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Abstract. We present a method and software for ballot-polling risk-
limiting audits (RLAs) based on Bernoulli sampling: ballots are included
in the sample with probability p, independently. Bernoulli sampling has
several advantages: (1) it does not require a ballot manifest; (2) it can be
conducted independently at different locations, rather than requiring a
central authority to select the sample from the whole population of cast
ballots or requiring stratified sampling; (3) it can start in polling places
on election night, before margins are known. If the reported margins for
the 2016 U.S. Presidential election are correct, a Bernoulli ballot-polling
audit with a risk limit of 5% and a sampling rate of p0 = 1% would have
had at least a 99% probability of confirming the outcome in 42 states.
(The other states were more likely to have needed to examine additional
ballots.) Logistical and security advantages that auditing in the polling
place affords may outweigh the cost of examining more ballots than some
other methods might require.

1 Introduction

No method for counting votes is perfect, and methods that rely on computers
are particularly fragile: errors, bugs, and deliberate attacks can alter results. The
vulnerability of electronic voting was confirmed in two major state-funded stud-
ies, California’s Top-to-Bottom Review (Bowen, 2007) and Ohio’s EVEREST
study (McDaniel et al., 2007). More recently, at the 2017 and 2018 DEFCON
hacking conferences, attendees with little or no knowledge of election systems
were able to penetrate a wide range of U.S. voting machines (Blaze et al., 2017,
2018). Given that Russia interfered with the 2016 U.S. Presidential election
through an “unprecedented coordinated cyber campaign against state election
infrastructure” (U.S. Senate Select Committee on Intelligence, 2018), national
security demands we protect our elections from nation states and other advanced
persistent threats.

Risk-limiting audits (RLAs) were introduced in 2007 (Stark, 2008) as a mech-
anism for detecting and correcting outcome-changing errors in vote tabulation,
whatever their cause—including hacking, misconfiguration, and human error.
RLAs have been tested in practice in California, Colorado, Indiana, Virginia,
Ohio, and Denmark. Colorado started conducting routine statewide RLAs in
2017 (Lindeman et al., 2018), and Rhode Island passed a law in 2017 requiring



routine statewide RLAs starting in 2020 (RI Gen L § 17-19-37.4). RLA legis-
lation is under consideration in a number of other states, and bills to require
RLAs have been introduced in Congress.

In this paper, we present an RLA method based on Bernoulli random sam-
pling. With simple random sampling, the number of ballots to sample is fixed;
with Bernoulli sampling, the expected sampling rate is fixed but the sample size is
not. Conceptually, Bernoulli ballot polling (BBP) decides whether to include the
jth ballot in the sample by tossing a biased coin that has probability p of landing
heads. The ballot is included if and only if the coin lands heads. Coin tosses for
different ballots are independent, but have the same chance of landing heads.
(Rather than toss a coin for each ballot, it more efficient to implement Bernoulli
sampling in practice using geometric skipping, described in Section 6.3.)

The logistical simplicity of Bernoulli sampling may make it useful for election
audits. Like all RLAs, BBP RLAs require a voter-verifiable paper record. Like
other ballot-polling RLAs (Lindeman et al., 2012; Lindeman and Stark, 2012),
BBP makes no other technical demands on the voting system. It requires no
special equipment, and only a minimal amount of software to select and analyze
the sample—in principle, it could be carried out with dice and a pencil and
paper. In contrast to extant ballot-polling RLAs, BBP does not require a ballot
manifest (although it does require knowing where all the ballots are, and access
to the ballots). BBP is inherently local and parallelizable, because the decision of
whether to include any particular ballot in the sample does not depend on which
other ballots are selected, nor on how many other ballots have been selected,
nor even on how many ballots were cast. We shall see that this has practical
advantages.

Bernoulli sampling is well-known in the survey sampling literature, but it is
used less often than simple random sampling, for a number of reasons. The vari-
ance of estimates based on Bernoulli samples tends to be larger than for simple
random samples (Särndal et al., 2003), due to the fact that both the sample and
the sample size are random. Moreover, this added randomness complicates rig-
orous inferences. A common estimator of the population mean from a Bernoulli
sample is the Horvitz-Thompson estimator, which has a high variance when
the sampling rate p is small. Often, P -values and confidence intervals for the
Horvitz-Thompson estimator are approximated using the normal distribution
(Lohr, 2009; Cochran, 1977; Thompson, 1997), which may be quite inaccurate if
the population distribution is skewed—as it often is in auditing problems (Panel
on Nonstandard Mixtures of Distributions, 1988).

