6.895 Randomness and Computation	May 3, 2006
Lecture 21	

Scribe: Benjamin Rossman

Lecturer: Ronitt Rubinfeld

Definition 1 (Computational indistinguishability) Let $X = (X_n)$ and $Y = (Y_n)$ be sequences of random variables on $\{0,1\}^n$. We say X and Y are $\epsilon(n)$ -indistinguishable for time t(n) if for every probabilistic algorithm T running in time t(n),

$$\left|\Pr[T(X_n) = 1] - \Pr[T(Y_n) = 1]\right| \le \epsilon(n)$$

for all large enough n. The quantity $|\Pr[T(X_n) = 1] - \Pr[T(Y_n) = 1]|$ is called the advantage of T; it is a measure of how much better T is than random guessing at distinguishing X_n from Y_n . We write $X \stackrel{c}{\equiv} Y$ if X and Y are $\frac{1}{n^c}$ -indistinguishable for time n^c , for all c > 0. T's advantage is said to be negligible if it is $< \frac{1}{n^c}$ for all c.

The following definition is due to Blum, Micali and Yao.

Definition 2 (Pseudorandom generator, or PRG) A function $G : \{0,1\}^{\ell(n)} \longrightarrow \{0,1\}^n$ is a PRG if

- (1) $\ell(n) < n$
- (2) $G(\mathscr{U}_{\ell(n)}) \stackrel{\mathrm{c}}{\equiv} \mathscr{U}_n$

where \mathscr{U}_n is the uniform distribution on $\{0,1\}^n$ and $G(\mathscr{U}_{\ell(n)})$ is the distribution on $\{0,1\}^n$ induced as the image under G of the uniform distribution $\mathscr{U}_{\ell(n)}$ on $\{0,1\}^{\ell(n)}$.

The function $\ell(n)$ is called the seed length of G.

G is efficient if it is computable in time poly(n) (not $poly(\ell(n))$).

It is pseudorandom against nonuniform time t(n) if $G(\mathscr{U}_{\ell(n)})$ and \mathscr{U}_n are computationally indistinguishable with respect to probabilistic algorithms T that run in nonuniform polynomial time (i.e., T is computable by a non-uniform family of polynomial-size circuits).

Definition 3 (BPP complexity class) $L \in BPP$ if there is a p.p.t. (probabilistic polynomial time) algorithm A such that for all inputs x,

- if $x \in L$ then $\Pr[A \text{ accepts } x] \geq \frac{2}{3}$;
- if $x \notin L$ then $\Pr[A \text{ accepts } x] \leq \frac{1}{2}$.

That is, A outputs the correct answer with probability $\geq \frac{2}{3}$. (A tolerates two-sided errors.)

Theorem 4 If there exists an efficient PRG against nonuniform time n with seed length $\ell(n)$, then BPP $\subseteq \bigcup_{c>0} \text{DTIME}(2^{\ell(n^c)}n^c)$ and in particular

$$\begin{split} \ell(n) &= O(\log n) \Longrightarrow \text{BPP} \subseteq \text{P} \\ \ell(n) &= O(\log^c n) \Longrightarrow \text{BPP} \subseteq \text{DTIME}(n^{\text{polylog}(n)}) \\ \ell(n) &= O(n^\epsilon) \Longrightarrow \text{BPP} \subseteq \text{Subexponential Time.} \end{split}$$

Note that $BPP \subseteq ExpTime$ since an exponential time algorithm can enumerate all seeds to a PRG and output the majority answer.

Proof Suppose $G : \{0,1\}^{\ell(n)} \longrightarrow \{0,1\}^n$ is a PRG against nonuniform time *n* whose runtime is $O(n^{c_1})$. Let *A* be a p.p.t. algorithm in BPP whose runtime is $O(n^{c_2})$. We define a deterministic

algorithm $A' \in \text{DTIME}(2^{\ell(n^{c_2})}(n^{c_1} + n^{c_2}))$ equivalent to A as follows: run A on input x with random bits G(s) for all seeds $s \in \{0, 1\}^{\ell(n)}$, and output the majority answer.

Toward a contradiction, assume A' gives the wrong answer on input x. That is, $\Pr_{s \in \mathscr{U}_{\ell(n^{c_2})}}[A(x, G(s))]$ is correct] $\leq \frac{1}{2}$. Since $A \in BPP$, we know $\Pr_{y \in \mathscr{U}_{n^{c_2}}}[A(x, y)]$ is correct] $\geq \frac{2}{3}$. But now we have an efficiently computable test $T_{A,x}(*) := A(x, *)$ with advantage $\frac{1}{6}$. This contradicts the fact that G is a PRG. Therefore, A' is equivalent to A. We conclude that $BPP = \bigcup_{c>0} DTIME(2^{\ell(n^{c_2})}(n^{c_1} + n^{c_2}))$.

