6.895 Randomness and Computation	April 10, 2006	
Lecture 16		
Lecturer: Ronitt Rubinfeld		Scribe: Paul Valiant

1 Reducing the randomness of repeated runs

Assume we have a randomized algorithm A using an r bit random string R that approximates a function f with error $\frac{1}{100}$, namely, $\operatorname{Pr}_{R}[A(x, R) \neq f(x)] \leq \frac{1}{100}$. To improve the error bound, we run A repeatedly and take the majority output. However, if we were to do this naively, then running $A k$ times would take $r k$ random bits; here we show how to accomplish this using only $r+O(k)$ random bits.

The construction involves the following: we consider a graph G on 2^{r} nodes of a special form; we wish to simulate drawing k random vertices from the graph using less than $r k$ bits of randomness; we accomplish this via a random walk on G.

Specifically, let G have the following properties:

- G is d-regular for some fixed d, i.e., every vertex of G has degree d.
- Let P be the transition matrix for a random walk of G; we require P be symmetric, and that λ_{2}, the second largest eigenvalue of P, have magnitude at most $\frac{1}{10}$.

We define the following algorithm:

1. Pick a random start node $R \in\{0,1\}^{r}$.
2. Repeat the following $7 k$ times:
(a) Let R be a random neighbor of the old R
(b) Run $A(x)$ with R as the random bits
3. Output the majority answer

We note that each of the $7 k$ iterations requires choosing one of the d neighbors of the old R, and thus requires $\log d$ bits of randomness. Thus the above algorithm requires $r+7 k \log d=r+O(k)$ random bits, since we take d to be a constant. We note that this is significantly less than the $O(r k)$ bits of randomness required by the naive algorithm.

We prove the following:
Theorem 1 Under the above assumptions, the above algorithm will output $f(x)$ with error at most 2^{-k}.
To help our analysis of the above theorem, we define the set B, the "bad guys" as follows for some fixed x :

$$
B=\left\{R \mid A_{R}(x) \text { is incorrect }\right\}
$$

namely the set of R for which $A_{R}(x) \neq f(x)$. We note that by definition of $A,|B|<2^{r} / 100$.
We next define two diagonal matrices N, M of size $2^{r} \times 2^{r}$. Let N have a 1 on the diagonal entry (R, R) for each string $R \in B$, and zeros everywhere else. Let M have a 1 on the diagonal entry (R, R) for each string $R \notin B$, i.e., $M=I-N$.

For a vector v let $|v|$ denote the L_{1} norm of v, namely $\sum_{i}\left|v_{i}\right|$, and let $\|v\|$ denote the L_{2} norm of v, namely $\sqrt{\sum_{i} v_{i}^{2}}$.

Consider the following constructions. Let p be a probability distribution on the strings of length r. Then

$$
|p N|=\underset{R \leftarrow p}{\operatorname{Pr}}[R \text { is } \mathrm{bad}] .
$$

Similarly we have

$$
|p P N|=\underset{R \leftarrow p}{P r}[\text { start at } p, \text { take one step according to } P, \text { and end up in a bad } R],
$$

and

$$
|p P N P N|=\underset{R \leftarrow p}{P r}[\text { start at } p, \text { take two steps according to } P \text {, and end up in two bad nodes }] \text {. }
$$

In general, given a "correctness path" S, namely a sequence of "correct" or "incorrect" of length $7 k$, if we let

$$
Q_{i}=\left\{\begin{array}{c}
M \text { if } S_{i}=\text { "correct" } \\
N \text { if } S_{i}=\text { "incorrect" }
\end{array}\right.
$$

then the probability that our path through the graph will follow the "correctness path" S is

$$
\operatorname{Pr}[S]=\left|p\left(P Q_{1}\right)\left(P Q_{2}\right) \cdot \ldots \cdot\left(P Q_{7 k}\right)\right|
$$

We state a lemma that will let us prove our theorem; we prove the lemma later.
Lemma 2 For all distributions Π, and P, N, M as above

1. $\|\Pi P M\| \leq\|\Pi\|$
2. $\|\Pi P N\| \leq \frac{1}{5}\|\Pi\|$

We now prove the main theorem.
Proof of Theorem 1 Consider an execution of the above algorithm. If fewer than $\frac{7 k}{2}$ of the runs of A have randomness $R \in B$ then a majority of the runs will output $f(x)$ and the algorithm will output $f(x)$ correctly. We bound the probability that this does not occur.

