THE GAME OF "N QUESTIONS" ON A TREE*

Ronald L. RIVEST

M.I.T., Department of Electrical Engineering and Computer Science, Cambridge, MA 02139, U.S.A.

Received 4 February 1976 Revised 7 April 1976

We consider the minimax number of questions required to determine which leaf in a finite binary tree T your opponent has chosen, where each question may ask if the leaf is in a specified subtree of T. The requisite number of questions is shown to be approximately the logarithm (base \emptyset) of the number of leaves in T as T becomes large, where $\emptyset = 1.61803...$ is the "golden ratio". Specifically, q questions are sufficient to reduce the number of possibilities by a factor of $2/F_{q+3}$ (where F_i is the ith Fibonacci number), and this is the best possible.

1. Introduction

We consider the problem of identifying a leaf in a finite binary tree T by posing a sequence of questions of the form, "is the leaf in subtree S of T?", for various S. Our main result is that (in a sufficiently large tree) q questions are sufficient to reduce the number of possibilities by a factor of $2/F_{q+3}$, where F_i is the ith Fibonacci number. This generalizes a well-known result that every finite binary tree contains a subtree having between 1/3 and 2/3 of all the tree's leaves [4,6]. Our result is obtained by analyzing a "greedy" algorithm which always chooses the subtree S which has a number of leaves as nearly equal to one-half of the number of remaining leaves as possible. We show that this is the best possible worst-case result by demonstrating that the "Fibonacci trees" yield a corresponding lower bound on the achievable performance.

2. Definitions

We shall express our problem by using finite sets of finite-length words over the alphabet $\Sigma = \{0,1\}$ to represent binary trees, and using regular expressions to denote sets of words [2]. We say that $T \subseteq \Sigma^*$ is a binary tree iff T is prefix-free: no word in T is a prefix of any other word in T. In this paper all binary trees will be finite. Each word in T corresponds to a path from the root to a leaf in a

^{*} This research was supported by the National Science Foundation under research contract No. DCR74-12997.

182 R.L. Rivest

"conventional" binary tree [3, Section 2.3] in a natural manner (zeroes indicating left branches and ones indicating right branches).

If $S \subseteq \Sigma^*$, we define

$$\pi S \stackrel{\triangle}{=} \{ x \in \Sigma^* \, | \, (\exists y \in \Sigma^*) xy \in S \}$$

to be the set of *prefixes* of S. Note that $S \subseteq \pi S$. For brevity we let πx denote $\pi \{x\}$ for $x \in \Sigma^*$.

To illustrate, the first six Fibonacci trees are shown in Fig. 1; they are defined by

$$\mathcal{F}_1 = \mathcal{F}_2 = \{\Lambda\}$$
 (Λ denotes the empty word)
 $\mathcal{F}_i = 0 \mathcal{F}_{i-2} \cup 1 \mathcal{F}_{i-1}$ for $i \ge 3$.

The elements of \mathcal{F}_i are boxed; other elements of $\pi \mathcal{F}_i$ are circled.

Fig. 1. Fibonacci trees.

Given a binary tree T and $x \in \pi T$, the subtree of x in T (denoted T_x) is defined

$$T_x \stackrel{\scriptscriptstyle \Delta}{=} x\Sigma^* \cap T.$$

The complement $T - T_x$ of the subtree of x in T is denoted T'_x .

Consider the following two-person game played on a binary tree T. Player A chooses a word $x_0 \in T$ which player B wishes to determine by posing as few questions as possible to A. All of B's questions must be of the form, "is y a prefix of x_0 ?" for some $y \in \pi T$, and player B obtains A's response to the ith question before posing his i + 1st question.

The model proposed here (binary trees) corresponds reasonably well to a large number of practical applications where a hierarchical organization of concepts forms the framework for an identification process, and specific tests exist for determining whether the unknown quantity is a number of a given category in the hierarchy. For example, the problems of identifying an unknown disease in a patient, an unknown chemical compound, or a faulty gate in a logic circuit might be viewed in this manner. The model used here is a restricted form of the general "group-testing" problem [5, 7]; the difference is that in our situation only certain subsets (corresponding to subtrees) may be tested.

It is well known [4, 6] that with one question B can reduce the number of possible candidates for x_0 to no more than 2|T|/3 if $|T| \ge 2$, and that this is the best possible result (consider $T = \{0, 10, 11\}$). In general B can achieve this by picking y so that max $(|T_y|, |T_y'|)$ is as near to |T|/2 as possible.

We will denote the worst-case size of the subset that B can constrain x_0 to lie in after asking i questions by $P_i(T)$:

$$P_0(T) = |T|,$$

and

$$P_{i+1}(T) = \min_{y \in \pi T} (\max(P_i(T_y), P_i(T_y'))) \text{ for } i \ge 0.$$

For example, $P_i(\mathcal{F}_{i+3}) = 2$ for $i \ge 0$, as we shall prove later.

