Discrete Mathematics 17 (1977) 181-186.
© North-Holland Publishing Company

THE GAME OF “N QUESTIONS” ON A TREE*

Ronald L. RIVEST

M.ILT., Department of Electrical Engineering and Computer Science, Cambridge, MA 02139,
U.S.A.

Received 4 February 1976
Revised 7 April 1976

We consider the minimax number of questions required to determine which leaf in a finite
binary tree T your opponent has chosen, where each question may ask if the leaf is in a specified
subtree of T. The requisite number of questions is shown to be approximately the logarithm (base
@) of the number of leaves in T as T becomes large, where @ = 1.61803... is the “golden ratio”.
Specifically, q questions are sufficient to reduce the number of possibilities by a factor of 2/F, .
(where F; is the ith Fibonacci number), and this is the best possible.

1. Introduction

We consider the problem of identifying a leaf in a finite binary tree T by posing a
sequence of questions of the form, ““is the leaf in subtree S of T?”, for various S.
Our main result is that (in a sufficiently large tree) g questions are sufficient to
reduce the number of possibilities by a factor of 2/F,.;, where F, is the i" Fibonacci
number. This generalizes a well-known result that every finite binary tree contains a
subtree having between 1/3 and 2/3 of all the tree’s leaves [4,6]. Our result is
obtained by analyzing a ‘“‘greedy” algorithm which always chooses the subtree S
which has a number of leaves as nearly equal to one-half of the number of
remaining leaves as possible. We show that this is the best possible worst-case result
by demonstrating that the ‘‘Fibonacci trees” yield a corresponding lower bound on
the achievable performance.

2. Definitions

We shall express our problem by using finite sets of finite-length words over the
alphabet X ={0,1} to represent binary trees, and using regular expressions to
denote sets of words [2]. We say that T C 3 * is a binary tree iff T is prefix-free: no
word in T is a prefix of any other word in T. In this paper all binary trees will be
finite. Each word in T corresponds to a path from the root to a leaf in a

* This research was supported by the National Science Foundation under research contract No.
DCR74-12997.

181

182 R.L. Rivest

‘““conventional”’ binary tree [3, Section 2.3] in a natural manner (zeroes indicating
left branches and ones indicating right branches).
If SC3*, we define

7S = {xex*| 3@y € 3*)xy €S}

to be the set of prefixes of S. Note that S C «S. For brevity we let wx denote m{x}
for x € 3*.
To illustrate, the first six Fibonacci trees are shown in Fig. 1; they are defined by

F=F,={A} (A denotes the empty word)

\Gj:i = O%-z U 1%71 fOr i 23

The elements of &% are boxed; other elements of %, are circled.

(1) (1)
% % o] 1] o])
% o]]
Fa

Fig. 1. Fibonacci trees.

Given a binary tree T and x € «T, the subtree of x in T (denoted T,) is defined

a

T. = x2*NT.
The complement T — T, of the subtree of x in T is denoted T'.

Consider the following two-person game played on a binary tree T. Player A
chooses a word x,&€ T which player B wishes to determine by posing as few
questions as possible to A. All of B’s questions must be of the form, “is y a prefix
of x,?” for some y € #T, and player B obtains A’s response to the i"™ question
before posing his i + 1% question.

The model proposed here (binary trees) corresponds reasonably well to a large
-number of practical applications where a hierarchical organization of concepts

The game of N questions on a tree 183

forms the framework for an identification process, and specific tests exist for
determining whether the unknown quantity is a number of a given category in the
hierarchy. For example, the problems of identifying an unknown disease in a
patient, an unknown chemical compound, or a faulty gate in a logic circuit might be
viewed in this manner. The model used here is a restricted form of the general
‘““group-testing” problem [5, 7]; the difference is that in our situation only certain
subsets (corresponding to subtrees) may be tested.