Consider a correctness path S which contains more than $\frac{7 k}{2}$ "incorrect"s. From above we have that

$$
\operatorname{Pr}[S]=\left|p\left(P Q_{1}\right)\left(P Q_{2}\right) \cdot \ldots \cdot\left(P Q_{7 k}\right)\right|
$$

We have from the Cauchy-Schwarz inequality that for any vector v of length 2^{r}

$$
|v|=v \cdot(1,1, \ldots, 1) \leq\|v\| \cdot\|(1,1, \ldots, 1)\|=\sqrt{2^{r}}\|v\| .
$$

Thus we have

$$
\operatorname{Pr}[S] \leq \sqrt{2^{r}}\left\|p\left(P Q_{1}\right)\left(P Q_{2}\right) \cdot \ldots \cdot\left(P Q_{7 k}\right)\right\|
$$

At this point, we invoke Lemma $27 k$ times to successively remove the terms $\left(P Q_{i}\right)$ from the above expression. We note that at least $\frac{7 k}{2}$ times we can invoke case two of the lemma. We thus have the bound

$$
\operatorname{Pr}[S] \leq \sqrt{2^{r}}\|p\|\left(\frac{1}{5}\right)^{7 k / 2}
$$

We note that the algorithm specified that the initial R be drawn randomly, and hence p is uniform. By explicit computation we may check that in this case

$$
\|p\|=\sqrt{\sum_{i=1}^{2^{r}}\left(2^{-r}\right)^{2}}=\sqrt{2^{-r}}
$$

Thus $\operatorname{Pr}[S] \leq 5^{-7 k / 2}$. We apply the union bound to bound the total probability of such a sequence S fooling the algorithm. The total number of sequences S is $2^{7 k}$, and this thus bounds the number of
sequences with at least $\frac{7 k}{2}$ "incorrect"s in them. Thus the total probability of the algorithm giving the wrong answer is at most

$$
5^{-7 k / 2} 2^{7 k}=\left(\frac{4}{5}\right)^{7 k / 2} \leq 2^{-k}
$$

and we have the desired result.

We now prove the lemma.

Proof of Lemma 2

We note that the first part of the lemma, that $\|\Pi P M\| \leq\|\Pi\|$ for any distribution Π is trivially true since both P and M have all their eigenvalues at most 1 . We write this out in greater detail.

For any vector x,

$$
\|x M\|=\sqrt{\sum_{i \notin B} x_{i}^{2}} \leq \sqrt{\sum_{i} x_{i}^{2}}=\|x\| .
$$

Thus $\|\Pi P M\| \leq\|\Pi P\|$.
Consider the eigenvalues $\left\{\lambda_{i}\right\}$ and eigenvectors $\left\{v_{i}\right\}$ of matrix P. Since P is stochastic, it has an eigenvalue $\lambda_{1}=1$ with corresponding eigenvector of $v_{1}=\left(\frac{1}{\sqrt{2^{r}}}, \frac{1}{\sqrt{2^{r}}}, \ldots, \frac{1}{\sqrt{2^{r}}}\right)$.

Recall that for a symmetric matrix, the eigenvectors form an orthonormal basis. Thus for any Π we can express it as

$$
\Pi=\sum \alpha_{i} v_{i}
$$

for some $\left\{\alpha_{i}\right\}$.
Thus we have

$$
\|\Pi P\|=\left\|\sum \alpha_{i} v_{i} P\right\|=\left\|\sum \alpha_{i} \lambda_{i} v_{i}\right\|
$$

where the last equality is by from the definition of eigenvectors. Since the eigenvectors are orthonormal, we express this norm as

$$
\left\|\sum \alpha_{i} \lambda_{i} v_{i}\right\|=\sqrt{\sum \alpha_{i}^{2} \lambda_{i}^{2}} \leq \sqrt{\sum \alpha_{i}^{2}}
$$

where this last inequality is because $\lambda_{i} \leq 1$ by assumption. Recall that we defined $\left\{\alpha_{i}\right\}$ by $\Pi=\sum \alpha_{i} v_{i}$, so since $\left\{v_{i}\right\}$ is an orthonormal basis we have

$$
\sqrt{\sum \alpha_{i}^{2}}=\|\Pi\|
$$

from which we conclude that $\|\Pi P M\| \leq\|\Pi\|$, as desired.
We now turn to the second part of the lemma, that $\|\Pi P N\| \leq \frac{1}{5}\|\Pi\|$. Similar to the above analysis, we have

$$
\|\Pi P N\|=\left\|\sum \alpha_{i} v_{i} P N\right\|=\left\|\sum \alpha_{i} \lambda_{i} v_{i} N\right\| \leq\left\|\alpha_{1} \lambda_{1} v_{1} N\right\|+\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i} N\right\|
$$

where the last inequality is by the triangle inequality. We bound each of these terms separately.
Consider the first term, $\left\|\alpha_{1} \lambda_{1} v_{1} N\right\|$. Since $\left\|\left\{\alpha_{i}\right\}\right\|=\|\Pi\|$ we have $\alpha_{1} \leq\|\Pi\|$. From above we have that $\lambda_{1}=1$ and $v_{1}=\left(\frac{1}{\sqrt{2^{r}}}, \frac{1}{\sqrt{2^{r}}}, \ldots, \frac{1}{\sqrt{2^{r}}}\right)$. Since N has a one on its diagonal for each $R \in B$ we have

$$
\left\|\alpha_{1} \lambda_{1} v_{1} N\right\| \leq\|\Pi\| \cdot\left\|v_{1} N\right\|=\|\Pi\| \sqrt{\sum_{i \in B} 2^{-r}} \leq\|\Pi\| \sqrt{\frac{1}{100}}=\frac{\|\Pi\|}{10}
$$

