Lecture 15

Lecturer: Ronitt Rubinfeld Scribe: Jinwoo Shin

Today, we will review some linear algebra facts which need for us, and show how a rapidly mixing graph helps randomness.

1 Linear Algebra Review

Definition 1ν is an eigenvector of A with the corresponding eigenvalue λ if $\nu A=\lambda \nu$.
Definition 2 The L_{2}-norm of a vector $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is defined as $\sqrt{\sum_{i=1}^{n} v_{i}{ }^{2}}$.
Definition 3 The vectors $v^{(1)}, \ldots, v^{(n)}$ are orthonormal if

$$
v^{(i)} \cdot v^{(j)}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

where the inner product $v \cdot w$ is defined as $\sum v_{i} \cdot w_{i}$.
For example, the transition matrix P of the d-regular undirected graph G has an uniform stationary distribution, because P is doubly stochastic. Therefore, P has an uniform eigenvector $\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ with the corresponding eigenvalue 1. Also, because the scalar producted vector to the eigenvector is still an eigenvector, $\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$ is an eigenvector which has 1 as the L_{2}-norm. The following theorem is important in analyzing our algorithm.

Theorem 4 If the transition matrix P is a real and symmetric matrix, there exist eigenvectors $v^{(1)}, \ldots, v^{(n)}$ which form orthonormal basis with corresponding eigenvalues $1=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$.
Let's assume P has eigenvectors $v^{(1)}, \ldots, v^{(n)}$ with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then we can observe the following facts.

Fact 5 - αP has eigenvectors $v^{(1)}, \ldots, v^{(n)}$ with corresponding eigenvalues $\alpha \lambda_{1}, \ldots, \alpha \lambda_{n}$.

- $P+I$ has eigenvectors $v^{(1)}, \ldots, v^{(n)}$ with corresponding eigenvalues $\lambda_{1}+1, \ldots, \lambda_{n}+1$.
- P^{k} has eigenvectors $v^{(1)}, \ldots, v^{(n)}$ with corresponding eigenvalues $\lambda_{1}{ }^{k}, \ldots, \lambda_{n}{ }^{k}$.

Also, if $v^{(1)}, \ldots, v^{(n)}$ form orthonormal basis, any vector w can be expressed the linear combination of $v^{(i)}$'s $\left(w=\sum \alpha_{i} v^{(i)}\right)$ and the L_{2}-norm of w is $\sqrt{\sum \alpha_{i}{ }^{2}}$.

2 Mixing Time and Eigenvalues

Under the observation of the previous section, we can prove the following main theorem which tells about the mixing time of random walks.

Theorem 6 If P is a transition matrix of an undirected, non-bipartitie, d-regular and connected graph, and $\pi_{0}, \bar{\pi}$ are the starting distribution and the stationary distribution respectively, then

$$
\left\|\pi_{0} P^{t}-\bar{\pi}\right\| \leq\left|\lambda_{2}\right|^{t}
$$

Proof From the theorem of the previous section, P has eigenvectors $v^{(1)}, \ldots, v^{(n)}$ which form orthonormal basis with corresponding eigenvalues $1=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. Hence, π_{0} can be expressed as $\sum_{i=1}^{n} \alpha_{i} v^{(i)}$, and $\pi_{0} P^{t}=\sum_{i=1}^{n} \alpha_{i} v^{(i)} P^{t}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}{ }^{t} v^{(i)}$. Also,

$$
\begin{aligned}
\left\|\pi_{0} P^{t}-\alpha_{1} v^{(1)}\right\| & =\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i}{ }^{t} v^{(i)}\right\| \\
& =\sqrt{\sum_{i=2}^{n} \alpha_{i}{ }^{2} \lambda_{i}{ }^{2 t}} \\
& \leq\left|\lambda_{2}\right|^{t} \cdot \sqrt{\sum_{i=2}^{n} \alpha_{i}{ }^{2}} \\
& \leq\left|\lambda_{2}\right|^{t} \cdot\left\|\pi_{0}\right\| \\
& \leq\left|\lambda_{2}\right|^{t}
\end{aligned}
$$

The last inequality holds because the L_{1}-norm of π_{0} is 1 and its L_{2}-norm is less than its L_{1}-norm. We can check $\alpha_{1} v^{(1)}=\bar{\pi}$ by setting $\pi_{0}=\bar{\pi}$ in the above result and letting t go to ∞. Therefore, our result follows.

