6.895 Randomness and Computation	April 24, 2006
Lecture 18	
Lecturer: Ronitt Rubinfeld	

In this lecture we present the relatively recent fundamental result of O. Reingold [3] which establishes that undirected st-connectivity can be decided in deterministic logarithmic space.
Given an undirected graph G, two vertices s and t in G, $\operatorname{USTCON}(G, s, t)$ is the problem of deciding whether there exists a path in G connecting s and t. The more difficult, directed graph version of this problem is known to be NL-complete, and thus in L^{2} by Savitch's theorem. Prior to the Reingold result, USTCON was known to be in RL [1], and later ([2]) in $\log ^{4 / 3}$. Also, USTCON is a complete problem for the mysterious class SL (symmetric, non-deterministic, log space computations), and therefore USTCON $\in L$ implies $\mathrm{SL}=\mathrm{L}$.

We will start by introducing some notation and recalling some results from previous lectures/homeworks.

Definition $1 A(N, D, \lambda)$-graph is an undirected graph on N vertices, of degree D, and with the second largest eigenvalue bounded above by λ.

The relationship between the second eigenvalue and that of vertex expansion is given in the following proposition.

Proposition 2 Let $\lambda<1$. Then $\exists \varepsilon>0$ s.t. for any (N, D, λ)-graph G, $\forall S \subset$ V, s.t. $|S|<\frac{N}{2}$ we have that $|N(S)| \geq(1+\varepsilon)|S|$. In this case we say that G is an expander. Note: Elements of S may be in $N(S)$

Corollary 3 If $\lambda<1$, then for every connected $\operatorname{graph}(N, D, \lambda)$, there exists a path of length $O(\log N)$ between any vertices s and t. In particular, G has $O(\log N)$ diameter.

Proof By the vertex expansion property given in Proposition 2, it follows that starting at s and successively following the neighboring sets for $l=O(\log N)$ steps we must have covered $>N / 2$ of the vertices. Repeating the process from vertex t, it must be the case that there is a vertex reached from both s and t in these l steps.

For and expander graph G of constant degree, one can now easily check st-connectivity in $\log N$ space as follows:

- Enumerate all D^{l} paths starting at s of length $l=O(\log N)$.
- If have reached node t then output 'connected', else output 'not connected'.

Notice that the space requirement of the algorithm is $O(\log N \log D$, which is $O(\log N)$ for constant D. We will reduce the problem of checking st-connectivity in a general graph, to that of checking st- connectivity in an expander graph with constant degree D.

Observation: The results shown in this lecture do not apply to general directed graphs. However, for the special case of directed graphs with constant out-degree equal to the in-degree at each vertex, similar results do hold.

A key fact that will be relevant to the main proof states that the spectral gap ($1-$ $\lambda(G))$ of any connected, non-bipartite graph G is large enough, namely at least inverse polynomial in $|G|$, as described next.

Theorem 4 For any connected D-regular and non-bipartite graph G the following holds

$$
\lambda(G) \leq 1-\frac{1}{D N^{2}}
$$

We further add to our toolkit a useful graph.
Theorem 5 There exist a constant D_{e} and a $\left(D_{e}^{16}, D_{e}, \frac{1}{2}\right)$-graph .
Also, recall that the graph powering operation is a simple method of increasing the connectivity of a graph.

Proposition 6 (Graph powering) If G is a (N, D, λ)-graph, then the power G^{t} of G is a (N, D^{t}, λ^{t})-graph.

Observation: Notice that graph powering increases a lot the degree of the new graph. In particular, for a good enough λ we will want $t=O(\log N)$, while we only aim for $t=$ constant. Reingold's proof does use manipulations of graphs using this operation. However, his main ingredient is a new operation (the zig-zag product) that will bring down the degree of the graph, while increasing λ by only a small constant factor.

A simple example of a way to lower the degree of a graph is shown in the picture below, where a node is substituted by a cycle.

We next introduce two graph products that have the property that they reduce the degree of a graph while not increasing λ by too much either.
Replacement product:
Given graph an (N, D) graph G and a (D, d) graph H, the replacement product graph G^{\prime} is obtained from G and H in the following way:

- Each node $v \in G$ is replaced by a copy of H, called H_{v}. Thus, there are $N D$ nodes in G^{\prime}.
- Each node $v^{\prime} \in H_{v}$ corresponds to an edge from $v \in G$. Therefore, $v^{\prime} \in H_{v}$ is adjacent to the d nodes in H_{v} and to a vertex in H_{z}, where $(v, z) \in E(G)$ and v^{\prime} corresponds to z. Therefore, v^{\prime} has degree $d+1 \ll D$.

