Lecture 2

Lecturer: Ronitt Rubinfeld

Lecture Outline:

- Linearity Testing (Introduction)
- Observation about distributions
- Self-correcting programs
- union bound
- Chernoff bound
- indicator variables
- linearity of expectations
- Proposed test for linearity
- sampling claim - review "gap" bound
- Coppersmith's example
- proof of correctness and review of Markov's inequality (we didn't get to this)

1 Linearity Testing - An Introduction

Let G be a finite abelian group (ie \mathbb{Z}_{p}). The theorems that we will prove today work for arbitrary finite groups, but our proofs may not.
Definition $1 A$ function $f: G \rightarrow G$ is linear (homomorphic) if $\forall x, y \in G, f(x)+f(y)=f(x+y)$.
Examples of linear functions:

$$
\begin{gather*}
f(x)=x \tag{1}\\
f(x)=3 x(\bmod l) \tag{2}
\end{gather*}
$$

Problem: Can we tell if an arbitrary function f is linear? The function f is a black box. We know nothing about its internal structure; all we can do is query it, meaning we can pass in a value of x and get out a value of $f(x)$. To find out whether f is linear, we need to query every single value in the domain. If we do not, the following situation can occur:

$$
\begin{equation*}
f(x)=x \text { for } x \neq 3, f(3)=2 \tag{3}
\end{equation*}
$$

There's no way to know that f isn't linear unless we query $x=3$ itself.

Definition 2 A function f is called ϵ-linear if there exists a function g s.t. g is linear and the following equation is true:

$$
\begin{equation*}
\frac{\text { number of } x \text { 's s.t. } f(x)=g(x)}{\text { number of } x \text { 's }}=\operatorname{Pr}_{x \in G}[f(x)=g(x)] \geq 1-\epsilon \tag{4}
\end{equation*}
$$

In the following, we will discuss how to test that f is ϵ-linear without testing all of the values in the domain.

2 An Observation About Distributions

If G is a finite group,

$$
\begin{equation*}
\forall a, y, \in G \operatorname{Pr}_{x}[y=a+x]=1 /|G| \tag{5}
\end{equation*}
$$

Remark If we pick $x \epsilon_{R} G$ then $a+x \epsilon_{R} G$. We use this notation to denote that $a+x$ is distributed uniformly in G.

Since G is a group, inverses exist, so $y-a$ is a member of G, and only $x=y-a$ satisfies the equation $y=a+x$.

Remark If G is Z_{2}^{n}, addition is defined in the following manner:

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \tag{6}
\end{equation*}
$$

3 Self-Correcting Programs

Say that f is the function described above that is linear except at $x=3$. We can define a linear function g such that $g(i)=f(i)$ for all $i \neq 3$, and $g(3)=f(1)+f(2)$, or $g(3)=f(4)-f(1)$, or in general, $g(3)=g(x)+g(3-x)$ for any $x \in G$ except for $x=0$ or $x=3$. This allows us to correct 1 error, but we can extend this to correct more as follows.

For a general ϵ-linear f where $\epsilon \leq 1 / 8$, let g be the closest linear function to f (the following shows that when $\epsilon \leq 1 / 8, g$ is unique). If we pick y randomly from G, what is the probability that $g(x)=$ $f(y)+f(x-y)$?

Let cond (1) be $f(y) \neq g(y)$ (and $\left.\operatorname{Pr}_{y}[\operatorname{cond}(1)] \leq \epsilon\right)$
Let cond (2) be $f(x-y) \neq g(x-y)\left(\right.$ and $\left(\operatorname{Pr}_{x, y}[\right.$ cond $\left.(2)] \leq \epsilon\right)$
$\operatorname{Pr}_{x, y}[$ cond (1) or cond(2)] $\leq 2 \epsilon$ by the union bound
We have that $\forall x, y, g(x)=g(y)+g(x-y)$
Therefore $\operatorname{Pr}_{x, y}[g(x)=f(y)+f(x-y)] \geq 1-2 \epsilon \geq 3 / 4$
Using this bound, we can use the following algorithm to find the appropriate values for $g(x)$ using other parts of f.

Self-Corrector(x):
For $i=1$...r
Pick y randomly from G
answer $_{i} \leftarrow f(y)+f(x-y)$
output $=$ most common answer $_{i}$

Theorem $3 \operatorname{Pr}[$ output $=g(x)] \geq 1-\beta$ (for proper choice of constants.)
Proof Let's define a random indicator variable $\sigma_{i}=1$ if answer $_{i}=g(x)$, and 0 otherwise. Thus, the expected value of σ_{1} is just the probability that answer $_{i}=g(x)$. In other words,

$$
\begin{aligned}
& E\left[\sigma_{i}\right]=\operatorname{Pr}\left[\sigma_{i}=1\right] \geq 3 / 4 \\
& \text { If } \Sigma \sigma_{i}>r / 2 \text { then output }=g(x) \\
& \mathrm{E}\left[\Sigma \sigma_{i}\right]=\Sigma E\left[\sigma_{i}\right]=3 r / 4 \\
& \operatorname{Pr}\left[\sigma_{i} \leq r / 2\right] \leq \operatorname{Pr}\left[\left|\frac{\Sigma \sigma_{i}}{r}-\frac{E\left[\Sigma \sigma_{i}\right]}{r}\right| \leq 1 / 4\right]
\end{aligned}
$$