Instead of relying on parametric approximations, we develop a test based on
Wald’s sequential probability ratio test (Wald, 1945). The test is akin to that in
extant ballot polling RLA methods (Lindeman et al., 2012; Lindeman and Stark,
2012), but the mathematics are modified to work with Bernoulli random sam-
ples, including the fact that Bernoulli samples are samples without replacement.
(Previous ballot-polling RLAs relied on sampling with replacement.) Conditional
on the attained sample size n, a Bernoulli sample of ballots is a simple random
sample. We maximize the conditional P -value of the null hypothesis (that the
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reported winner did not win) over a nuisance parameter, the total number of
ballots with valid votes for either of a given pair of candidates, excluding in-
valid ballots or ballots for other candidates. A martingale argument shows that
the resulting test is sequential: if the test does not reject, the sample can be ex-
panded using additional rounds of Bernoulli sampling (with the same or different
expected sampling rates) and the resulting P -values will still be conservative.

A BBP RLA can begin in polling places on election night. Given an initial
sampling rate to be used across all precincts and vote centers, poll workers in each
location determine which ballots will be examined in the audit, independently
from each other and independently across ballots, and record the votes cast
on each ballot selected. (Vote-by-mail and provisional ballots can be audited
similarly; see Section 6.2.) Once the election results are reported, the sequential
probability ratio test can be applied to the sample results to determine whether
there is sufficient evidence that the reported outcome is correct.1 If the sample
does not provide sufficiently strong evidence to attain the risk limit, the sample
can be expanded using subsequent rounds of Bernoulli sample until either the risk
limit is attained or all ballots are inspected. Figure 1 summarizes the procedure.

BBP has a number of practical advantages, with little additional workload
in terms of the number of ballots examined. Workload simulations show that
the number of ballots needed to confirm a correctly reported outcome is similar
for BBP and the BRAVO RLA (Lindeman et al., 2012). If the choice of initial
sampling rate (and thus, the initial sample size) is larger than necessary, the
added efficiency of conducting the audit “in parallel” across the entire election
may outweigh the cost of examining extra ballots. Using statewide results from
the 2016 United States presidential election, BBP with a 1% initial sampling
rate would have had at least a 99% chance of confirming the results in 42 states
(assuming the reported results were in fact correct). A Python implementation
of BBP is available at https://github.com/pbstark/BernoulliBallotPolling.

2 Notation and Mathematical Background

We consider social choice functions that are variants of majority and plural-
ity voting: the winners are the k ≥ 1 candidates who receive the most votes.
This includes ordinary “first-past-the-post” contests, as well as “vote for k”
contests.2 As explained in Lindeman et al. (2012), it suffices to consider one
(winner, loser) pair at a time: the contest outcome is correct if every reported
winner actually received more votes than every reported loser. Auditing major-
ity and super-majority contests requires only minor modifications.3 Section 3.2
addresses auditing multiple contests simultaneously.

1 A variant of the method does not require the reported results (the current method
used the reported results to construct the alternative hypothesis). We do not present
that method here; it is related to ClipAudit (Rivest, 2017).

2 The same general approach works for some preferential voting schemes, such as
Borda count and range voting, and for proportional representation schemes such as
D’Hondt (Stark and Teague, 2014). We do not consider instant-runoff voting (IRV).

3 For instance, for a majority contest, one simply pools the votes for all the reported
losers into a single “pseudo-candidate” who reportedly lost.
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Procedure for a Bernoulli ballot-polling audit
1. Set initial sampling rate. Choose initial sampling rate p0, based on pre-

election polls or set at a fixed value. If p0 is selected based on an estimated
margin, use the ASN heuristic in Section 5.

2. Sample ballots and record audit data. Use geometric skipping (below)
with rate p0 to select ballots to inspect. Record votes on all inspected ballots.

3. Check attained risk. Once the final election results have been reported, for
each contest under audit and for each reported (winner, loser) pair (w, `):
– Calculate Bw, B`, and Bu from the audit sample.
– Find the (maximal) P -value from Bw, B`, Bu.

