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Lecture 13

Lecturer: Ronitt Rubinfeld Scribe: Punyashloka Biswal

1 Conductance

For a graph to have a small mixing time, we would like a random walk that starts within some small
subset of nodes to quickly have a non-zero probability of being anywhere on the graph. To capture
this idea, we define the notion of conductance as follows:

Definition 1 (Conductance, first attempt) Let G = (V, E) be an undirected graph and S ⊂ V
be a set of nodes. Then the conductance Φ(S, S̄) is defined as

Φ(S, S̄) =
|E|S,S̄

|E|S
,

where

S̄ = V − S,

ES = {(u, v) ∈ E | u, v ∈ S} and

ES,S̄ = {(u, v) ∈ E | u ∈ S, v ∈ S̄}.

The conductance of the graph ΦG is defined as

ΦG = min
|S|≤|V |/2

Φ(S, S̄).

To see why a graph with large conductance should have a small mixing time, let S be the set
of ‘overweight’ nodes v such that πt

v > π̃v. Since G has a large conductance, there are many ways
for a random walker on S to cross over to S̄ and reduce the probability gap. In the extreme case
where πt

v = 1/|S| for v ∈ S and zero otherwise, then the probability of crossing the cut is precisely
the conductance Φ(S, S̄).

The definition of ΦG restricts the mimimum to subsets S of at most |V |/2 vertices to make sure
that our results are not skewed by overly large sets. For example, consider S = V − {v} when G
is d-regular: clearly, Φ(S, {v}) = d/[(n − 1)d] = 1/(n − 1), which is very small regardless of the
large-scale properties of the graph. To get around this problem, we only compute conductances
between subsets that form a constant fraction of the entire graph (the choice of the value 1/2 is
arbitrary).

In order to avoid this unnatural restriction, as well as to make the conductance symmetric with
respect to cuts (so that Φ(S, S̄) = Φ(S̄, S)), we shall henceforth use a somewhat different definition:

Definition 1′ (Conductance) Let G = (V, E) and S be defined as in definition 1. Then the

conductance of the cut (S, S̄) is defined as

ΦS = ΦS̄ =

∣

∣ES,S̄

∣

∣|E|
|ES ||ES̄ |

and the graph conductance ΦG is defined as the minimum conductance over all cuts.

Without loss of generality, suppose |ES | ≤ |ES̄ |. But E = ES ∪ ES̄ , so that |E|/|ES̄ | ≤ 2. This
implies that the new definition differs from the old one by a factor of at most 2.
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Definition 2 (L2-Distance) The L2-distance between two distributions D1 and D2 over a discrete

set X is denoted by ‖D1 −D2‖2 and is defined as

‖D1 −D2‖2 =

√

∑

x∈X

(

D1(x)−D2(x)
)2

We are usually interested in the L1-distance between probability distributions, and the following
lemma relates the two notions of distance:

Lemma 3 Let D1 and D2 be two distributions. Then

‖D1 −D2‖2 ≤ ‖D1 −D2‖1 ≤
√

n‖D1 −D2‖2

Proof Write D = D1 −D2 and D(x) = D1(x) −D2(x). Then, on one hand,

‖D‖2
1

=
(

∑

|D(x)|
)2

=
∑

D(x)2 +
∑

x 6=y

|D(x)||D(y)| ≥
∑

D(x)2 = ‖D‖2
2
.

On the other hand, if we apply Chebychev’s sum inequality to the numbers |D(x1)|, |D(x2)|, . . . , |D(xn)|
and 1, 1, . . . , 1, then we get

(

∑

x∈X

|D(x)|
)2

≤ n
∑

x∈X

|D(x)|2,

or ‖D‖2
1
≤ n‖D‖2

2
. Taking the square roots of these two inequalities, we have the result.