Now we can use a Chernoff bound. The mathematical statement of a Chernoff boundfor an indicator variable σ_{i} with $\operatorname{Pr}\left[\sigma_{i}\right]=p$ is ${ }^{1}$:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\frac{\Sigma \sigma_{i}}{r}-p\right| \leq \epsilon p\right] \leq 2 e^{-r p \epsilon^{2} / 3} \tag{7}
\end{equation*}
$$

Here, $p=3 / 4$ and $\epsilon p=1 / 4$, so $\epsilon=1 / 3$. Also, choose $r=c(1 / \beta)$. Plug these values into the Chernoff bound formula:

$$
\begin{aligned}
& 2 e^{-r(3 / 4)(1 / 9) / 3} \\
= & 2 e^{-r / 36} \\
= & 2 e^{-c / 36 \ln (1 / \beta)} \\
< & \beta \text { for } \mathrm{c}<36 .
\end{aligned}
$$

4 A Proposed Test of Linearity

Here's a proposed test of linearity:
Repeat r times
Pick $x, y \in_{R} G$
If $f(x)+f(y) \neq f(x+y)$ output "fail"
Output "pass"
However, this example due to Coppersmith shows that a function can pass for most choices of x and y, but still be far from linear.

$$
f(x)= \begin{cases}1 & \text { if } x \equiv 1(\bmod 3) \\ 0 & \text { if } x \equiv 0(\bmod 3) \\ -1 & \text { if } x \equiv 2(\bmod 3)\end{cases}
$$

This function fails for $x \equiv y \equiv 1(\bmod 3)$ and for $x \equiv y \equiv 2(\bmod 3)$, but it passes for all other cases. Thus, it fails for only $2 / 9$ of the possible choices of x and y. However, the closest linear function to f is the 0 function. The function f is only 0 in $1 / 3$ of all cases, so f is $2 / 3$-linear. It turns out that $2 / 9$ is a type of threshold in that functions that pass the linearity test more than $7 / 9$ of the time also are ϵ-linear for a fairly small ϵ. We will begin a proof of this idea at the end of this lecture, and finish the proof in the next lecture.

[^0]
4.1 Sampling Theorem

Theorem 4 There exists an algorithm s.t.
if f is linear, i.e. $f(x)+f(y)=f(x+y) \forall x, y$ output "Pass"
if f is s.t. $\operatorname{Pr}[f(x)+f(y) \neq f(x+y)]>\delta$
output "Fail" with probability $\geq 1-\beta$
The runtime of this algorithm will be $O\left(\frac{1}{\delta} \ln \frac{1}{\beta}\right)$

Bounds of this type will be refered to in this course as "gap" sampling bounds. This is not a term sanctioned by the greater community, since we will do many sampling tasks of this type later. "Gap" bound proofs always work in a manner similar to the following, which is the proof of the above theorem.

Remark $(1-x)^{1 / x} \sim e^{-1}$
Proof $\operatorname{Pr}\left[\right.$ output "Pass"] $\leq(1-\delta)^{r}=1-\delta^{\frac{c}{\delta} \ln \frac{1}{\beta}}=e^{-c \ln 1 / \beta}=\beta^{-c}<\beta$
Now we have shown that we can distinguish f 's that are linear from those for which the test $f(x)+$ $f(y)=f(x+y)$ often fails (with probability higher than δ. However, Coppersmith's example shows us that some f 's that often pass that test (in the next lecture called "group law failure") are also very far from linear. However, for low enough δ, we will prove that f is close to linear.

Theorem 5 Assuming $\operatorname{Pr}[f(x)+f(y) \neq f(x+y)]<\delta$ and that G is a finite group, $\delta<2 / 9$ implies that f is $\delta / 2$-linear.

Actually, we will prove this weaker version:
Theorem 6 Assuming $\operatorname{Pr}[f(x)+f(y) \neq f(x+y)]<\delta$ and that G is a finite abelian group, $\delta<1 / 16$ implies that f is 2δ-linear.

Definition 7 If $g(x)=$ plurality $_{y \in G}[f(x+y)-f(y)]$. We'll refer to $f(x+y)-f(y)$ as y 's "vote".
Definition $8 x$ is called ρ-good if $\operatorname{Pr}_{y}[g(x)=f(x+y)-f(y)]>1-\rho$. Otherwise, x is called ρ-bad.
Note that if x is ρ-good for $\rho<1 / 2$ then there is a "majority agreement."
Claim 9 If $\rho \leq 1 / 2, \operatorname{Pr}_{x}[x$ is ρ-good and $g(x)=f(x)]>1-\delta / \rho$
We will prove the claim, and the rest of the theorem, in the next lecture.

[^0]: ${ }^{1}$ See notes for better bounds