4. Escalate if necessary. If, for any (w, `) pair, the P -value is greater than α,
expand the audit in one of the ways described in Section 4.

Procedure for geometric skip sampling
1. Set the random seed. In each polling place, use a cryptographically secure

PRNG, such as SHA-256, with a seed chosen using true randomness.
2. Sample ballots following Section 6.3. For each bundle of ballots: Set Y0 = 0

and set j = 0.
– j ← j + 1
– Generate a uniform random variable U on [0, 1).

– Yj ←
⌈

ln(U)
ln(1−p)

⌉
.

– If
∑j

k=1 Yj is greater than the number of ballots in the bundle, stop.
Otherwise, skip the next Yj − 1 ballots in the bundle, and include the
ballot after that one (i.e., include ballot

∑j
k=1 Yj)

Fig. 1: Bernoulli ballot-polling audit step-by-step procedures.

Let w denote a reported winning candidate and ` denote a reported losing
candidate. Suppose that the population contains Nw ballots with a valid vote
for w but not `, N` ballots with a valid vote for ` but not w, and Nu ballots
with votes for both w and ` or for neither w nor `. The total number of ballots
is N = Nw + N` + Nu. Let Nw` ≡ Nw + N` be the number of ballots in the
population with a valid vote for w or ` but not both. For Bernoulli sampling,
N may be unknown; in any event, Nw, N`, and Nu are unknown, or the audit
would not be necessary.

If we can reject the null hypothesis that N` ≥ Nw at significance level α,
we have statistically confirmed that w got more votes than `. Section 3 presents
a test for this hypothesis that accounts for the nuisance parameter Nw`. We
assume that ties are settled in a deterministic way and that if the audit is unable
to confirm the contest outcome, a full manual tally resulting in a tie would be
settled in the same deterministic way.
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2.1 Multi-round Bernoulli Sampling

A Bernoulli(p) random variable I is a random variable that takes the value 1
with probability p and the value 0 with probability 1 − p. BBP uses Bernoulli
sampling, which involves independent selection of different ballots with the same
probability p of selecting each ballot: Ij = 1 if and only if ballot j is selected to
be in the sample, where {Ij}Nj=1 are independent, identically distributed (IID)
Bernoulli(p) random variables.

Suppose that after tossing a p0-coin for every item in the population, we
toss a p1-coin for every item (again, independently), and include an item in the
sample if the first or second toss for that item landed heads. That amounts
to drawing a Bernoulli sample using selection probability 1 − (1 − p0)(1 − p1):
an item is in the sample unless its coin landed tails on both tosses, which has
probability (1 − p0)(1 − p1). This extends to making any integral number K
of passes through the population of ballots, with pass k using a coin that has
chance pk of landing heads: such “K-round” Bernoulli sampling is still Bernoulli
sampling, with P{I = 1} = p = 1−

∏K−1
k=0 (1− pk).

2.2 Exchangeability and Conditional Simple Random Sampling

Because the N variables {Ij} are IID, they are exchangeable, meaning their joint
distribution is invariant under the action of the symmetric group (relabelings).
Consider a collection of indices S ⊂ {1, . . . , N} of size k, 0 ≤ k ≤ N . Define the
event

IS ≡ {Ij = 1,∀j ∈ S, and Ij = 0,∀j /∈ S}.

Because {Ij} are exchangeable, PIS = PIT for every set T ⊂ {1, . . . , N} of size
k, since every such set T can be mapped to S by a one-to-one relabeling of the
indices.

It follows that, conditional on the attained size of the sample, n =
∑N

j=1 Ij ,
all
(
N
n

)
subsets of size n drawn from the N items are equally likely: the sample

is conditionally a simple random sample (SRS) of size n. This is foundational
for the methods we develop.

3 Tests

Suppose we draw a Bernoulli sample of ballots. The random variable B is the
number of ballots in the sample. Let Bw denote the number of ballots in the
sample with a vote for w but not `; let B` denote the number of ballots in the
sample with a vote for ` but not w; and let Bu denote the number of ballots in
the sample with a vote for both w and ` or neither w nor `, so B = Bw+B`+Bu.

