6.895 Randomness and Computation April 5, 2006

Lecture 15
Lecturer: Ronitt Rubinfeld Scribe: Jinwoo Shin

Today, we will review some linear algebra facts which need for us, and show how a rapidly mixing graph
helps randomness.

1 Linear Algebra Review

Definition 1 v is an eigenvector of A with the corresponding eigenvalue X\ if vA = Av.
Definition 2 The Lo-norm of a vector v = (v1,vs,...,vy) is defined as />, v
Definition 3 The vectors vV, ... v are orthonormal if

U(i).vu):{l if i=j
0 otherwise

where the inner product v - w is defined as Y v; - w;.

For example, the transition matrix P of the d-regular undirected graph G has an uniform stationary
distribution, because P is doubly stochastic. Therefore, P has an uniform eigenvector (%, R %) with
the corresponding eigenvalue 1. Also, because the scalar producted vector to the eigenvector is still
an eigenvector, (ﬁ, cee ﬁ) is an eigenvector which has 1 as the Lo-norm. The following theorem is

important in analyzing our algorithm.

Theorem 4 If the transition matriz P is a real and symmetric matriz, there exist eigenvectors v, ... v
which form orthonormal basis with corresponding eigenvalues 1 = Ay > |Ao| > ... > |\l

Let’s assume P has eigenvectors vV, ... v(") with corresponding eigenvalues A1, ..., \,. Then we can
observe the following facts.

Fact 5 e aP has eigenvectors vV, ... v(™) with corresponding eigenvalues a1, ..., a\,.
e P+ I has eigenvectors vV, ... v™ with corresponding eigenvalues Ay +1,..., A\, + 1.
e P* has eigenvectors vV ... v™ with corresponding eigenvalues ME AR
Also, if v, ... v(™ form orthonormal basis, any vector w can be expressed the linear combination of

v@’s (w =3 a;v) and the Ly-norm of w is /3 a2

2 Mixing Time and Eigenvalues

Under the observation of the previous section, we can prove the following main theorem which tells
about the mixing time of random walks.

Theorem 6 If P is a transition matriz of an undirected, non-bipartitie, d-regular and connected graph,
and my, 7 are the starting distribution and the stationary distribution respectively, then

| mo P — 7 [|< [Aff



Proof From the theorem of the previous section, P has eigenvectors v(!), ... v(") which form or-
thonormal basis with corresponding eigenvalues 1 = Ay > |A2] > ... > |\,|. Hence, 7y can be expressed
as S0 aiv® and moPt =300 Pt =31\ o). Also,

K3

I moP" —aro® || = | Y aidifo® ||
1=2

IN

[Xa|" || 7o |
Aol

<
<

The last inequality holds because the Li-norm of 7y is 1 and its Lo-norm is less than its Li-norm. We
can check a;v!) = 7 by setting 79 = 7 in the above result and letting ¢ go to co. Therefore, our result
follows. W

3 Reducing Randomness Requirements

Suppose probabilistic polynomial algorithm A outputs a correct value of a function f with high prob-
ability. Let f be a binary function from {0,1}" to {0,1} and assume A tosses r coins such that
Va,Pr[A(z) # f(z)] < 145- For getting a better error-ratio (up to 27%), our first algorithm goes
like this.

1. Repeat O(k) times
1.1. Pick a random s = (s1,...,s.) € {0,1}".
1.2. Run A(x) with coins sq,..., S,

2. Output the majority answer of the step 1.

This algorithm is just running O(k) copies of A and getting the majority answer. We can analyze using
the Chernoff bounds why this gives 27% as an error-ratio as we did in the first problem of the first
homework. As you check easily, our first algorithm needs O(kr) random bits. Our goal is construction
an new algorithm which needs less random bits. This is possible if we use a random walk in a rapidly
mixing graph. For our purpose, let’s assume there exists an undirected, non-bipartitie, d-regular and
connected graph of 2" nodes which has a transition matrix P such that the absolute value of its second
eigenvalue(\z) is less than 1—10. From the theorem in the previous section, we can see that Ao guarantees
the mixing time of the random walk in the graph. Our second algorithm goes like this.

1. Pick a random node s = (s1,...,s,) € {0,1}".

2. Repeat 7k times

2.1. Let a new s be a random neighbor of an old s.
2.2. Run A(z) with coins sq,...,s,.

3. Output the majority answer of the step 2.

We can easily check that our second algorithm uses r + 7k - [logd]| = r + O(k) random bits.(Assume
d is constant.) Obviously, it is better than O(kr) random bits in our first algorithm. Now define some



notions for analyzing our second algorithm.(Our analysis is for knowing why our second algorithm gives
27" as an error-ratio.)

Definition 1 o Let B be {s|A(x) # f(x) if A runs with coins s}.
e Let N be a diagonal matrix such that Nij; =1 if 1 € B.
o Let M be a diagonal matriz such that M;; =1 if i ¢ B.

We can see that |B| < ﬁ. Call s ’bad’ if s € B, and 'good’ otherwise. Then, if p is a probability distribu-
tion, [pN| = Pr[sis bad] and |pM| = Pr[s is good]. Let S be the sequence of ”good/bad” (” correct /incorrect”)
of length 7k, and define @Q; as follows,

0, = M if S; is 'correct’.
"7l N if S; is ’incorrect’.

Then, Pr[S] = [pPQ1 ... PQ7x| holds. (This is not a trivial fact.) Using these notations, we will show
why our second algorithm gives a lower error-ratio (27%) in the next lecture.



