6.895 Randomness and Computation

April 10, 2006

Lecture 16

Lecturer: Ronitt Rubinfeld

1 Reducing the randomness of repeated runs

Assume we have a randomized algorithm A using an r bit random string R that approximates a function f with error $\frac{1}{100}$, namely, $Pr_R[A(x, R) \neq f(x)] \leq \frac{1}{100}$. To improve the error bound, we run A repeatedly and take the majority output. However, if we were to do this naively, then running A k times would take rk random bits; here we show how to accomplish this using only r + O(k) random bits.

The construction involves the following: we consider a graph G on 2^r nodes of a special form; we wish to simulate drawing k random vertices from the graph using less than rk bits of randomness; we accomplish this via a random walk on G.

Specifically, let G have the following properties:

- G is d-regular for some fixed d, i.e., every vertex of G has degree d.
- Let P be the transition matrix for a random walk of G; we require P be symmetric, and that λ_2 , the second largest eigenvalue of P, have magnitude at most $\frac{1}{10}$.

We define the following algorithm:

- 1. Pick a random start node $R \in \{0, 1\}^r$.
- 2. Repeat the following 7k times:
 - (a) Let R be a random neighbor of the old R
 - (b) Run A(x) with R as the random bits
- 3. Output the majority answer

We note that each of the 7k iterations requires choosing one of the d neighbors of the old R, and thus requires $\log d$ bits of randomness. Thus the above algorithm requires $r + 7k \log d = r + O(k)$ random bits, since we take d to be a constant. We note that this is significantly less than the O(rk) bits of randomness required by the naive algorithm.

We prove the following:

Theorem 1 Under the above assumptions, the above algorithm will output f(x) with error at most 2^{-k} .

To help our analysis of the above theorem, we define the set B, the "bad guys" as follows for some fixed x:

$$B = \{ R | A_R(x) \text{ is incorrect} \},\$$

namely the set of R for which $A_R(x) \neq f(x)$. We note that by definition of A, $|B| < 2^r/100$.

We next define two diagonal matrices N, M of size $2^r \times 2^r$. Let N have a 1 on the diagonal entry (R, R) for each string $R \in B$, and zeros everywhere else. Let M have a 1 on the diagonal entry (R, R) for each string $R \notin B$, i.e., M = I - N.

For a vector v let |v| denote the L_1 norm of v, namely $\sum_i |v_i|$, and let ||v|| denote the L_2 norm of v, namely $\sqrt{\sum_i v_i^2}$.

Consider the following constructions. Let p be a probability distribution on the strings of length r. Then

$$|pN| = \Pr_{R \leftarrow p}[R \text{ is bad}].$$

Similarly we have

$$|pPN| = \Pr_{R \leftarrow p}[$$
start at p , take one step according to P , and end up in a bad $R]$,

and

$$pPNPN| = \Pr_{R \leftarrow p}[$$
start at p , take two steps according to P , and end up in two bad nodes].

In general, given a "correctness path" S, namely a sequence of "correct" or "incorrect" of length 7k, if we let

$$Q_i = \begin{cases} M \text{ if } S_i = \text{``correct''} \\ N \text{ if } S_i = \text{``incorrect''} \end{cases}$$

then the probability that our path through the graph will follow the "correctness path" S is

$$Pr[S] = |p(PQ_1)(PQ_2) \cdot \dots \cdot (PQ_{7k})|.$$

We state a lemma that will let us prove our theorem; we prove the lemma later.

Lemma 2 For all distributions Π , and P, N, M as above

- 1. $||\Pi PM|| \le ||\Pi||$
- 2. $||\Pi PN|| \le \frac{1}{5} ||\Pi||$

We now prove the main theorem.

Proof of Theorem 1 Consider an execution of the above algorithm. If fewer than $\frac{7k}{2}$ of the runs of A have randomness $R \in B$ then a majority of the runs will output f(x) and the algorithm will output f(x) correctly. We bound the probability that this does not occur.