3.1 Wald’s SPRT with a Nuisance Parameter

We want to test the compound hypothesis that Nw ≤ N` against the alternative
that Nw = Vw, N` = V`, and Nu = Vu, with Vw − V` > 0.4 We present a test
based on Wald’s sequential probability ratio test (SPRT) (Wald, 1945).

4 The alternative hypothesis is that the reported results are correct; as mentioned
above, there are other alternatives one could use that do not depend on the reported
results, but we do not present them here.
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The values Vw, V`, and Vu are the reported results (or values related to those
reported results; see Lindeman et al. (2012)). In this problem, Nu (equivalently,
Nw` ≡ Nw + N`) is a nuisance parameter: we care about Nw −N`, the margin
of the reported winner over the reported loser.

Conditional onB = n, the sample is a simple random sample. The conditional
probability that the sample will yield counts (Bw, B`, Bu) under the alternative
hypothesis is ∏Bw−1

i=0 (Vw − i)
∏B`−1

i=0 (V` − i)
∏Bu−1

i=0 (Vu − i)∏n−1
i=0 (N − i)

.

If B` ≥ Bw, the data obviously do not provide evidence against the null, so we
suppose that B` < Bw, in which case, the element of the null that will maximize
the probability of the observed data has Nw = N`. Under the null hypothesis,
the conditional probability of observing (Bw, B`, Bu) is∏Bw−1

i=0 (Nw − i)
∏B`−1

i=0 (Nw − i)
∏Bu−1

i=0 (Nu − i)∏n
i=0(N − i)

,

for some value Nw and the corresponding Nu = N − 2Nw. How large can that
probability be if the null hypothesis is true? The probability under the null is
maximized by any integer x ∈ {max(Bw, B`), . . . , (N −Bu)/2} that maximizes

Bw−1∏
i=0

(x− i)
B`−1∏
i=0

(x− i)
Bu−1∏
i=0

(N − 2x− i).

The logarithm is monotonic, so any maximizer x∗ also maximizes

f(x) =

Bw−1∑
i=0

ln(x− i) +

B`−1∑
i=0

ln(x− i) +

Bu−1∑
i=0

ln(N − 2x− i).

The second derivative of f is everywhere negative, so f is convex and has
a unique real-valued maximizer on [max(Bw, B`), (N − Bu)/2], either at one of
the endpoints or somewhere in the interval. The derivative f ′(x) is

f ′(x) =

Bw−1∑
i=0

1

x− i
+

B`−1∑
i=0

1

x− i
− 2

Bu−1∑
i=0

1

N − 2x− i
.

If f ′(x) does not change signs, then the maximum is at one of the end-
points, in which case x∗ is the endpoint for which f is larger. Otherwise, the
real maximizer occurs at a stationary point. If the real-valued maximizer is not
an integer, convexity guarantees that the integer maximizer x∗ is one of the two
integer values that bracket the real maximizer: either bxc or dxe.

A conservative P -value for the null hypothesis after n items have been drawn
is thus

Pn =

∏Bw−1
i=0 (x∗ − i)

∏B`−1
i=0 (x∗ − i)

∏Bu−1
i=0 (N − 2x∗ − i)∏Bw−1

i=0 (Vw − i)
∏B`−1

i=0 (V` − i)
∏Bu−1

i=0 (Vu − i)
.
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The SPRT is appealing because it leads to an elegant escalation method
if the first round of Bernoulli sampling does not attain the risk limit: simply
make another round of Bernoulli sampling, as described in Section 4. If the null
hypothesis is true, then Pr{infk Pk < α} ≤ α, where k counts the rounds of
Bernoulli sampling. That is, the risk limit remains conservative for any number
of rounds of Bernoulli sampling.

3.2 Auditing Multiple Contests

The math extends to audits of multiple contests; we omit the derivation, but
see, e.g., Lindeman and Stark (2012). The same sample can be used to audit
any number of contests simultaneously. The audit proceeds to a full hand count
unless every null hypothesis is rejected, that is, unless we conclude that every
winner beat every loser in every audited contest. The chance of rejecting all
those null hypotheses cannot be larger than the smallest chance of rejecting
any of the individual hypotheses, because the probability of an intersection of
events cannot be larger than the probability of any one of the events. The chance
of rejecting any individual null hypothesis is at most the risk limit, α, if that
hypothesis is true. Therefore the chance of the intersection is not larger than α
if any contest outcome is incorrect: the overall risk limit is α, with no need to
adjust for multiplicity.

