.e., T is
computable by a non-uniform family of polynomial-size circuits).

Definition 3 (BPP complexity class) L € BPP if there is a p.p.t. (probabilistic polynomial time)
algorithm A such that for all inputs x,

e if x € L then Pr[A accepts x] > %;
o if x ¢ L then Pr[A accepts z] < x.
That is, A outputs the correct answer with probability > % (A tolerates two-sided errors.)

Theorem 4 If there exists an efficient PRG against nonuniform time n with seed length £(n), then
BPP C U DTIME(2")n¢) and in particular
>0
{(n) = O(logn) = BPP C P
{(n) = O(log® n) => BPP C DTIME(nP°¥los(")
£(n) = O(nf) = BPP C Subexponential Time.

Note that BPP C ExpTime since an exponential time algorithm can enumerate all seeds to a PRG
and output the majority answer.

Proof Suppose G : {0,1}*(™) — {0,1}" is a PRG against nonuniform time n whose runtime is
O(n®). Let A be a p.p.t. algorithm in BPP whose runtime is O(n®). We define a deterministic



algorithm A’ € DTIME(2¢"") (n® 4 n?)) equivalent to A as follows: run A on input z with random
bits G(s) for all seeds s € {0,1}4"™) and output the majority answer.

Toward a contradiction, assume A’ gives the wrong answer on input x. That is, J}Dr [A(z,G(s))
se Zo(nc2)

is correct] < 1. Since A4 € BPP, we know P?’/r [A(z,y) is correct] > 2. But now we have an efficiently
YEU, 2

computable test T, (%) := A(z,*) with advantage ;. This contradicts the fact that G is a PRG.

Therefore, A’ is equivalent to A. We conclude that BPP = U DTIME(2¢™) (1 4 nc2)). B
c>0

Remark In the proof of Theorem 4, it is enough to assume we have a PRG G such that G(Uy,)
is computationally indistinguishable from %, for linear time algorithms T. Note that the runtime of G
has to be poly(n®), but isn’t required to match the runtime of A.

It can be shown, via a probabilistic proof, that:
Theorem 5 There exists a PRG against nonuniform time t(n) with seed length O(logt(n))

Note that Theorem 5 says nothing about the efficiency of the PRG. The existence of an efficient PRG
satisfying the condition of Theorem 5 implies BPP # P, by Theorem 4.

Theorem 6 If there exists an efficient PRG, then P # NP.

Proof Toward a contradiction, suppose G : {0,1}*™) — {0,1}" is an efficient PRG and assume
P = NP. Define test T'(x) by

T(x) =

0 if Jy st G(y) =1,
1 otherwise.

T distinguishes distributions G (%)) and %, with advantage > %7 as

Pr[T(G(%(n))) = 1] =1,

Notice that T is computable in NP, since a nondeterministic algorithm can guess y and then verify
that G(y) = 1 in polynomial time. Since we are assuming P = NP, it follows that T is efficient. But
this contradicts the assumption that G is a PRG, since T distinguishes G(%}(y)) from the uniform
distribution %;,,. &

In the previous lecture, we discussed three different notions of randomness. We now add a fourth:
unpredictability.

Definition 7 (Next-bit unpredictability) Let 2" = (Xi,...,X,) be a distribution on {0,1}". 2
is next-bit unpredictable if for every p.p.t. “predictor” algorithm P, there exists a negligible function
e(n) (where negligible means e(n) = O(-%) for all ¢ > 0) such that

1
Pr [P(Xl,...,Xi_l):Xi] S *—FE(TL)
V’L:GR[T}]P 2

Surprisingly, next-bit unpredictability turns out to be an equivalent notion to pseudorandomness.

Theorem 8 2 is pseudorandom if, and only if, it is next-bit unpredictable.