Remark In the proof of Theorem 4, it is enough to assume we have a PRG G such that $G(U_{\ell(n)})$ is computationally indistinguishable from \mathscr{U}_n for *linear time algorithms* T. Note that the runtime of G has to be $poly(n^c)$, but isn't required to match the runtime of A.

It can be shown, via a probabilistic proof, that:

Theorem 5 There exists a PRG against nonuniform time t(n) with seed length $O(\log t(n))$

Note that Theorem 5 says nothing about the efficiency of the PRG. The existence of an efficient PRG satisfying the condition of Theorem 5 implies $BPP \neq P$, by Theorem 4.

Theorem 6 If there exists an efficient PRG, then $P \neq NP$.

Proof Toward a contradiction, suppose $G : \{0,1\}^{\ell(n)} \longrightarrow \{0,1\}^n$ is an efficient PRG and assume P = NP. Define test T(x) by

$$T(x) = \begin{cases} 0 & \text{if } \exists y \text{ s.t. } G(y) = 1, \\ 1 & \text{otherwise.} \end{cases}$$

T distinguishes distributions $G(\mathscr{U}_{\ell(n)})$ and \mathscr{U}_n with advantage $\geq \frac{1}{2}$, as

$$\begin{aligned} &\Pr[T(G(\mathscr{U}_{\ell(n)})) = 1] = 1, \\ &\Pr[T(\mathscr{U}_n) = 1] \leq \frac{2^{\ell(n)}}{2^n} \leq \frac{1}{2} \text{ since } \ell(n) < n \end{aligned}$$

Notice that T is computable in NP, since a nondeterministic algorithm can guess y and then verify that G(y) = 1 in polynomial time. Since we are assuming P = NP, it follows that T is efficient. But this contradicts the assumption that G is a PRG, since T distinguishes $G(\mathcal{U}_{\ell(n)})$ from the uniform distribution \mathcal{U}_n .

In the previous lecture, we discussed three different notions of randomness. We now add a fourth: unpredictability.

Definition 7 (Next-bit unpredictability) Let $\mathscr{X} = (X_1, \ldots, X_n)$ be a distribution on $\{0, 1\}^n$. \mathscr{X} is next-bit unpredictable if for every p.p.t. "predictor" algorithm P, there exists a negligible function $\epsilon(n)$ (where negligible means $\epsilon(n) = O(\frac{1}{n^c})$ for all c > 0) such that

$$\Pr_{\substack{i \in \mathbb{R}[n] \\ \text{roins of } P}} \left[P(X_1, \dots, X_{i-1}) = X_i \right] \le \frac{1}{2} + \epsilon(n)$$

Surprisingly, next-bit unpredictability turns out to be an equivalent notion to pseudorandomness.

Theorem 8 \mathscr{X} is pseudorandom if, and only if, it is next-bit unpredictable.

Proof (\Longrightarrow) Suppose *P* is not next-bit unpredictable. Then for some c > 0,

$$\Pr_{i \in \mathbf{R}[n]} [P(X_1, \dots, X_{i-1}) = X_i] > \frac{1}{2} + \frac{1}{n^c}.$$

In particular, there exists $i \in [n]$ such that

$$\Pr[P(X_1, \dots, X_{i-1}) = X_i] > \frac{1}{2} + \frac{1}{n^c}.$$

We now define an efficient test $T(y_1, \ldots, y_n)$ by

$$T(y_1, \dots, y_n) = \begin{cases} 0 & \text{if } P(y_1, \dots, y_{i-1}) \neq y_i \\ 1 & \text{if } P(y_1, \dots, y_{i-1}) = y_i \end{cases}$$

We have

$$\Pr_{\substack{y \in \mathscr{U}_n}} [T(y) = 1] = \frac{1}{2}$$
$$\Pr_{\substack{y \in \mathscr{X}}} [T(y) = 1] > \frac{1}{2} + \frac{1}{n^c}$$

So T distinguishes between distributions \mathscr{X} and \mathscr{U}_n with advantage $> \frac{1}{n^c}$. Therefore, X is not pseudo-random.

 (\Leftarrow) Suppose \mathscr{X} is not pseudorandom. Then there is a p.p.t. algorithm T such that

$$\operatorname{advantage}(T) = |\Pr[T(\mathscr{X}) = 1] - \Pr[T(\mathscr{U}_n) = 1]| > \frac{1}{n^c}.$$

Without loss of generality, we assume that $\Pr[T(\mathscr{X}) = 1] > \Pr[T(\mathscr{U}_n) = 1]$; for if the inequality goes the other way, then we substitute T with its complement.

