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Abstract

Population protocols are a popular model of distributed computing, in which randomly-interacting
agents with little computational power cooperate to jointly perform computational tasks. Inspired by
developments in molecular computation, and in particular DNA computing, recent algorithmic work has
focused on the complexity of solving simple yet fundamental tasks in the population model, such as leader
election (which requires stabilization to a single agent in a special “leader” state), and majority (in which
agents must stabilize to a decision as to which of two possible initial states had higher initial count).
Known results point towards an inherent trade-off between the time complexity of such algorithms, and
the space complexity, i.e. size of the memory available to each agent.

In this paper, we explore this trade-off and provide new upper and lower bounds for majority and
leader election. First, we prove a unified lower bound, which relates the space available per node with the
time complexity achievable by a protocol: for instance, our result implies that any protocol solving either
of these tasks for n agents using O(log log n) states must take Ω(n/polylogn) expected time. This is the
first result to characterize time complexity for protocols which employ super-constant number of states
per node, and proves that fast, poly-logarithmic running times require protocols to have relatively large
space costs.

On the positive side, we give algorithms showing that fast, poly-logarithmic stabilization time can be
achieved using O(log2 n) space per node, in the case of both tasks. Overall, our results highlight a time
complexity separation between O(log log n) and Θ(log2 n) state space size for both majority and leader
election in population protocols, and introduce new techniques, which should be applicable more broadly.
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1 Introduction
Population protocols [AAD+06] are a model of distributed computing in which agents with little computa-
tional power and no control over the interaction schedule cooperate to collectively perform computational
tasks. While initially introduced to model animal populations [AAD+06], they have proved a useful ab-
straction for wireless sensor networks [PVV09, DV12], chemical reaction networks [CCDS14], and gene
regulatory networks [BB04]. A parallel line of applied research has shown that population protocols can be
implemented at the level of DNA molecules [CDS+13], and that they are equivalent to computational tasks
solved by living cells in order to function correctly [CCN12].

A population protocol consists of a set of n finite-state agents, interacting in pairs, where each interaction
may update the local state of both participants. A configuration captures a “global state” of the system at any
given time, and formally can be described by the counts of nodes in each state. The protocol starts in a valid
initial configuration, and defines the outcomes of pairwise interactions. The goal is to have all agents stabilize
to some configuration, representing the output of the computation, which satisfies some predicate over the
initial configuration of the system. For example, one fundamental task is majority (consensus) [AAE08b,
PVV09, DV12], in which agents start in one of two input states A and B, and must stabilize on a decision as
to which state has a higher initial count.1 A complementary fundamental task is leader election [AAE08a,
AG15, DS15], which requires the system to stabilize to final configurations in which a single agent is in a
special leader state.

The set of interactions occurring in each step is usually assumed to be decided by a probabilistic sched-
uler, which picks the next pair to interact uniformly at random. One complexity measure is parallel time,
defined as the number of pairwise interactions until stabilization, divided by n, the number of agents. Another
is space complexity, defined as the number of distinct states that an agent can represent internally.

There has been considerable interest in the complexity of fundamental tasks such as leader election and
consensus in the population model. In particular, a progression of deep technical results [Dot14,CCDS14] has
culminated in showing that leader election in sublinear time is impossible for protocols which are restricted
to a constant number of states per node [DS15]. At the same time, it is now known that leader election can be
solved in O(log3 n) time via a protocol requiring O(log3 n) states per node [AG15]. For the majority task,
the space-time complexity gap is much wider: sublinear time is impossible for protocols restricted to having
at most four states per node [AGV15], but there exists a poly-logarithmic time protocol which requires a
number of states per node that is linear in n [AGV15].

These results hint towards a trade-off between the running time of a population protocol and the space, or
number of states, available at each agent. This relation is all the more important since time efficiency is critical
in practical implementations, while technical constraints limit the number of states currently implementable
in a molecule [CDS+13]. (One such technical constraint is the possibility of leaks, i.e. spurious creation of
states following an interaction [TWS15]. In DNA implementations, the more states a protocol implements,
the higher the likelihood of a leak, and the higher the probability of divergence.) However, the characteristics
of the time-space trade-off in population protocols are currently an open question.
Contribution: In this paper, we take a step towards answering this question. First, we exhibit a general
trade-off between the number of states available to a population protocol and its time complexity, which
characterizes which deterministic predicates can be computed efficiently with limited space. Further, we give
new and improved algorithms for majority and leader election, tight within poly-logarithmic factors. Our
results, and their relation to previous work, are summarized in Figure 1.
Lower Bounds: When applied to majority, our lower bound proves that there exist constants c ∈ (0, 1) and
K ≥ 1 such that any protocol using λn ≤ c log logn states must take Ω(n/(Kλn + εn)2)) time, where εn
is the difference between the initial counts of the two competing states. For example, any protocol using

1In this paper, we will focus on the exact majority task, in which the protocol must return the correct decision in all executions,
as opposed to approximate majority, where the wrong decision might be returned with low probability [AAE08b].
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Problem Type Expected Time Bound Number of States Reference

Exact Majority
ε = 1/n

Algorithm O(n log n) 4 [DV12, MNRS14]
Algorithm O(log2 n) Θ(n) [AGV15]