It is well known [4, 6] that with one question B can reduce the number of possible
candidates for x, to no more than 2| T|/3 if | T|=2, and that this is the best
possible result (consider T = {0, 10, 11}). In general B can achieve this by picking y
so that max (| T, |,| T;|) is as near to | T|/2 as possible.

We will denote the worst-case size of the subset that B can constrain x, to lie in
after asking i questions by P;(T):

PO(T):'TL
and

P.(T)= %iﬂnr(max (P(T,), Pi(T}))) for i=0.

For example, P,(%.s) =2 for i =0, as we shall prove later.

In order to talk meaningfully about the usefulness of a number of questions, it is
necessary that the tree T be large enough so that target leaf is not identified
before all the questions are asked. With this understanding, we define

r=1ub{P,(T)/| T|: P.(T)=2}

to be the least upper bound on the fraction of T that B can constrain x, to lie in
after i questions. Given that | T'| is large enough (say, >2'), player B can reduce
the number of possibilities for x, to at most r,| T | with i questions.

In the next section we show that r, =2/F,,; for i =1, using Fibonacci trees. In
Section 4 we show that r; <2/F,.; for i =1 using the “greedy algorithm”.

3. The lower bound
Theorem 3.1. r, =2/F,.s for i =0.

Proof. We prove this by demonstrating that P;(%.s;) =2 for all i, using induction
on L

By inspection, P,(%.) =2, so we have that r; =2/3.

For the inductive step, we first remark that if 7=0R U 1S is a binary tree, then
P(T)<P;(U) for all i if IDaR UbS where a,b € 3* such that {a, b} is
prefix-free. A question about aR U bS can be transformed into an equivalent
question about T by replacing an initial a or b with 0 or 1, respectively.

We next note that for any x € 7%, at least one of (%), and (%); includes a tree

184 R.L. Rivest

G = a% >, Ub% _; for some {a, b} C 3* which is prefix-free. There are four cases
depending on x:

(i) If x €03*, we have G C(%). with a =11 and b = 10.

(i) If x =1, we have G C (%), with a =11 and b = 10.

(iii) If x €10%*, then G C(%). with a =0 and b = 111.

(iv) If x €113*, then G C (%), with a =0 and b = 10.
These are trivial consequences of the definition of %. The definition of P, now
yields immediately that P;(%.5) =2, proving that

rn=2/F.; for i=1.

4. The upper bound

We now show that r, <2/F.,; for i =1 by demonstrating that the “greedy
algorithm” (which always asks the y € #T which minimizes the value of
max (| T, |,| T}|)) is at least this efficient.

For notational convenience we shall use the variables a, b, c, etc., in =T to
denote | T, |/| T|, etc., in addition to their usual meaning.

Let a denote the longest word in 7T such that a >1/2, (there is clearly only
one), and let b, ¢ denote a0, al in an order so that b = c.

Lemma 4.1. One of y=a ory =b minimizes max(y,1—y) fory € «T.

Proof. Let y be the word minimizing max(y,1—y).If y >1/2,theny E wa;y = a
is the word in 7a minimizing max(y,1—y). If y <1/2 then y €{z0, z1} for some
z€E€ma. But if y =20 and z1 € ma, then z1 is closer to 1/2 than y since of two
positive real numbers whose sum is less than one, the larger is always closer to 1/2.
Thus for y <1/2, y = b minimizes max(y,1—y).

The previous lemma implies that the greedy algorithm will either use a or b as
the next question: g if 1—a>b, and b if 1 —a <b.

We need to introduce notation analogous to the P,(T) notation which includes as
a parameter the worst-case split obtainable in T, because our analysis depends
heavily on the fact that if one question yields a poor split, then the next question is
guaranteed to do somewhat better. Let

Ri(s)=Wb{P.(T)/| T|: P.(T)=2 A P(T)/| T| = s}

denote the least upper bound on the fraction of T that B can constrain x, to lie in,
given that P;(T) =2 and that the worst result of the first “‘greedy”” question contains
exactly s | T | leaves. The domain of R; is 1/2 < s < 2/3, since P,(T)/| T | is always in
this range (if a >2/3, then b = a/2 > 1/3).