4 Escalation

If the first round of Bernoulli sampling with rate p0 does not generate strong
evidence that the election outcome is correct, we have several options:

1. conduct a full hand count
2. augment the sample with additional ballots selected in some manner, for

instance, making additional rounds of Bernoulli sampling, possibly with dif-
ferent values of p

3. draw a new sample and use a different auditing method, e.g., ballot-level
comparison auditing

The first approach is always conservative. Both the second and third ap-
proaches require some statistical care, as repeated testing introduces additional
opportunities to wrongly conclude that an incorrect election outcome is correct.

To make additional rounds of Bernoulli sampling, it may help to keep track
of which ballots have been inspected.5 That might involve stamping audited
ballots with “audited” in red ink, for example.

Section 2.1 shows that if we make an integral number of passes through the
population of ballots, tossing a pk-coin for each as-yet-unselected item (we only
toss the coin for an item on the kth pass if the coin has not landed heads for
that item in any previous pass), then the resulting sample is a Bernoulli random

sample with selection probability p = 1 −
∏K−1

k=0 pk. Conditional on the sample
size n attained after K passes, every subset of size n is equally likely to be

5 Once ballots are aggregated in a precinct or scanned centrally, it is unlikely that
they will stay in the same order.
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selected. Hence, conditional on the event that n tosses gave heads, the sample
is a simple random sample of size n from the N ballots.

The SPRT applied to multi-round Bernoulli sampling is conservative: the
unconditional chance of rejecting the null hypothesis if it is true is at most α,
because, if the null is true, the chance that the SPRT exceeds 1/α for any K is
at most α.

The third approach allows us to follow BBP with a different, more efficient
approach, such as ballot-level comparison auditing (Lindeman and Stark, 2012).
This may require steps to ensure that multiplicity does not make the risk larger
than the nominal risk limit, e.g., by adjusting the risk limit using Bonferroni’s
inequality.

5 Initial Sampling Rate

We would like to choose the initial sampling rate p0 sufficiently large that a
test of the hypothesis Nw ≤ N` will have high power against the alternative
Nw = Vw, N` = V`, with Vw − V` = c for modest margins c > 0, but not so large
that we waste effort.

There is no analytical formula for the power of the sequential hypothesis test
under this sampling procedure, but we can use simulation to estimate the sam-
pling rates needed to have a high probability of confirming correctly reported
election results. Table 1 gives the sampling rate p0 needed to attain 80%, 90%,
and 99% power for a 2-candidate race in which there are no undervotes or invalid
votes, for a 5% risk limit and a variety of margins and contest sizes. The sim-
ulations assume that the reported vote totals are correct. The required p0 may
be prohibitively large for small races and tight margins; Section 7 shows that
with high probability, even a 1% sampling rate would be sufficient to confirm the
outcomes of the vast majority of U.S. federal races without further escalation.

The sequential probability ratio test in Section 3 is similar to the BRAVO
RLA presented in Lindeman and Stark (2012) when the sampling rate is small
relative to the population size. One difference is that BBP incorporates informa-
tion about the number of undervotes, invalid votes, or votes for candidates other
than w and `, and that Bernoulli sampling is without replacement; BRAVO is
based on sampling with replacement. If every ballot has a valid vote either for
w or for ` and the sampling rate is small relative to the population size, the ex-
pected workload of these two procedures is similar. The average sample number
(ASN) (Wald, 1945), the expected number of draws required either to accept or
to reject the null hypothesis, for BRAVO using a risk limit α and margin m is
approximately

ASN ≈ 2 ln(1/α)

m2
.

This formula is valid when the sampling rate is low and the actual margin is
not substantially smaller than the (reported) margin used as the alternative
hypothesis.