Zig-zag product:

The zig-zag product $G^{\prime \prime}$ of G and H (notation $G z H$), where G is D-regular and has N nodes and H is d-regular and has D nodes is constructed from the replacement product G^{\prime} of G and H :

- $V\left(G^{\prime \prime}\right)=V\left(G^{\prime}\right)$.
- The edges of $G^{\prime \prime}$ are between vertices $x, w \in G^{\prime}$ that are connected by a path of length three, that starts in $x \in H_{v}$, takes a step $(x, y) \in E\left(H_{v}\right)$, then follows the edge $(y, z) \in G$, where $z \in H_{w}$, and finally, takes a step $(z, w) \in E\left(H_{w}\right)$. Therefore, the degree of each vertex is d^{2}.
Next we state one of the main tools of the proof, namely the relationship between the second eigenvalues of the graphs G and H to the second eigenvalue of the zig-zag product of G and H.
Theorem 7 ([4]) Let G be a (N, D, λ)-graph, and H be a (D, d, α)-graph. Then $G z H$ is a $\left(N D, d^{2}, f(\lambda, \alpha)\right)$-graph, where $f(\lambda, \alpha)=\frac{1}{2}\left(1-\alpha^{2}\right) \lambda+\frac{1}{2} \sqrt{\left(1-\alpha^{2}\right)^{2} \lambda^{2}+4 \alpha^{2}}$.

In fact, a nicer form of this theorem will be enough for our purposes. The following corollary shows that the spectral gap of the zig-zag product is only larger by a small factor from the spectral gap of G.

Corollary 8 For G, H as above,

$$
\frac{1}{2}\left(1-\alpha^{2}\right)(1-\lambda) \leq 1-\lambda(G z H)
$$

Main Transformation:

Given: G that is D^{16}-regular on N vertices, and H that is D-regular on D^{16} vertices (given by Theorem 5),
Let l be the smallest integer s.t. $\left(1-\frac{1}{D N^{2}}\right)^{2^{l}}<\frac{1}{2}$.
Let $G_{0} \leftarrow G$
Let $G_{i} \leftarrow\left(G_{i-1} z H\right)^{8}$
Output: $\tau(G, H)=G_{l}$.

We are now ready for the final construction of the expander graph that we are after. Observation: The number of nodes in G_{l} is $N\left(D^{16}\right)^{l}=\operatorname{poly}(N)$, since $l=O(\log N)$.

Lemma 9 If H is an expander, then G_{l} is an expander. Equivalently, if $\lambda(H) \leq \frac{1}{2}$ and G is connected and not bipartite, then $\lambda(\tau(G, H)) \leq \frac{1}{2}$.

Proof [Sketch] By Theorem 4 we have that $\lambda\left(G_{0}\right) \leq 1-\frac{1}{D N^{2}}$. Notice that it is enough to show inductively that $\left.\lambda\left(G_{i}\right) \leq \max \left\{\lambda\left(G_{i-1}\right)^{2}, \frac{1}{2}\right)\right\}$. This will imply that, for $l=O(\log (N) \log (D))$ we have that $\lambda\left(G_{l}\right) \leq \max \left\{\lambda\left(G_{0}\right)^{2^{l}}, \frac{1}{2}\right\}<\frac{1}{2}$. To prove the induction hypothesis, notice that $\lambda(H) \leq \frac{1}{2}$. By Corollary 8, we have that $\lambda\left(G_{i-1} z H\right)<$ $1-1 / 3\left(\lambda\left(G_{i-1}\right)\right.$. Therefore, $\lambda\left(G_{i}\right)<\left(1-1 / 3\left(\lambda\left(G_{i-1}\right)\right)^{8}\right.$. The conclusion follows then by elementary calculations, by considering the cases $\lambda\left(G_{i-1}\right)<1 / 2$, and $\lambda\left(G_{i-1}\right) \geq 1 / 2$

We next present an overview of the actual $\log N$ space algorithm solving st-connectivity.

1. Preprocessing stage: make the graph $G D^{16}$ regular, preserving
non-bipartiteness, and the connected components. This can be done by the replacement product of G with an N-cycle and then adding self-loops. Note that the number of nodes becomes N^{2} but this operation is performed only once. Let G_{e} be the resulting graph.
2. Use the transformation τ described before on the preprocessed graph G_{e} and H the expander given by Proposition 5.
3. Run the expander algorithm on $\tau\left(G_{e}, H\right)$.

The only tricky part that one needs to verify now is how the walks are performed in log space. The choice of representing graphs G and H as so-called rotation maps turns out to be fortunate. This representation implies that each edge is labeled at both its endpoints, which gives a way of tracing a path back from any position by only remembering a constant number of labels.

Definition 10 [3] For a D-regular undirected graph G, the rotation map $\operatorname{Rot}_{G}:[N] \times$ $[D] \rightarrow[N] \times[D]$ is defined as $\operatorname{Rot}_{G}(v, i)=(w, j)$ if the i ' th edge incident to v leads to w, and this edge is also the j 'th edge incident to w.

It follows easily that given the rotation map of G one can compute in $\log N$ space the rotation map of G_{e}. The heart of the problem is showing that the rotation map of $\tau\left(G_{e}, H\right)$ is computable in log space given the rotation maps of G and H. The proof uses an inductive argument and elementary techniques, and we do not attempt it here.

References

[1] Aleliunas, Karp, Lipton, Lovasz, Rackoff. Random walks, universal traversal sequences, and the complexity of maze problems. it Annual Symposium on Foundations of Computer Science. 1979.
[2] Armoni, Ta-Shma, Wigderson, Zhou. An $o\left(\log (n)^{4 / 3}\right)$ space algorithm for stconnectivity in undirected graphs. JACM, 2000.
[3] O. Reingold. Undirected st-connectivity in Log Space. 2004.
[4] O. Reingold, S. Vadhan, A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. FOCS 2000.

