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1 Outline

In this lecture we discuss the use of pairwise independent random numbers in algorithms. We will
first show an algorithm that only requires pairwise independence of the random bits used. Next, we
will show how to generate these pairwise random bits using very few truly random bits allowing us to
apply enumeration technique for derandomization. We will also show how to efficiently generate pairwise
random numbers (as opposed to bits). Finally, we will see how to reduce the error rate of randomized
algorithms with one-sided error using pairwise independent numbers.

2 Definitions
We begin with formal definitions of independence. Consider the random variables x; ...x, € T™ where
Vb € T, Vi, Prlx; = b] = % We say that z7 ...z, are
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e independent when Vb ...b, € T",Prlxy ...z, =b1...b,] =

e pairwise independent when Vbiby € T? Vi # j, Prlz;x; = bibe] = HRER
o k-wise independent when by ...b, € T™V distinct iy .. .45, Pr{a;, .. .2; =b1...bg] = -

Notice that pairwise independence is equivalent to 2-wise independence.

3 Large Cut using pairwise independence

Here we present and analyze a randomized algorithm for finding a large cut of a graph requiring only
pairwise independent bits.

Algorithm LargeCut(G):
initialize V4,V2 < {},{}
for every node i =1,...,n

flip coin 7
if r; = heads

V1 — V1 U {’L}
else
Vo = Vo U{i}
Now, to show that V3 and Va» do define a large cut, consider the following:
E[# of edges in cut] = Z Priv; # vj] (linearity of expectation)
(i,5)€E
= Z Priv; =1Nwv; =0]+ Prfv; =0Nw,; =1]
(i,5)€eE
= Z Pr{v; = 1] Pr[v; = 0] 4+ Prfv; = 0] Pr[v; = 1] (pairwise independence)
(i,5)€E
- ¥ 5=5
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Thus, all we need for this algorithm is n coins that are pairwise independent (not truly independent).

4 Efficiently generating pairwise random bits

Now we provide an algorithm for producing N pairwise independent random bits from only O(log N)
truly random bits. Take k truly random bits by ...bg. VS C [k] such that S # 0 set Cs = P;cgb;.
Each of the 2% — 1 Cg S are pairwise independent (proof left as exercise). Thus, to generate N pairwise
random bits we only need log N truly random bits.

5 Derandomized Large Cut

Because we can generate N pairwise random bits using log N truly random bits, we can
1. Enumerate all N possibilities for truly random bits of length log N.
2. Use each string of independent bits to generate a string of N pairwise independent bits.

3. Run it through the randomized Large Cut algorithm presented above.

4. Take the cut that is the largest. By the argument above it will have expected size of at least |2£|

6 Generating pairwise independent random numbers

Pairwise independent random numbers 7y, ...,r, between 0 and some prime ¢ > N can be generated
using the following algorithm:

Algorithm GeneratePI(N):
q <+ some prime > N
choose a,b €r Z,
for 1 —1...¢q

ri—a-i+b (mod q)

Notice that this algorithm requires only 2log ¢ truly random bits to generate a and b.
To see that these number are pairwise independent, consider any x,w,y,z € [q] where x # w. It
follows that there is only one a,b such that a-w+ b=y and a-x + b = z because in

(2 ))=()

. 1 .
the matrix ( th 1 ) has non-zero determinant w — x. Thus, Propla-w+b=yNa-x+b=2z] =

indicating pairwise independence.
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7 Generalization of pairwise independence generation

Define H = {h; : [N] — [M]} to be a pairwise independent family of functions if

1

Vo #y € [N],Va,b € [M], Procy[h(z) = anh(y) =b] = e

Thus, we notice that our construction for pairwise independent bits was the special case of M = 2 and
for pairwise independent numbers was M = q.



8 “Two-point sampling” with pairwise independent numbers

Consider an algorithm A with “one-sided error”, i.e.

x € L= Prg[A(z,R) =1] >

N~

and
r¢ L= PrrlA(z,R)=0]=1

It is that that if A(xz, R) =1 then R is a “witness to X € L”.
To improve the error probability, we can do one of the following:

1. Repeat k times, use Chernoff bounds to obtain error < 27% with O(kr) random bits.
2. Use a random walk on rapid mixing graph with r + O(k) bits.
3. Use pairwise random bits requiring the generation of only O(r + k) bits.

In previous lectures we saw the first two methods. We will discuss the last method now. We compute
A(x,r;) for all 1 <i <t. If any A(z,r;) = 1, then we output 1. Otherwise, we output 0.

Consider the probability of misclassification. If ¢ L then A(z,r;) is always 0 and we do not
misclassify.

If z € L then the probability of misclassification is equal to the probability that we never see a 1.
Let YV = 22:1 A(z,r;). By linearity of expectation, we see that E[Y] = 22:1 ElA(z,m;)] > L. We
cannot use a Chernoff bound to evaluate Pr[Y” = 0] because the r;s are not independent and the Markov
inequality is too weak. However, we can apply the Chebyshev inequality.

First we must compute the variance of Y. Because the r;s are pairwise independent,

1t
0% = 3 oA )] = 3 (BlAG. ) - BPAG ) = Y (-1 £ 37 =
Thus, oy < g The Chebyshev inequality states that

Prjz - Elz]| > s0] < —

S

Thus, the probability that we encounter no A(z,r;) =1 when © € L is

t 1 1
—]S—:—
2

N

Thus, we obtain our desired error rate of 27% for ¢+ = 2¥ which requires O(logt) = O(k) truly random
bits.

The name “Two-point sampling” comes from the fact that we only need random numbers a and b.
Their size is bounded by ¢ where ¢ > 2" and ¢ > t (the numbers have to be big enough and we must be
able to generate enough of them). Thus ¢ = Q(r 4+ logt) = Q(r + k).
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