Consider a correctness path S which contains more than $\frac{7k}{2}$ "incorrect"s. From above we have that

$$Pr[S] = |p(PQ_1)(PQ_2) \cdot \dots \cdot (PQ_{7k})|.$$

We have from the Cauchy-Schwarz inequality that for any vector v of length 2^r

$$|v| = v \cdot (1, 1, ..., 1) \le ||v|| \cdot ||(1, 1, ..., 1)|| = \sqrt{2^r} ||v||.$$

Thus we have

$$Pr[S] \le \sqrt{2^r} ||p(PQ_1)(PQ_2) \cdot \dots \cdot (PQ_{7k})||.$$

At this point, we invoke Lemma 2 7k times to successively remove the terms (PQ_i) from the above expression. We note that at least $\frac{7k}{2}$ times we can invoke case two of the lemma. We thus have the bound

$$\Pr[S] \le \sqrt{2^r} ||p|| \left(\frac{1}{5}\right)^{7k/2}$$

We note that the algorithm specified that the initial R be drawn randomly, and hence p is uniform. By explicit computation we may check that in this case

$$||p|| = \sqrt{\sum_{i=1}^{2^{r}} (2^{-r})^{2}} = \sqrt{2^{-r}}.$$

Thus $Pr[S] \leq 5^{-7k/2}$. We apply the union bound to bound the total probability of such a sequence S fooling the algorithm. The total number of sequences S is 2^{7k} , and this thus bounds the number of

sequences with at least $\frac{7k}{2}$ "incorrect"s in them. Thus the total probability of the algorithm giving the wrong answer is at most

$$5^{-7k/2}2^{7k} = \left(\frac{4}{5}\right)^{7k/2} \le 2^{-k},$$

and we have the desired result.

We now prove the lemma.

Proof of Lemma 2

We note that the first part of the lemma, that $||\Pi PM|| \leq ||\Pi||$ for any distribution Π is trivially true since both P and M have all their eigenvalues at most 1. We write this out in greater detail.

For any vector x,

$$||xM|| = \sqrt{\sum_{i \notin B} x_i^2} \le \sqrt{\sum_i x_i^2} = ||x||$$

Thus $||\Pi PM|| \leq ||\Pi P||$.

Consider the eigenvalues $\{\lambda_i\}$ and eigenvectors $\{v_i\}$ of matrix P. Since P is stochastic, it has an eigenvalue $\lambda_1 = 1$ with corresponding eigenvector of $v_1 = (\frac{1}{\sqrt{2^r}}, \frac{1}{\sqrt{2^r}}, \dots, \frac{1}{\sqrt{2^r}})$. Recall that for a symmetric matrix, the eigenvectors form an orthonormal basis. Thus for any Π we

can express it as

$$\Pi = \sum \alpha_i v_i$$

for some $\{\alpha_i\}$.

Thus we have

$$||\Pi P|| = ||\sum \alpha_i v_i P|| = ||\sum \alpha_i \lambda_i v_i||,$$

where the last equality is by from the definition of eigenvectors. Since the eigenvectors are orthonormal, we express this norm as

$$||\sum \alpha_i \lambda_i v_i|| = \sqrt{\sum \alpha_i^2 \lambda_i^2} \le \sqrt{\sum \alpha_i^2},$$

where this last inequality is because $\lambda_i \leq 1$ by assumption. Recall that we defined $\{\alpha_i\}$ by $\Pi = \sum \alpha_i v_i$, so since $\{v_i\}$ is an orthonormal basis we have

$$\sqrt{\sum \alpha_i^2} = ||\Pi||,$$

from which we conclude that $||\Pi PM|| \leq ||\Pi||$, as desired.

We now turn to the second part of the lemma, that $||\Pi PN|| \leq \frac{1}{5} ||\Pi||$. Similar to the above analysis, we have n^{T}

$$||\Pi PN|| = ||\sum \alpha_i v_i PN|| = ||\sum \alpha_i \lambda_i v_i N|| \le ||\alpha_1 \lambda_1 v_1 N|| + ||\sum_{i=2}^{2} \alpha_i \lambda_i v_i N||,$$

where the last inequality is by the triangle inequality. We bound each of these terms separately.