The game of N questions on a tree 185

Theorem 4.2.

Ri(s) = {2s/E+2 for 12<s<Fis/Fuua
=20 -$)/Fu for FalFa<s<2/3.

Proof. We first observe that the theorem implies that 1/F,,,< R, (s)<2/F..s for
1/2 < s <2/3. The proof proceeds by induction on i. For i = 1 we obtain Ri(s)<s
for 1/2 < s <2/3 directly.

For larger i, the greedy algorithm first asks the question y (here y =a ory = b).
Let U denote the subtree of T (either T, or T}) with size s | T|, (T if y = a, T} if
y =Db), and let V denote the complement of U with respect to T.

If xo € V, then we can say that

2 1

Ri(s) =< max (Ri-i(s))<z- -

V] 1
]T[1/2<s<2/3 2 F.» F.,

But 1/F;., is the minimum value obtained by the claimed upper bound for R, (s), so
in this case the upper bound is correct.

On the other hand, if x, € U, then we can argue that P,(U) <|V|.If y = a, then
b<l-a U=T, and P(U)<|T,|<|T,|.Orif y=b, then 1—a<b, U=T),
and P(U)<|T.|<|T,| (remember that b is larger than its brother c, so that
max(c,1—a)=1- a). In either case we have that

Ri(s) s IIZSII‘L%I)ES)/S (Ri_l(t))’
since | V|[/|U|=(1-s)/s. For 1/2<s < F,,,/F..; this directly yields
Ri(s)<s- ax Ri_i(t) =2s/F;.,.
For Fi.o/Fi.s< s <2/3 we obtain (since (1-s)/s < F.1/F..,)
Ri(s)<s- max Ri(t)=s-Rii((1—-s)/s)=2(1—s)/F...
12st=<(-s)/s

This finishes the proof of the theorem.
The functions Ri(s), Ra(s), and Rs(s) are plotted in Fig. 2.
Corollary. r, = 2/F,,;.

Thus, with two questions player B can reduce the possibilities for x, by a factor
of 2/5, and so on. The efficiency of each question approaches the limit:

r=1lim(r)" = ¢ =0.61803.. .,

the inverse of the golden ratio @.

186 R.L. Rivest

3/4 |—
(2/3,2/3)
1/2 — (1/2,1/2)
Py —o A3/52/5)
m(m, 1/3)
P (5/8, 1/4)
1/4 37T '
B N o)
(1/2,1/5)
| | | |
°o 1/4 172 3/4 |
Fig. 2.

We remark that although the greedy algorithm suffices to give us an upper bound
on r, there exist trees for which the greedy algorithm is not the best strategy. The
“greedy algorithm” is shown to perform very poorly in a similar testing situation
in [1].

References

[1] M.R. Garey, and R.L. Graham, Performance bounds on the splitting algorithm for binary testing,
Acta Inf. 3 (1974) 347-355.

[2] J.E. Hopcroft, and J.D. Ullman, Formal languages and their relation to automata (Addison-Wesley,
Reading, MA 1969).

[3] D.E. Knuth, Fundamental algorithms, in: The Art of Computer Programming, Vol. 1 (Addison-
Wesley, Reading, MA 1968).

[4] V.R. Pratt, The effect of basis on size of boolean expressions, Proc. 16th Annual Symp. Foundations
of Computer Science (formerly SWAT), Berkeley, CA (Oct. 1975) 119-121.

[5] M. Sobel, and P.A. Groll, Group-testing to eliminate all defectives in a binomial sample, Bell System
Tech. J. 38 (1959) 1179-1252.

[6] P.M. Spira, On time hardware complexity tradeoffs for boolean functions, Proc. 4th Hawaiian Inter.
Symp. Systems Science (1971) 525-527.

[7] S. Zimmerman, An optimal search procedure, Amer. Math. Monthly 66 (1959) 690-693.