The following theorem (which we shall prove in a subsequent lecture) gives a precise relationship
between the conductance of a graph and the mixing time:

Theorem 4 Let P be the transition matrix corresponding to a random walk on a graph G, and

define d(t) = ‖P tπ0 − π̃‖22 to be the square of the L2-distance between the distribution after t steps

and the stationary distribution. Then

d(t) ≤
[

1− Φ2
G

4

]t

d(0)

Notice that d(0) ≤ 2 for all starting distributions π0, because

‖π0 − π̃‖2 ≤ ‖π0‖2 + ‖π̃‖2 ≤ ‖π0‖1 + ‖π̃‖1 = 2.

Therefore, if we set t = (4/Φ2
G) ln(2n/ε2), then

d(t) ≤
[

1− Φ2
G

4

]
4

Φ2

G

ln 2n

ε2

· 2 ≤ ε2

n

by theorem 4. We can now apply lemma 3 to translate this into an L1 bound:

∥

∥P tπ0 − π̃
∥

∥

1
≤
√

n
∥

∥P tπ0 − π̃1

∥

∥

2
=
√

nd(t) ≤ ε.

This formalizes our earlier intuition that a graph with a large conductance mixes fast. More specif-
ically, it suffices to show that ΦG = Ω(1/ logn) to prove rapid mixing. In some cases, we can even
show a constant lower bound on the conductance!
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We shall be particularly interested in graphs that are d-regular for some d. In this case, the
conductance is given by

ΦG = min
S

∣

∣ES,S̄

∣

∣|E|
|ES ||ES̄ |

= min
S

∣

∣ES,S̄

∣

∣d|V |
d|S|d

∣

∣S̄
∣

∣

=
1

d

(

min
S

∣

∣ES,S̄

∣

∣|V |
|S|
∣

∣S̄
∣

∣

)

.

The parenthetized term above has a special name: it is the edge magnification µ:

µ = min
S

∣

∣ES,S̄

∣

∣|V |
|S|
∣

∣S̄
∣

∣

,

and for d-regular graphs, ΦG = µ/d.
One important technique for lower-bounding the conductance of a graph is the method of canon-

ical paths, which we have already used for the hypercube. The idea is to carefully choose a set of
paths between every pair of nodes, such that no edge in the graph has too many paths going through
it:

Definition 5 (Congestion) Let P = {puv} be a set of canonical paths for a graph G = (V, E),
where puv connects vertex u to vertex v. Then the congestion of an edge e ∈ E is defined as the

number of paths p ∈ P that use e. Also, the congestion of G is defined as the maximum congestion

over all edges e.

The congestion of a graph can be as large as O(n2)—consider, for example, the line on n nodes—
but for many graphs, it is possible to find a set of canonical paths that makes the congestion small.
For a graph of low conductance, however, there are bottleneck edges which must be congested by
any chosen set of paths.

Claim 6 If G has congestion αn with respect to some set of canonical paths, then µ ≥ 1/α.

Proof Fix a cut (S, S̄) of G. Then the number of canonical paths puv connecting u ∈ S to v ∈ S̄ is
|S|
∣

∣S̄
∣

∣. Each of these paths has to use at least one edge e in the cut, i.e., e ∈ ES,S̄ . By the definition
of congestion, we have

# of paths crossing cut ≤
∑

e∈ES,S̄

(# of paths crossing e)

≤
∣

∣ES,S̄

∣

∣max
ES,S̄

(# of paths crossing e)

|S|
∣

∣S̄
∣

∣ ≤
∣

∣ES,S̄

∣

∣αn
∣

∣ES,S̄

∣

∣n

|S|
∣

∣S̄
∣

∣

≥ 1

α

for all cuts (S, S̄). The edge expansion µ is the minimum value of the left hand side of the above
inequality, so µ ≥ 1/α.