We now bound the second term: $\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i} N\right\|$. Since N is a diagonal matrix, each of whose entries is at most 1 , we have $\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i} N\right\| \leq\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i}\right\|$. Since the vectors $\left\{v_{i}\right\}$ form an orthonormal
basis, we have $\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i}\right\|=\sqrt{\sum_{i=2}^{2^{r}} \alpha_{i}^{2} \lambda_{i}^{2}}$. Since by hypothesis all the eigenvalues of P except the first have magnitude at most $\frac{1}{10}$, we have

$$
\sqrt{\sum_{i=2}^{2^{r}} \alpha_{i}^{2} \lambda_{i}^{2}} \leq \frac{1}{10} \sqrt{\sum_{i=2}^{2^{r}} \alpha_{i}^{2}} \leq \frac{\|\Pi\|}{10}
$$

our desired bound.
Summing these two bounds, we conclude $\|\Pi P N\| \leq \frac{\|\Pi\|}{5}$, as desired.

2 Derandomizing

We have just seen a technique for reducing the randomness needed for an algorithm. We ask now: what techniques might completely eliminate randomness from an algorithm?

The most basic such technique is the enumeration technique, which is just:

1. Given an algorithm A that uses r uniformly chosen random bits and succeeds with probability more than $\frac{1}{2}$,
2. Run $A 2^{r}$ times for every possible r-bit string R.
3. Output the majority answer

Clearly the resulting algorithm uses no randomness, and outputs the correct answer. However, its running time is 2^{r} times longer than A, which might be prohibitive.

We sketch an alternative that is applicable when A uses its random bits in a very particular way.
Recall:
Definition 3 (Independent) $R_{1}, R_{2}, \ldots, R_{n} \in T$ are independent if for all $b_{1}, b_{2}, \ldots b_{n} \in T^{n}$, $\operatorname{Pr}\left[R_{1} R_{2} \ldots R_{n}=b_{1} b_{2} \ldots b_{n}\right]=|T|^{-n}$. Values chosen uniformly at random are independent.

Often, this is more than we need, and pairwise independence is sufficient.
Definition 4 (Pairwise independent) $R_{1}, R_{2}, \ldots, R_{n} \in T$ are pairwise independent if for all $i \neq$ $j \in[1, n]$, for all $b_{i}, b_{j} \in T^{2}, \operatorname{Pr}\left[R_{i} R_{j}=b_{i} b_{j}\right]=|T|^{-2}$.

Intuitively this means that any pair of bits of $R_{i}, R_{j}, i \neq j$ will appear uniformly random. This notion may be extended to larger subsets of variables.

Definition 5 (k-wise independent) $R_{1}, R_{2}, \ldots, R_{n} \in T$ are \mathbf{k}-wise independent if for all $i_{1}<$ $i_{2}<\ldots i_{k} \in[1, n]$ and $b_{i_{1}}, b_{i_{2}}, \ldots b_{i_{k}} \in T^{n}, \operatorname{Pr}\left[R_{i_{1}} R_{i_{2}} \ldots R_{i_{k}}=b_{i_{1}} b_{i_{2}} \ldots b_{i_{k}}\right]=|T|^{-k}$.

As an example of a pairwise random distribution of 3 -bit strings, consider the uniform distribution over the strings $\{000,011,101,110\}$, and note that for any pair of bits, all four possibilities appear exactly once. Also note that the 3rd bit is the exclusive-or of the first two.

Suppose we have an algorithm A that uses r random bits, but only requires pairwise independence, instead of full independence. Further, suppose we have a generator G that, when given $m \ll r$ fully random bits outputs r pairwise random bits. Then we have the following procedure:

For each of the m-bit strings M, run the generator on M and let $R=G(M)$. Then run A with R as the random bits. Output the majority answer that these runs of A return.

We note that since A only requires pairwise independent bits, the above procedure - a trivial modification of the enumeration technique above - will output the correct answer, and require time only 2^{m} more than the time taken by A and G.

This approach relies on two facts which we will see in later lectures:

- A variety of algorithms do not in fact require "complete" independence, and only require pairwise independence, or other weaker notions of independence.
- There exist very efficient generators for producing pairwise, 3-wise, etc. independent strings from much shorter (polylogarithmic) fully independent strings.