In order to talk meaningfully about the usefulness of a number of questions, it is necessary that the tree T be large enough so that target leaf is not identified before all the questions are asked. With this understanding, we define

$$r_i = \text{lub}\{P_i(T)/|T|: P_i(T) \ge 2\}$$

to be the least upper bound on the fraction of T that B can constrain x_0 to lie in after i questions. Given that |T| is large enough (say, $>2^i$), player B can reduce the number of possibilities for x_0 to at most $r_i|T|$ with i questions.

In the next section we show that $r_i \ge 2/F_{i+3}$ for $i \ge 1$, using Fibonacci trees. In Section 4 we show that $r_i \le 2/F_{i+3}$ for $i \ge 1$ using the "greedy algorithm".

3. The lower bound

Theorem 3.1. $r_i \ge 2/F_{i+3}$ for $i \ge 0$.

Proof. We prove this by demonstrating that $P_i(\mathcal{F}_{i+3}) \ge 2$ for all i, using induction on i.

By inspection, $P_1(\mathcal{F}_4) = 2$, so we have that $r_1 \ge 2/3$.

For the inductive step, we first remark that if $T = 0R \cup 1S$ is a binary tree, then $P_i(T) \leq P_i(U)$ for all i if $I \supseteq aR \cup bS$ where $a, b \in \Sigma^*$ such that $\{a, b\}$ is prefix-free. A question about $aR \cup bS$ can be transformed into an equivalent question about T by replacing an initial a or b with 0 or 1, respectively.

We next note that for any $x \in \pi \mathcal{F}_i$, at least one of $(\mathcal{F}_i)_x$ and $(\mathcal{F}_i)_x'$ includes a tree

 $G = a\mathcal{F}_{i-2} \cup b\mathcal{F}_{i-3}$ for some $\{a, b\} \subseteq \Sigma^*$ which is prefix-free. There are four cases depending on x:

- (i) If $x \in 0\Sigma^*$, we have $G \subseteq (\mathcal{F}_i)'_x$ with a = 11 and b = 10.
- (ii) If x = 1, we have $G \subseteq (\mathcal{F}_i)_x$ with a = 11 and b = 10.
- (iii) If $x \in 10\Sigma^*$, then $G \subseteq (\mathcal{F}_i)'_x$ with a = 0 and b = 111.
- (iv) If $x \in 11\Sigma^*$, then $G \subset (\mathcal{F}_i)'_x$ with a = 0 and b = 10.

These are trivial consequences of the definition of \mathcal{F}_i . The definition of P_i now yields immediately that $P_i(\mathcal{F}_{i+3}) \ge 2$, proving that

$$r_i \ge 2/F_{i+3}$$
 for $i \ge 1$.

4. The upper bound

We now show that $r_i \le 2/F_{i+3}$ for $i \ge 1$ by demonstrating that the "greedy algorithm" (which always asks the $y \in \pi T$ which minimizes the value of $\max(|T_y|, |T_y'|)$) is at least this efficient.

For notational convenience we shall use the variables a, b, c, etc., in πT to denote $|T_a|/|T|$, etc., in addition to their usual meaning.

Let a denote the longest word in πT such that a > 1/2, (there is clearly only one), and let b, c denote a0, a1 in an order so that $b \ge c$.

Lemma 4.1. One of y = a or y = b minimizes max(y, 1 - y) for $y \in \pi T$.

Proof. Let y be the word minimizing $\max(y, 1 - y)$. If y > 1/2, then $y \in \pi a$; y = a is the word in πa minimizing $\max(y, 1 - y)$. If $y \le 1/2$ then $y \in \{z0, z1\}$ for some $z \in \pi a$. But if y = z0 and $z1 \in \pi a$, then z1 is closer to 1/2 than y since of two positive real numbers whose sum is less than one, the larger is always closer to 1/2. Thus for $y \le 1/2$, y = b minimizes $\max(y, 1 - y)$.

The previous lemma implies that the greedy algorithm will either use a or b as the next question: a if 1-a > b, and b if $1-a \le b$.

We need to introduce notation analogous to the $P_i(T)$ notation which includes as a parameter the worst-case split obtainable in T, because our analysis depends heavily on the fact that if one question yields a poor split, then the next question is guaranteed to do somewhat better. Let

$$R_i(s) = \text{lub}\{P_i(T)/|T|: P_i(T) \ge 2 \land P_1(T)/|T| = s\}$$

denote the least upper bound on the fraction of T that B can constrain x_0 to lie in, given that $P_i(T) \ge 2$ and that the worst result of the first "greedy" question contains exactly $s \mid T \mid$ leaves. The domain of R_i is $1/2 \le s \le 2/3$, since $P_1(T) \mid T \mid$ is always in this range (if a > 2/3, then $b \ge a/2 > 1/3$).