Recall that in lecture 7 (weakly learning monotone functions), we studied the conductance of the
hypercube on n = 2N nodes using canonical paths. We chose paths which had the property that an
edge on a path, along with N additional bits (or a complementary point), completely determined the
start and end node (and therefore the path). This property, allowed us to argue that no more than n
distinct paths could pass through a given edge, bounding the congestion and hence the conductance.
We will do something similar for the problem of uniformly generating graph matchings, which we
shall address next.
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2 Uniformly Generating Matchings

Given a bipartite graph G = (V, E) where m = |E|, we wish to generate a matching of the vertices
of the graph uniformly at random.1 We do this by constructing a Markov chain with states corre-
sponding to matchings and in which transitions correspond to small local changes in the matching.
Given an initial matching (state) M , the possible transitions are defined as follows:

Pick an edge e ∈R E
if e ∈M ,

then set M ←M − {e}
else if M ∪ {e} is a matching

then set M ←M ∪ {e}
else

stay put

The resulting Markov chainM = (S, T ) has the following properties:

• It is undirected, because every transition is reversible.

• It is connected : to get from matching M1 to M2: Drop all the edges in M1 to get to the empty
matching, and then build up M2 one edge at a time. In fact, this shows that the diameter of
the chain is at most 2|M | ≤ 2|V |/2 = |V |, where M is a maximal matching.

• It is non-bipartite, because it has at least one self-loop (for example, consider starting from
any maximal matching and picking an edge not in the matching).

• It is regular with degree m, because for any initial matching, we can consider any of the m
edges of G to add or remove.

In order to define the canonical paths on this Markov chain, we note that the symmetric difference
M1 ⊕M2 of two matchings consists of a set of alternating paths and cycles. We fix an arbitrary
ordering on the edges of G, a start edge for every possible path or cycle, and a traversal direction
for every cycle.

To convert M1 into M2, we consider the edges in M1 ⊕M2 in the order defined above. When
we encounter an edge e, we process the entire alternating path or cycle that contains it (as shown
below). We keep doing this until there are no more paths or cycles to process.

• To process a path e1e2 . . . ek, we have to delete an edge before we can add a new one. Assume
e1 and ek both must be added. If not, we can just delete them before running the algorithm.
So k is odd. The algorithm is:

i← 1
while i 6= k do

Delete ei+1

Insert ei

i← i + 2
Insert ek

• To process a cycle e1e2 . . . eke1, we need to be careful, because we must delete two edges in
the cycle before any insertions are possible. Assume e1 must be deleted. Note that k must be
even. The algorithm runs as follows:

1It is possible to generate maximal and/or perfect matchings, but here we address the simpler problem of generating
arbitrary matchings.
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Delete e1

i← 2
while i 6= k do

Delete ei+1

Insert ei

i← i + 2
Insert e1

Given a transition e ∈ T , we need to find a way to bound its congestion. We shall do so by
answering the question: “what additional information do we need to reconstruct the endpoints of
the path?” For the hypercube, we found this bound in terms of a number of bits, but in this case, we
don’t even know how large S is. Luckily, however, claim 6, which bounds the conductance, requires
the value of the congestion to be specified as a multiple of the chain size. Therefore, we shall specify
the aditional information in the form of another matching (the complementary point) and a small
number of additional bits.

Claim 7 Fix a transition Ma → Mb. We can reconstruct the starting and ending states M1 and

M2 of the canonical path if we specify the additional information M̄ = (M1 ⊕M2)−Ma.

Proof Using the ordering on edges, we can decide which edges in Ma have not yet been corrected.
These edges must match M1. The remaining edges of M1 are given by the corrections contained in
Ma ⊕ M̄ . Similarly, we can reconstruct M2 as well.

Unfortunately, we are not quite done, because M̄ might not be a matching, so that it is unsuitable
as a complementary point. However, it can be shown that we can always remove at most two edges
from M̄ to make it into a matching. Therefore, it suffices to specify the resulting matching, along
with one of m2 possibilities for the two edges. This means that the edge congestion is at most m2|S|.
By claim 6, µ ≥ 1/m2. We have already noted thatM is m-regular, so that

ΦG =
µ

m
=

1/m2

m
=

1

m3
.

The number of matchings is bounded by the number of subsets of the edge set, 2m. Using this, we
can set

t =
4

Φ2
G

ln
2|S|
ε2
≤ 4m6 ln

2m+1

ε2
= O(m7 ln(1/ε))

to get within ε of the uniform distribution. Therefore, the Markov chain mixes rapidly, or in
polynomial time.
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