The ASN gives a rule of thumb for choosing the initial sampling rate. For a
risk limit of 5% and a margin of 5%, the ASN is about 2,400 ballots. For a margin
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Table 1: Estimated sampling rates needed for Bernoulli ballot polling
for a 2-candidate race with a 5% risk limit. These simulations assume the re-
ported margins were correct.

sampling rate p to achieve . . .

true margin ballots cast 80% power 90% power 99% power

1% 100,000 55% 62% 77%
2% 100,000 23% 30% 46%
5% 100,000 5% 7% 12%

10% 100,000 2% 2% 4%
20% 100,000 1% 1% 1%

1% 1,000,000 10.4% 14.2% 24.2%
2% 1,000,000 2.9% 4.0% 7.5%
5% 1,000,000 0.5% 0.7% 1.3%

10% 1,000,000 0.2% 0.2% 0.4%
20% 1,000,000 0.1% 0.1% 0.1%

1% 10,000,000 1.15% 1.66% 3.11%
2% 10,000,000 0.30% 0.42% 0.84%
5% 10,000,000 0.05% 0.07% 0.13%

10% 10,000,000 0.02% 0.02% 0.04%
20% 10,000,000 0.01% 0.01% 0.01%

of 10%, the ASN is about 600 ballots. These values are lower than the sample
sizes implied by Table 1: the sampling rates in the table have a higher probability
that the initial sample will be sufficient to conclude the audit, while a sampling
rate based on the ASN will sufficice a bit more than half of the time.6 The ASN
multiplied by 2–4 is a rough approximation to initial sample size needed to have
roughly a 90% chance that the audit can stop without additional sampling, if
the reported results are correct.

The value of p0 should be adjusted to account for ballots that have votes for
neither w nor ` (or for both w and `). If r = Nu

N is the fraction of such ballots,
the initial sampling rate p0 should be inflated by a factor of 1

1−r . For example,
if half of the ballots were undervotes or invalid votes, then the sampling rate
would need to be doubled to achieve the same power as if all of the ballots were
valid votes for either w or `.

6 Implementation

6.1 Election Night Auditing

Previous approaches to auditing require a sampling frame (possibly stratified,
e.g., by mode of voting or county). That requires knowing how many ballots
there are in each stratum. In contrast, Bernoulli sampling makes it possible to

6 The distribution of the sample size is skewed to the right: the expected sample size
is generally larger than the median sample size.
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start the audit at polling places immediately after the last vote has been cast in
that polling place, without even having to count the ballots cast in the polling
place. This has several advantages:

1. It parallelizes the auditing task and can take advantage of staff (and ob-
servers) who are already on site at polling places.

2. It takes place earlier in the chain of custody of the physical ballots, before the
ballots are exposed to some risks of loss, addition, substitution, or alteration.

3. It may add confidence to election-night result reporting.

The benefit is largest if p0 is large enough to allow the audit to complete
without escalating. Since reported margins will not be known on election night,
p0 might be based on pre-election polls, or set to a fixed value. There is, of
course, a chance that the initial sample will not suffice to confirm outcomes,
either because the true margins are smaller than anticipated, or because the
election outcome is in fact incorrect.

There are reasons polling-place BBP audits might not be desirable.

1. Pollworkers, election judges, and observers are likely to be tired and ready
to go home when polls close.

2. The training required to conduct and to observe the audit goes beyond what
poll workers and poll watchers usually receive.

3. Audit data need to be captured and communicated reliably to a central
authority to compute the risk (and possibly escalate the audit) after election
results are reported.

6.2 Vote-by-mail and Provisional Ballots

The fact that Bernoulli sampling is a “streaming” algorithm may help simplify
logistics compared with other sampling methods. For instance. Bernoulli sam-
pling can be used with vote-by-mail (VBM) ballots. Bernoulli sampling can also
be used with provisional ballots. VBM and provisional ballots can be sampled
as they arrive (after signature verification), or aggregated, e.g., daily or weekly.
Ballots do not need to be opened or examined immediately in order to be in-
cluded in the sample: they can be set aside and inspected after election day
or after their provisional status has been adjudicated. Any of these approaches
yields a Bernoulli sample of all ballots cast in the election, provided the same
value(s) of p are used throughout.

6.3 Geometric Skipping

In principle, one can implement Bernoulli sampling by actually rolling dice, or by
assigning a U [0, 1] random number to each ballot, independently across ballots.
A ballot is in the sample if and only if its associated random number is less than
or equal to p.

