
6.895 Randomness and Computation April 24, 2006

Lecture 18

Lecturer: Ronitt Rubinfeld Scribe: Elena Grigorescu

In this lecture we present the relatively recent fundamental result of O. Reingold [3]
which establishes that undirected st-connectivity can be decided in deterministic loga-
rithmic space.
Given an undirected graph G, two vertices s and t in G, USTCON(G, s, t) is the problem
of deciding whether there exists a path in G connecting s and t. The more difficult,
directed graph version of this problem is known to be NL-complete, and thus in L2 by
Savitch’s theorem. Prior to the Reingold result, USTCON was known to be in RL [1],
and later ([2]) in log4/3 . Also, USTCON is a complete problem for the mysterious class
SL (symmetric, non-deterministic, log space computations), and therefore USTCON∈ L
implies SL=L.

We will start by introducing some notation and recalling some results from previous
lectures/homeworks.

Definition 1 A (N, D, λ)-graph is an undirected graph on N vertices, of degree D, and
with the second largest eigenvalue bounded above by λ.

The relationship between the second eigenvalue and that of vertex expansion is given
in the following proposition.

Proposition 2 Let λ < 1. Then ∃ε > 0 s.t. for any (N, D, λ)-graph G, ∀S ⊂
V, s.t. |S| < N

2
we have that |N(S)| ≥ (1 + ε)|S|. In this case we say that G is an

expander. Note: Elements of S may be in N(S)

Corollary 3 If λ < 1, then for every connected graph (N, D, λ), there exists a path of
length O(log N) between any vertices s and t. In particular, G has O(log N) diameter.

Proof By the vertex expansion property given in Proposition 2, it follows that starting
at s and successively following the neighboring sets for l = O(log N) steps we must have
covered > N/2 of the vertices. Repeating the process from vertex t, it must be the case
that there is a vertex reached from both s and t in these l steps.

For and expander graph G of constant degree, one can now easily check st-connectivity
in log N space as follows:

• Enumerate all Dl paths starting at s of length l = O(log N).

• If have reached node t then output ‘connected’, else output ‘not connected’.
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Notice that the space requirement of the algorithm is O(log N log D, which is O(log N)
for constant D. We will reduce the problem of checking st-connectivity in a general graph,
to that of checking st- connectivity in an expander graph with constant degree D.

Observation: The results shown in this lecture do not apply to general directed
graphs. However, for the special case of directed graphs with constant out-degree equal
to the in-degree at each vertex, similar results do hold.

A key fact that will be relevant to the main proof states that the spectral gap (1 −
λ(G)) of any connected, non-bipartite graph G is large enough, namely at least inverse
polynomial in |G|, as described next.

Theorem 4 For any connected D-regular and non-bipartite graph G the following holds

λ(G) ≤ 1−
1

DN2
.

We further add to our toolkit a useful graph.

Theorem 5 There exist a constant De and a (D16

e , De,
1

2
)-graph.

Also, recall that the graph powering operation is a simple method of increasing the
connectivity of a graph.

Proposition 6 (Graph powering) If G is a (N, D, λ)-graph, then the power Gt of G is
a (N, Dt, λt)-graph.

Observation: Notice that graph powering increases a lot the degree of the new graph.
In particular, for a good enough λ we will want t = O(logN), while we only aim for
t = constant. Reingold’s proof does use manipulations of graphs using this operation.
However, his main ingredient is a new operation (the zig-zag product) that will bring
down the degree of the graph, while increasing λ by only a small constant factor.

A simple example of a way to lower the degree of a graph is shown in the picture
below, where a node is substituted by a cycle.
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We next introduce two graph products that have the property that they reduce the
degree of a graph while not increasing λ by too much either.
Replacement product:

Given graph an (N, D) graph G and a (D, d) graph H , the replacement product graph
G′ is obtained from G and H in the following way:
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• Each node v ∈ G is replaced by a copy of H , called Hv. Thus, there are N D nodes
in G′.