Theorem 4.2.

$$R_i(s) \leq \begin{cases} 2s/F_{i+2} & \text{for } 1/2 \leq s \leq F_{i+2}/F_{i+3} \\ 2(1-s)/F_{i+1} & \text{for } F_{i+2}/F_{i+3} \leq s \leq 2/3. \end{cases}$$

Proof. We first observe that the theorem implies that $1/F_{i+2} \le R_i(s) \le 2/F_{i+3}$ for $1/2 \le s \le 2/3$. The proof proceeds by induction on *i*. For i = 1 we obtain $R_i(s) \le s$ for $1/2 \le s \le 2/3$ directly.

For larger *i*, the greedy algorithm first asks the question y (here y = a or y = b). Let U denote the subtree of T (either T_y or T_y) with size $s \cdot |T|$, (T_a if y = a, T_b if y = b), and let V denote the complement of U with respect to T.

If $x_0 \in V$, then we can say that

$$R_i(s) \leq \frac{|V|}{|T|} \cdot \max_{1/2 \leq s \leq 2/3} (R_{i-1}(s)) \leq \frac{1}{2} \cdot \frac{2}{F_{i+2}} = \frac{1}{F_{i+2}}.$$

But $1/F_{i+2}$ is the minimum value obtained by the claimed upper bound for $R_i(s)$, so in this case the upper bound is correct.

On the other hand, if $x_0 \in U$, then we can argue that $P_1(U) \le |V|$. If y = a, then b < 1-a, $U = T_a$, and $P_1(U) \le |T_b| \le |T_a'|$. Or if y = b, then $1-a \le b$, $U = T_b'$, and $P_1(U) \le |T_a'| \le |T_b|$ (remember that b is larger than its brother c, so that $\max(c, 1-a) = 1-a$). In either case we have that

$$R_i(s) \leq s \cdot \max_{1/2 \leq t \leq (1-s)/2} (R_{i-1}(t)),$$

since |V|/|U| = (1-s)/s. For $1/2 \le s \le F_{i+2}/F_{i+3}$ this directly yields

$$R_i(s) \leq s \cdot \max_{1/2 \leq t \leq 2/3} R_{i-1}(t) = 2s/F_{i+2}.$$

For $F_{i+2}/F_{i+3} \le s \le 2/3$ we obtain (since $(1-s)/s \le F_{i+1}/F_{i+2}$)

$$R_i(s) \le s \cdot \max_{1/2 \le t \le (1-s)/s} R_{i-1}(t) = s \cdot R_{i-1}((1-s)/s) = 2(1-s)/F_{i+1}.$$

This finishes the proof of the theorem.

The functions $R_1(s)$, $R_2(s)$, and $R_3(s)$ are plotted in Fig. 2.

Corollary. $r_i = 2/F_{i+3}$.

Thus, with two questions player B can reduce the possibilities for x_0 by a factor of 2/5, and so on. The efficiency of each question approaches the limit:

$$r = \lim_{i \to \infty} (r_i)^{1/i} = \emptyset^{-1} = 0.61803...,$$

the inverse of the golden ratio \emptyset .

We remark that although the greedy algorithm suffices to give us an upper bound on r_i , there exist trees for which the greedy algorithm is not the best strategy. The "greedy algorithm" is shown to perform very poorly in a similar testing situation in [1].

References

- [1] M.R. Garey, and R.L. Graham, Performance bounds on the splitting algorithm for binary testing, Acta Inf. 3 (1974) 347–355.
- [2] J.E. Hopcroft, and J.D. Ullman, Formal languages and their relation to automata (Addison-Wesley, Reading, MA 1969).
- [3] D.E. Knuth, Fundamental algorithms, in: The Art of Computer Programming, Vol. 1 (Addison-Wesley, Reading, MA 1968).
- [4] V.R. Pratt, The effect of basis on size of boolean expressions, Proc. 16th Annual Symp. Foundations of Computer Science (formerly SWAT), Berkeley, CA (Oct. 1975) 119–121.
- [5] M. Sobel, and P.A. Groul, Group-testing to eliminate all defectives in a binomial sample, Bell System Tech. J. 38 (1959) 1179–1252.
- [6] P.M. Spira, On time hardware complexity tradeoffs for boolean functions, Proc. 4th Hawaiian Inter. Symp. Systems Science (1971) 525-527.
- [7] S. Zimmerman, An optimal search procedure, Amer. Math. Monthly 66 (1959) 690-693.