
6.895 Randomness and Computation April 5, 2006

Lecture 15
Lecturer: Ronitt Rubinfeld Scribe: Jinwoo Shin

Today, we will review some linear algebra facts which need for us, and show how a rapidly mixing graph
helps randomness.

1 Linear Algebra Review

Definition 1 ν is an eigenvector of A with the corresponding eigenvalue λ if νA = λν.

Definition 2 The L2-norm of a vector v = (v1, v2, . . . , vn) is defined as
√∑n

i=1 vi
2.

Definition 3 The vectors v(1), . . . , v(n) are orthonormal if

v(i) · v(j) =
{ 1 if i=j

0 otherwise

where the inner product v · w is defined as
∑

vi · wi.

For example, the transition matrix P of the d-regular undirected graph G has an uniform stationary
distribution, because P is doubly stochastic. Therefore, P has an uniform eigenvector (1

n , . . . , 1
n) with

the corresponding eigenvalue 1. Also, because the scalar producted vector to the eigenvector is still
an eigenvector, (1√

n
, . . . , 1√

n
) is an eigenvector which has 1 as the L2-norm. The following theorem is

important in analyzing our algorithm.

Theorem 4 If the transition matrix P is a real and symmetric matrix, there exist eigenvectors v(1), . . . , v(n)

which form orthonormal basis with corresponding eigenvalues 1 = λ1 ≥ |λ2| ≥ . . . ≥ |λn|.

Let’s assume P has eigenvectors v(1), . . . , v(n) with corresponding eigenvalues λ1, . . . , λn. Then we can
observe the following facts.

Fact 5 • αP has eigenvectors v(1), . . . , v(n) with corresponding eigenvalues αλ1, . . . , αλn.

• P + I has eigenvectors v(1), . . . , v(n) with corresponding eigenvalues λ1 + 1, . . . , λn + 1.

• P k has eigenvectors v(1), . . . , v(n) with corresponding eigenvalues λ1
k, . . . , λn

k.

Also, if v(1), . . . , v(n) form orthonormal basis, any vector w can be expressed the linear combination of
v(i)’s (w =

∑
αiv

(i)) and the L2-norm of w is
√∑

αi
2.

2 Mixing Time and Eigenvalues

Under the observation of the previous section, we can prove the following main theorem which tells
about the mixing time of random walks.

Theorem 6 If P is a transition matrix of an undirected, non-bipartitie, d-regular and connected graph,
and π0,π̄ are the starting distribution and the stationary distribution respectively, then

‖ π0P
t − π̄ ‖≤ |λ2|t

1

Proof From the theorem of the previous section, P has eigenvectors v(1), . . . , v(n) which form or-
thonormal basis with corresponding eigenvalues 1 = λ1 ≥ |λ2| ≥ . . . ≥ |λn|. Hence, π0 can be expressed
as

∑n
i=1 αiv

(i), and π0P
t =

∑n
i=1 αiv

(i)P t =
∑n

i=1 αiλi
tv(i). Also,

‖ π0P
t − α1v

(1) ‖ = ‖
n∑

i=2

αiλi
tv(i) ‖

=

√√√√ n∑
i=2

αi
2λi

2t

≤ |λ2|t ·

√√√√ n∑
i=2

αi
2

≤ |λ2|t· ‖ π0 ‖
≤ |λ2|t

The last inequality holds because the L1-norm of π0 is 1 and its L2-norm is less than its L1-norm. We
can check α1v

(1) = π̄ by setting π0 = π̄ in the above result and letting t go to ∞. Therefore, our result
follows.

3 Reducing Randomness Requirements

Suppose probabilistic polynomial algorithm A outputs a correct value of a function f with high prob-
ability. Let f be a binary function from {0, 1}n to {0, 1} and assume A tosses r coins such that
∀x,Pr[A(x) 6= f(x)] ≤ 1

100 . For getting a better error-ratio (up to 2−k), our first algorithm goes
like this.

1. Repeat O(k) times
1.1. Pick a random s = (s1, . . . , sr) ∈ {0, 1}r.

1.2. Run A(x) with coins s1, . . . , sr.

2. Output the majority answer of the step 1.

This algorithm is just running O(k) copies of A and getting the majority answer. We can analyze using
the Chernoff bounds why this gives 2−k as an error-ratio as we did in the first problem of the first
homework. As you check easily, our first algorithm needs O(kr) random bits. Our goal is construction
an new algorithm which needs less random bits. This is possible if we use a random walk in a rapidly
mixing graph. For our purpose, let’s assume there exists an undirected, non-bipartitie, d-regular and
connected graph of 2r nodes which has a transition matrix P such that the absolute value of its second
eigenvalue(λ2) is less than 1

10 . From the theorem in the previous section, we can see that λ2 guarantees
the mixing time of the random walk in the graph. Our second algorithm goes like this.

1. Pick a random node s = (s1, . . . , sr) ∈ {0, 1}r.

2. Repeat 7k times
2.1. Let a new s be a random neighbor of an old s.

2.2. Run A(x) with coins s1, . . . , sr.

3. Output the majority answer of the step 2.

We can easily check that our second algorithm uses r + 7k · dlog de = r + O(k) random bits.(Assume
d is constant.) Obviously, it is better than O(kr) random bits in our first algorithm. Now define some

2

notions for analyzing our second algorithm.(Our analysis is for knowing why our second algorithm gives
2−k as an error-ratio.)

Definition 1 • Let B be {s|A(x) 6= f(x) if A runs with coins s}.

• Let N be a diagonal matrix such that Nii = 1 if i ∈ B.

• Let M be a diagonal matrix such that Mii = 1 if i /∈ B.

We can see that |B| ≤ 1
100 . Call s ’bad’ if s ∈ B, and ’good’ otherwise. Then, if ρ is a probability distribu-

tion, |ρN | = Pr[s is bad] and |ρM | = Pr[s is good]. Let S be the sequence of ”good/bad”(”correct/incorrect”)
of length 7k, and define Qi as follows,

Qi =
{

M if Si is ’correct’.
N if Si is ’incorrect’.

Then, Pr[S] = |ρPQ1 . . . PQ7k| holds. (This is not a trivial fact.) Using these notations, we will show
why our second algorithm gives a lower error-ratio (2−k) in the next lecture.

3