• Each node v′ ∈ Hv corresponds to an edge from v ∈ G. Therefore, v′ ∈ Hv is
adjacent to the d nodes in Hv and to a vertex in Hz, where (v, z) ∈ E(G) and v′

corresponds to z. Therefore, v′ has degree d + 1 << D.
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Zig-zag product:

The zig-zag product G′′ of G and H (notation GzH), where G is D-regular and has N
nodes and H is d-regular and has D nodes is constructed from the replacement product
G′ of G and H :

• V (G′′) = V (G′).

• The edges of G′′ are between vertices x, w ∈ G′ that are connected by a path of
length three, that starts in x ∈ Hv, takes a step (x, y) ∈ E(Hv), then follows the
edge (y, z) ∈ G, where z ∈ Hw, and finally, takes a step (z, w) ∈ E(Hw). Therefore,
the degree of each vertex is d2.

Next we state one of the main tools of the proof, namely the relationship between
the second eigenvalues of the graphs G and H to the second eigenvalue of the zig-zag
product of G and H .

Theorem 7 ([4]) Let G be a (N, D, λ)-graph, and H be a (D, d, α)-graph. Then GzH

is a (ND, d2, f(λ, α))-graph, where f(λ, α) = 1

2
(1− α2)λ + 1

2

√

(1− α2)2λ2 + 4α2.

In fact, a nicer form of this theorem will be enough for our purposes. The following
corollary shows that the spectral gap of the zig-zag product is only larger by a small
factor from the spectral gap of G.

Corollary 8 For G, H as above,

1

2
(1− α2)(1− λ) ≤ 1− λ(GzH).
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Main Transformation:

Given: G that is D16-regular on N vertices,
and H that is D-regular on D16 vertices (given by Theorem 5),
Let l be the smallest integer s.t. (1− 1

DN2 )
2l

< 1

2
.

Let G0 ← G
Let Gi ← (Gi−1zH)8

Output: τ(G, H) = Gl.

We are now ready for the final construction of the expander graph that we are after.
Observation: The number of nodes in Gl is N(D16)l = poly(N), since l = O(log N).

Lemma 9 If H is an expander, then Gl is an expander. Equivalently, if λ(H) ≤ 1

2
and

G is connected and not bipartite, then λ(τ(G, H)) ≤ 1

2
.

Proof [Sketch] By Theorem 4 we have that λ(G0) ≤ 1 − 1

DN2 . Notice that it is
enough to show inductively that λ(Gi) ≤ max{λ(Gi−1)

2, 1

2
)}. This will imply that, for

l = O(log(N) log(D)) we have that λ(Gl) ≤ max{λ(G0)
2

l

, 1

2
} < 1

2
. To prove the induc-

tion hypothesis, notice that λ(H) ≤ 1

2
. By Corollary 8, we have that λ(Gi−1zH) <

1 − 1/3 (λ(Gi−1). Therefore, λ(Gi) < (1 − 1/3 (λ(Gi−1))
8. The conclusion follows then

by elementary calculations, by considering the cases λ(Gi−1) < 1/2, and λ(Gi−1) ≥ 1/2

We next present an overview of the actual log N space algorithm solving st-connectivity.

1. Preprocessing stage: make the graph G D16 regular, preserving
non-bipartiteness, and the connected components. This can be done by the
replacement product of G with an N -cycle and then adding self-loops. Note that
the number of nodes becomes N2 but this operation is performed only once. Let
Ge be the resulting graph.
2. Use the transformation τ described before on the preprocessed graph Ge and H
the expander given by Proposition 5.
3. Run the expander algorithm on τ(Ge, H).

The only tricky part that one needs to verify now is how the walks are performed in log
space. The choice of representing graphs G and H as so-called rotation maps turns out to
be fortunate. This representation implies that each edge is labeled at both its endpoints,
which gives a way of tracing a path back from any position by only remembering a
constant number of labels.

Definition 10 [3] For a D-regular undirected graph G, the rotation map RotG : [N ]×
[D] → [N ] × [D] is defined as RotG(v, i) = (w, j) if the i’ th edge incident to v leads to
w, and this edge is also the j’th edge incident to w.
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It follows easily that given the rotation map of G one can compute in log N space
the rotation map of Ge. The heart of the problem is showing that the rotation map of
τ(Ge, H) is computable in log space given the rotation maps of G and H . The proof uses
an inductive argument and elementary techniques, and we do not attempt it here.
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