Consider the first term, $||\alpha_1\lambda_1v_1N||$. Since $||\{\alpha_i\}|| = ||\Pi||$ we have $\alpha_1 \leq ||\Pi||$. From above we have that $\lambda_1 = 1$ and $v_1 = (\frac{1}{\sqrt{2^r}}, \frac{1}{\sqrt{2^r}}, ..., \frac{1}{\sqrt{2^r}})$. Since N has a one on its diagonal for each $R \in B$ we have

$$||\alpha_1\lambda_1v_1N|| \le ||\Pi|| \cdot ||v_1N|| = ||\Pi|| \sqrt{\sum_{i \in B} 2^{-r}} \le ||\Pi|| \sqrt{\frac{1}{100}} = \frac{||\Pi||}{10}$$

We now bound the second term: $||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i N||$. Since N is a diagonal matrix, each of whose entries is at most 1, we have $||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i N|| \le ||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i||$. Since the vectors $\{v_i\}$ form an orthonormal

basis, we have $||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i|| = \sqrt{\sum_{i=2}^{2^r} \alpha_i^2 \lambda_i^2}$. Since by hypothesis all the eigenvalues of P except the first have magnitude at most $\frac{1}{10}$, we have

$$\sqrt{\sum_{i=2}^{2^r} \alpha_i^2 \lambda_i^2} \leq \frac{1}{10} \sqrt{\sum_{i=2}^{2^r} \alpha_i^2} \leq \frac{||\Pi||}{10},$$

our desired bound.

Summing these two bounds, we conclude $||\Pi PN|| \leq \frac{||\Pi||}{5}$, as desired.

2 Derandomizing

We have just seen a technique for *reducing* the randomness needed for an algorithm. We ask now: what techniques might completely *eliminate* randomness from an algorithm?

The most basic such technique is the *enumeration* technique, which is just:

- 1. Given an algorithm A that uses r uniformly chosen random bits and succeeds with probability more than $\frac{1}{2}$,
- 2. Run $A 2^r$ times for every possible *r*-bit string *R*.
- 3. Output the majority answer

Clearly the resulting algorithm uses no randomness, and outputs the correct answer. However, its running time is 2^r times longer than A, which might be prohibitive.

We sketch an alternative that is applicable when A uses its random bits in a very particular way. Recall:

Definition 3 (Independent) $R_1, R_2, \ldots, R_n \in T$ are independent if for all $b_1, b_2, \ldots, b_n \in T^n$, $\Pr[R_1R_2 \ldots R_n = b_1b_2 \ldots b_n] = |T|^{-n}$. Values chosen uniformly at random are independent.

Often, this is more than we need, and *pairwise independence* is sufficient.

Definition 4 (Pairwise independent) $R_1, R_2, \ldots, R_n \in T$ are pairwise independent if for all $i \neq j \in [1, n]$, for all $b_i, b_j \in T^2$, $\Pr[R_iR_j = b_ib_j] = |T|^{-2}$.

Intuitively this means that any pair of bits of $R_i, R_j, i \neq j$ will appear uniformly random. This notion may be extended to larger subsets of variables.

Definition 5 (k-wise independent) $R_1, R_2, \ldots, R_n \in T$ are k-wise independent if for all $i_1 < i_2 < \ldots i_k \in [1, n]$ and $b_{i_1}, b_{i_2}, \ldots b_{i_k} \in T^n$, $\Pr[R_{i_1}R_{i_2} \ldots R_{i_k} = b_{i_1}b_{i_2} \ldots b_{i_k}] = |T|^{-k}$.

As an example of a pairwise random distribution of 3-bit strings, consider the uniform distribution over the strings $\{000, 011, 101, 110\}$, and note that for any pair of bits, all four possibilities appear exactly once. Also note that the 3rd bit is the exclusive-or of the first two.

Suppose we have an algorithm A that uses r random bits, but only requires pairwise independence, instead of full independence. Further, suppose we have a generator G that, when given $m \ll r$ fully random bits outputs r pairwise random bits. Then we have the following procedure:

For each of the *m*-bit strings M, run the generator on M and let R = G(M). Then run A with R as the random bits. Output the majority answer that these runs of A return.

We note that since A only requires pairwise independent bits, the above procedure – a trivial modification of the enumeration technique above – will output the correct answer, and require time only 2^m more than the time taken by A and G.

This approach relies on two facts which we will see in later lectures:

- A variety of algorithms do not in fact require "complete" independence, and only require pairwise independence, or other weaker notions of independence.
- There exist very efficient generators for producing pairwise, 3-wise, etc. independent strings from much shorter (polylogarithmic) fully independent strings.