However, that places an unnecessarily high burden on the quality of the pseu-
dorandom number generator—or on the patience of the people responsible for
selecting ballots by mechanical means, such as by rolling dice. If the ballots are
in physical groups (e.g., all ballots cast in a precinct), it can be more efficient to
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put the ballots into some canonical order (for instance, the order in which they
are bundled or stacked) and to rely on the fact that the waiting times between
successes in independent Bernoulli(p) trials are independent Geometric(p) ran-
dom variables: the chance that the next time the coin lands heads will be kth
tosses after the current toss is p(1− p)k−1.

To select the sample, instead of generating a Bernoulli random variable for
every ballot, we suggest generating a sequence of geometric random variables
Y1, Y2, . . . The first ballot in the sample is the one in position Y1 in the group,
the second is the one in position Y1+Y2, and so on. We continue in this way until
Y1 + . . . + Yj is larger than the number of ballots in the group. This geometric
skipping method is implemented in the software we provide.

6.4 Pseudorandom Number Generation

To draw the sample, we propose using a cryptographically secure PRNG based
on the SHA-256 hash function, setting the seed using 20 rolls of 10-sided dice, in
a public ceremony. This is the method that the State of Colorado uses to select
the sample for risk-limiting audits.

This is a good choice for election audits for several reasons. First, given the
initial seed, anyone can verify that the sequence of ballots audited is correct.
Second, unless the seed is known, the ballots to be audited are unpredictable,
making it difficult for an adversary to “game” the audit. Finally, this family of
PRNGs produces high-quality pseudorandomness.

Implementations of SHA-256-based PRNGs are available in many languages,
including Python and Javascript. The code we provide for geometric skipping
relies on the cryptorandom Python library, which implements such a PRNG.

While Colorado sets the seed for the entire state in a public ceremony, it
may be more secure to generate seeds for polling-place audits locally, after the
ballots have been collated into stacks that determine their order for the purpose
of the audit. If the seed were known before the order of the ballots was fixed, an
adversary might be able to arrange that the ballots selected for auditing reflect
a dishonest outcome.

While the sequence of ballots selected by this method is verifiable, there is
no obvious way to verify post facto that the ballots examined were the correct
ones. Only observers of the audit can verify that. Observers’ job would be easier
if ballots were pre-stamped with (known) unique identifiers, but that might
compromise vote anonymity.

7 Evaluation

As discussed in Section 5, we expect that workload (total number of ballots ex-
amined) for Bernoulli ballot polling to be approximately the same as BRAVO
ballot polling. Figure 2 compares the fraction of ballots examined for BRAVO
audits and BBP for a 2-candidate contest, estimated by simulation. The simula-
tions use contest sizes of 10,000 and 1,000,000 ballots, each of which has either a
valid vote for the winner or a valid vote for the loser. The percentage of votes for
the winner ranges from 99% (almost all the votes go to the winner) to 50% (a
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Fig. 2: Simulated quantiles of sample sizes by fraction of votes for the
winner for a two candidate race in elections with 10,000 ballots and 1 million
ballots, for BRAVO ballot-polling audits (BPA) and Bernoulli ballot polling
audits (BBP), for various risk-limits. The simulations assume every ballot has a
valid vote for one of the two candidates.

tie). The methods produce similarly shaped curves; BBP requires slightly more
ballots than BRAVO.

As the workload of BRAVO and BBP are similar, the cost of running a
Bernoulli audit should be similar to BRAVO. There are likely other efficiencies to
Bernoulli audits, e.g., if the first stage of the audit can be completed on election
night in parallel, it might result in lower cost as election workers and observers
would not have to assemble in a different place and time for the audit. Even if
the cost were somewhat higher, that might be offset by advantages discussed in
Section 8.

7.1 Empirical Data

We evaluate BBP using precinct-level data from the 2016 U.S. presidential elec-
tion, collected from OpenElections (OpenElections, 2018) or by hand where that
dataset was incomplete. If the reported margins are correct, BBP with a sam-
pling rate of p0 = 1% and a risk-limit of 5% would have a 99% or higher chance
of confirming the outcome in 42 states. The mean sample size per-precinct for
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this method is about 10 ballots, indicating that if the audit is conducted in-
precinct the workload will be fairly minute. There is thus a large probability
that if the election outcomes in those states are correct, they would not have to
audit additional ballots beyond the initial sample.