We use a "hybrid argument" to construct a next-bit predictor algorithm. Let U_1, \ldots, U_n be uniform independent random variables on $\{0, 1\}$, so that $\mathscr{U}_n = (U_1, \ldots, U_n)$. We define a sequence of distributions:

$$\mathcal{D}_0 = (U_1, \dots, U_n) = \mathcal{U}_n$$
$$\mathcal{D}_1 = (X_1, U_2, \dots, U_n)$$
$$\mathcal{D}_2 = (X_1, X_2, U_3, \dots, U_n)$$
$$\vdots$$
$$\mathcal{D}_i = (X_1, \dots, X_i, U_{i+1}, \dots, U_n)$$
$$\vdots$$
$$\mathcal{D}_n = (X_1, \dots, X_n) = \mathcal{X}.$$

Notice that

$$T(\mathscr{D}_{i-1}) = \frac{1}{2} \Big(T(\mathscr{D}_i) + T(X_1, \dots, X_{i-1}, 1 - X_i, U_{i+1}, \dots, U_n) \Big) \tag{*}$$

Now, we have

$$\frac{1}{n^c} < \Pr[T(\mathscr{D}_n) = 1] - \Pr[T(\mathscr{D}_0) = 1] = \sum_{i \in [n]} \Pr[T(\mathscr{D}_i) = 1] - \Pr[T(\mathscr{D}_{i-1}) = 1].$$

Therefore, there exists $i \in [n]$ such that $\Pr[T(\mathscr{D}_i) = 1] - \Pr[T(\mathscr{D}_{i-1}) = 1] > \frac{1}{n^{c+1}}$. We define p.p.t. "predictor" algorithm $P(x_1, \ldots, x_{i-1}, y_i, \ldots, y_n)$ with input bits x_1, \ldots, x_{i-1} and random bits (coins) $y_i, \ldots, y_n \in_{\mathbb{R}} \{0, 1\}$ by

$$P(x_1, \dots, x_{i-1}, y_i, \dots, y_n) = \begin{cases} y_i & \text{if } T(x_1, \dots, x_{i-1}, y_i, \dots, y_n) = 1\\ 1 - y_i & \text{otherwise.} \end{cases}$$

$$\begin{split} &\Pr[P(X_1, \dots, X_{i-1}, U_i, \dots, U_n) = X_i] \\ &= \frac{1}{2} \Big(\Pr[P(X_1, \dots, X_{i-1}, U_i, \dots, U_n) = X_i \mid U_i = X_i] + \Pr[P(X_1, \dots, X_{i-1}, U_i, \dots, U_n) = X_i \mid U_i \neq X_i] \Big) \\ &= \frac{1}{2} \Big(\Pr[P(X_1, \dots, X_i, U_{i+1}, \dots, U_n) = X_i] + \Pr[P(X_1, \dots, X_{i-1}, 1 - X_i, U_{i+1}, \dots, U_n) = X_i] \Big) \\ &= \frac{1}{2} \Big(\Pr[T(X_1, \dots, X_i, U_{i+1}, \dots, U_n) = 1] + \Pr[T(X_1, \dots, X_{i-1}, 1 - X_i, U_{i+1}, \dots, U_n) = 0] \Big) \\ &= \frac{1}{2} \Big(\Pr[T(\mathscr{D}_i) = 1] + \Big(1 - \Pr[T(X_1, \dots, X_{i-1}, 1 - X_i, U_{i+1}, \dots, U_n) = 1] \Big) \Big) \\ &= \frac{1}{2} + \frac{1}{2} \Big(\Pr[T(\mathscr{D}_i) = 1] - \underbrace{\Pr[T(X_1, \dots, X_{i-1}, 1 - X_i, U_{i+1}, \dots, U_n) = 1]}_{= 2\Pr[T(\mathscr{D}_{i-1}) = 1] - \Pr[T(\mathscr{D}_i) = 1]} \Big) \\ &= \frac{1}{2} + \Big(\Pr[T(\mathscr{D}_i) = 1] - \Pr[T(\mathscr{D}_{i-1} = 1)] \Big) \\ &> \frac{1}{2} + \frac{1}{n^{c+1}}. \end{split}$$

By defining $P(x_1, \ldots, x_j) \in_{\mathbf{R}} \{0, 1\}$ for values of $j \in [n] - \{i\}$, we get

$$\Pr_{j \in_{\mathbf{R}}[n]}[P(X_1, \dots, X_{j-1}) = X_j] = \frac{1}{n} \Big(\Pr[P(X_1, \dots, X_{i-1}) = X_i] + \sum_{j \in_{\mathbf{R}}[n] - \{i\}} \Pr[P(X_1, \dots, X_{j-1}) = X_j] \Big) > \frac{1}{n} \Big(\frac{n}{2} + \frac{1}{n^{c+1}} \Big) = \frac{1}{2} + \frac{1}{n^{c+2}}.$$

Thus, we have shown that ${\mathscr X}$ is not next-bit unpredictable. \blacksquare