3 Reducing Randomness Requirements

Suppose probabilistic polynomial algorithm A outputs a correct value of a function f with high probability. Let f be a binary function from $\{0,1\}^{n}$ to $\{0,1\}$ and assume A tosses r coins such that $\forall x, \operatorname{Pr}[A(x) \neq f(x)] \leq \frac{1}{100}$. For getting a better error-ratio (up to 2^{-k}), our first algorithm goes like this.

1. Repeat $O(k)$ times

1.1. Pick a random $s=\left(s_{1}, \ldots, s_{r}\right) \in\{0,1\}^{r}$.
1.2. Run $A(x)$ with coins s_{1}, \ldots, s_{r}.
2. Output the majority answer of the step 1 .

This algorithm is just running $O(k)$ copies of A and getting the majority answer. We can analyze using the Chernoff bounds why this gives 2^{-k} as an error-ratio as we did in the first problem of the first homework. As you check easily, our first algorithm needs $O(k r)$ random bits. Our goal is construction an new algorithm which needs less random bits. This is possible if we use a random walk in a rapidly mixing graph. For our purpose, let's assume there exists an undirected, non-bipartitie, d-regular and connected graph of 2^{r} nodes which has a transition matrix P such that the absolute value of its second eigenvalue $\left(\lambda_{2}\right)$ is less than $\frac{1}{10}$. From the theorem in the previous section, we can see that λ_{2} guarantees the mixing time of the random walk in the graph. Our second algorithm goes like this.

1. Pick a random node $s=\left(s_{1}, \ldots, s_{r}\right) \in\{0,1\}^{r}$.
2. Repeat $7 k$ times
2.1. Let a new s be a random neighbor of an old s.
2.2. Run $A(x)$ with coins s_{1}, \ldots, s_{r}.
3. Output the majority answer of the step 2 .

We can easily check that our second algorithm uses $r+7 k \cdot\lceil\log d\rceil=r+O(k)$ random bits.(Assume d is constant.) Obviously, it is better than $O(k r)$ random bits in our first algorithm. Now define some
notions for analyzing our second algorithm.(Our analysis is for knowing why our second algorithm gives 2^{-k} as an error-ratio.)

Definition 1 - Let B be $\{s \mid A(x) \neq f(x)$ if A runs with coins $s\}$.

- Let N be a diagonal matrix such that $N_{i i}=1$ if $i \in B$.
- Let M be a diagonal matrix such that $M_{i i}=1$ if $i \notin B$.

We can see that $|B| \leq \frac{1}{100}$. Call s 'bad' if $s \in B$, and 'good' otherwise. Then, if ρ is a probability distribution, $|\rho N|=\operatorname{Pr}[s$ is bad $]$ and $|\rho M|=\operatorname{Pr}[s$ is good]. Let S be the sequence of "good/bad"("correct/incorrect") of length $7 k$, and define Q_{i} as follows,

$$
Q_{i}= \begin{cases}M & \text { if } S_{i} \text { is 'correct'. } \\ N & \text { if } S_{i} \text { is 'incorrect'. }\end{cases}
$$

Then, $\operatorname{Pr}[S]=\left|\rho P Q_{1} \ldots P Q_{7 k}\right|$ holds. (This is not a trivial fact.) Using these notations, we will show why our second algorithm gives a lower error-ratio $\left(2^{-k}\right)$ in the next lecture.