Proof (=) Suppose P is not next-bit unpredictable. Then for some ¢ > 0,

1 1
Pr [P(Xy,....X;—1) =X, -+ —.
iERI[‘n][ ( 1, s L34 1) 7,] > 2 + ne
In particular, there exists i € [n] such that
Pr[P(X Xi )—X-}>1+i
1yeeryAi—1) — A4 2 nc~

We now define an efficient test T'(y1,...,yn) by

Ty ) = 0 if P(yr,...,yi-1) # vi,
Lo dn 1 ifP(yl,...,yi_l):yi.
We have
Pr [T(y)=1] =+
YyEUn, ¥ = _2
1 1
Pr [T(y)=1 e
y@gg[ ) =1>5+—

So T distinguishes between distributions 2 and %, with advantage > ni Therefore, X is not pseudo-
random.

(«<=) Suppose 2" is not pseudorandom. Then there is a p.p.t. algorithm T such that

advantage(T) = |Pr[T(Z") = 1] — Pr[T(%,) = 1]| > i

nC

Without loss of generality, we assume that Pr[T(2") = 1] > Pr[T(%,) = 1]; for if the inequality goes
the other way, then we substitute T" with its complement.

We use a “hybrid argument” to construct a next-bit predictor algorithm. Let Uy,...,U, be uni-
form independent random variables on {0,1}, so that %, = (Ui,...,U,). We define a sequence of
distributions:

Dy = (Ur,...,Up) = U,
D =(X1,Us,...,Up)
@2 = (XlaX27U37"'7Un)

2 =(X1,.., X5, Uis1, ..., Uy)

Dy = (X1, X)) = 2.

Notice that )
T(2i1) = 3 (T(%—) FT(Xes e X1, 1= X5, Uig,s - - Un)> (%)

Now, we have

% <PrI(Zn) = 1] = Pr[T(%) = 1] = Y Pr(T(%) = 1] = Pr[T(Zi1) = 1].
i€[n]



Therefore, there exists i € [n] such that Pr[T(2;) = 1] — Pr[T(%i—1) = 1] > .
We define p.p.t. “predictor” algorithm P(xi,...,2i—1,¥:,...,Yyn) with input bits z1,...,z;—; and
random bits (coins) y;,...,yn €r {0,1} by

Yi if T(x1, . Tim1,Yiy oo Yn) =1
P(:Cla"wxifhyiw"ayn) — ' ( . ! ! n)
1—19; otherwise.

PI‘[P(Xl, -~7Xi717Ui ;Un>:Xz]
1
:§<Pr[P(X17...,Xl-,hUi,...,Un):Xl-|UZ-:Xi]+Pr[P(X1,...,Xi,l,UZ-,...7Un):XZ-|Ui7éXl-})
1
:i(Pr[P(Xh...,XZ-,UZ-H,...,Un):Xi]+Pr[P(X1,...,XZ-,1,1—Xi7Ui+1...,Un):Xi]>
1
:§(Pr[T(X1,...,Xi,Ui+1...7Un):1]+Pr[T(X1,...7Xi,171—XZ-7Ui+1...,Un):0])
1
- §(Pr[T(@i):1]+ (1—Pr[T(Xl,...,Xi,l,l—Xi,Um...,Un) :1]))
1 1
:§+§(Pr[T(@i):1}—Pr[T(Xl,...,Xi,l,l—Xi,UHl...,Un):1})

=2Pr[T(Zi—1) = 1] = Pr[T(Z;) = 1] by (»)

|
[
+
~
T
=

T(2:) = 1] = Pr[T(Z,-1 = 1))

=N =

1
>§+W:

By defining P(z1,...,z;) €r {0,1} for values of j € [n] — {i}, we get

) Pr [P(Xl, e 7Xj—1) = X]}
JERI[N]

1 1/m 1 11
:E(Pr[P(Xl,.‘.,Xi,l):Xi]f [z]:{fr[P(Xl,...,Xj1):Xj])>n(2+nc+1):2+nc+2.
JER|N|—11%

Thus, we have shown that 2" is not next-bit unpredictable. Bl