8 Discussion

Bernoulli ballot polling has a number of practical advantages. We have discussed
several throughout the paper, but we review all of them here:

– It reduces the need for a ballot manifest: ballots can be stored in any order,
and the number of ballots in a given container or bundle does not need to
be known to draw the sample.

– The work can be conducted in parallel across polling places, and can be
performed by workers (and observed by members of the public) already in
place on election day.

– The same sampling method can be used for polling places, vote centers,
VBM, and provisional ballots, without the need to stratify the sample ex-
plicitly.

– If the initial sampling rate is adequate, the winners can be confirmed shortly
after voting finishes—perhaps even at the same time that results are announced—
possibly increasing voter confidence.

– When a predetermined expected sampling rate is used, the labor required can
be estimated in advance, assuming escalation is not required. With appro-
priate parameter choices, escalation can be avoided except in unusually close
races, or when the reported outcome is wrong. This helps election officials
plan.

– If the sampling rate is selected after the reported margin is known, officials
can choose a rate that makes escalation unlikely unless the reported electoral
outcome is incorrect.

– The sampling approach is conceptually easy to grasp: toss a coin for each
ballot. The audit stops when the sample shows a sufficiently large margin
for every winner over every loser, where “sufficiently large” depends on the
sample size.

– The approach may have security advantages, since waiting longer to audit
would leave more opportunity for the paper ballots to be compromised or
misplaced. Workers will need to handle the ballot papers in any case to move
them from the ballot boxes into long-term storage.

Officials selecting an auditing method should weigh these advantages against
some potential downsides of our approach, particularly when applied in polling
places on election night. Poll workers are already very busy, and they may be
too tired at the end of the night to conduct the sampling procedure or to do
it accurately. When audits are conducted in parallel at local polling places, it
is impossible for an individual observer to witness all the simultaneous steps.
Moreover, estimating the sample size before margins are known makes it likely
that workers will end up sampling more (or fewer) ballots than necessary to
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achieve the risk limit. While sampling too little can be overcome with escalation,
the desire to avoid escalation may make officials err on the side of caution and
sample more than predicted to be necessary, further reducing expected efficiency.

8.1 Previous Work

Bernoulli sampling is a special case of Poisson sampling, where sampling units
are selected independently, but not necessarily with equal probability. Aslam
et al. (2008) propose a Poisson sampling method in which the probability of
selecting a given unit is related to a bound on the error that unit could hide.
Their method is not an RLA: it is designed to have a large chance of detecting
at least one error if the outcome is incorrect, rather than to limit the risk of
certifying an incorrect outcome per se.

8.2 Stratified Audits

Independent Bernoulli samples from different populations using the same rate
still yields a Bernoulli sample of the overall population, so the math presented
here can be used without modification to audit contests that cross jurisdictional
boundaries. Bernoulli samples from different strata using different rates can be
combined using SUITE (Ottoboni et al., 2018), which can be applied to stratum-
wise P -values from any method, including BBP. (This requires minor modifica-
tions to the P -value calculations, to test arbitrary hypotheses about the margin
in each stratum rather than to test for ties; the derivations in Ottoboni et al.
(2018) apply, mutatis mutandis.) If some ballots are tabulated using technology
that makes a more efficient auditing approach possible, such as a ballot-level
comparison audit, it may be advantageous to stratify the ballots into groups,
sample using Bernoulli sampling in some and a different method in others, and
use SUITE to combine the results into an overall RLA.

9 Conclusion

We presented a new ballot-polling RLA based on Bernoulli sampling, relying
on Wald’s sequential probability ratio test. The new method performs similarly
to the BRAVO ballot-polling audit but has several logistical advantages, in-
cluding that it can be parallelized and conducted on election night, which may
reduce cost and increase security. The method easily incorporates VBM and
provisionally cast ballots, and may eliminate the need for stratification in many
circumstances. Bernoulli ballot-polling with just a 1% sampling rate would have
sufficed to confirm the 2016 U.S. Presidential election results in the vast ma-
jority of states, if the reported results were correct. The practical benefits and
conceptual simplicity of Bernoulli ballot-polling may make it simpler to conduct
risk-limiting audits in real elections.
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