Lower Bound Ω(n) ≤ 4 [AGV15]
Lower Bound Ω(log n) any [AGV15]

Leader Election Algorithm O(log3 n) O(log3 n) [AG15]
Lower Bound Ω(n) O(1) [DS15]

Exact Majority Lower Bound Ω(n/polylogn) < 1/2 log log n This paperLeader Election
Exact Majority Algorithm O(log3 n) O(log2 n) This paper
Leader Election Algorithm O(log5.3 n log log n) O(log2 n) This paper

Figure 1: Summary of results and relation to previous work.

constant states and supporting a constant initial difference necessarily takes linear time.
For leader election, we show that there exist constants c ∈ (0, 1) and K ≥ 1 such that any protocol

using λn ≤ c log logn states and electing at most `(n) leaders, requires Ω(n/(Kλn · `(n)2)) expected time.
Specifically, any protocol electing one leader using ≤ c log log n states requires Ω(n/polylog n) time.
Algorithms: On the positive side, we give new poly-logarithmic-time algorithms for majority and leader
election which use O(log2 n) space. Our majority algorithm, called Split-Join, runs in O(log3 n) time both
in expectation and with high probability, and uses O(log2 n) states per node. The only previosly known
algorithms to achieve sublinear time required Θ(n) states per node [AGV15], or exponentially many states
per node [BFK+16]. Further, we give a new leader election algorithm called Lottery-Election, which uses
O(log2 n) states, and stabilizes in O(log5.3 n log logn) parallel time in expectation and O(log6.3 n) parallel
time with high probability. This reduces the state space size by a logarithmic factor over the best known
algorithm [AG15], at the cost of a poly-logarithmic running time increase with respect to the O(log3 n)
bound of [AG15].

A key improvement with respect to previous work is that these time-space bounds hold independently
of the initial configuration: for instance, the AVC algorithm [AGV15] could stabilize in poly-logarithmic
time and using poly-logarithmic space under a restricted set of initial configurations, e.g. assuming that the
discrepancy ε between the two initial states is large. Our Split-Join algorithm can achieve this for worst-case
initial configurations, i.e. ε = 1/n.
Techniques: The core of the lower bound is a two-step argument. First, we prove that a hypothetical al-
gorithm which would stabilize faster than allowed by the lower bound may reach “stable” configurations2

in which certain low-count states can be “erased,” i.e., may disappear completely following a sequence of
reactions. In the second step, we engineer examples where these low-count states are exactly the set of all
possible leaders (in the case of leader election protocols), or a set of nodes whose state may sway the outcome
of the majority computation (in the case of consensus). This implies a contradiction with the correctness of
the computation. Technically, our argument employs the method of bounded differences to obtain a stronger
version of the main density theorem of [Dot14], and develops a new technical characterization of the sta-
ble states which can be reached by a protocol, which does not require constant bounds on state space size,
generalizing upon [DS15]. The argument provides a unified analysis: the bounds for each task in turn are
corollaries of the main theorem characterizing the existence of certain stable configurations.

On the algorithmic side, we introduce a new synthetic coin technique, which allows nodes to generate
almost-uniform local coins within a constant number of interactions, by exploiting the randomness in the
scheduler, and in particular the properties of random walks on the hypercube. Synthetic coins are useful for

2Roughly, a configuration is stable if it may not generate any new types of states.
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instance by allowing nodes to estimate the total number of agents in the system, and may be of independent
interest as a way of generating randomness in a constrained setting.

The Split-Join majority protocol starts from the following idea: nodes can encode their output opinions
and their relative strength as integer values: the value is positive if the node supports a majority of A, and
negative if the node supports a majority of B. The higher the absolute value, the higher the “confidence” in
the corresponding outcome. Whenever two nodes meet, they average their values, rounding to integers. This
template has been used successfully in [AGV15] to achieve consensus in poly-logarithmic time, but doing
so requires a state space of size at least linear n, as all values between 1 and n may need to be represented.
Here we introduce a new quantized averaging technique, by which nodes represent their output estimates
by encoding them as powers of two. Again, opinions are averaged on each interaction. We prove that our
quantization preserves correctness, and allows for fast (poly-logarithmic) stabilization, while reducing the
size of the state space almost exponentially.

The Lottery-Election protocol follows the basic and common convention that every agent starts as a po-
tential leader, and whenever two leaders interact, one drops out of contention. However, once only a constant
number of potential leaders remain, they take a long time to interact, implying super-linear stabilization time.
To overcome this problem, [AG15] introduced a propagation mechanism, by which contenders compete by
comparing their seeding, and the nodes who drop out of contention assume the identity of their victor, causing
nodes still in contention but with lower seeding to drop out. Here we employ synthetic coins to “seed” poten-
tial leaders randomly, which lets us reduce the number of leaders at an accelerated rate. This in turn reduces
the maximum seeding that needs to be encoded, and hence the number of states required by the algorithm.
Implications: Our lower bound can be seen as bad news for algorithm designers, since it show that stabi-
lization is slow even if the protocol implements a super-constant number of states per node. On the positive
side, the achievable stabilization time improves quickly as the size of the state space nears the logarithmic
threshold: in particular, fast, poly-logarithmic time can be achieved using poly-logarithmic space.

It is interesting to note that previous work by Chatzigiannakis et al. [CMN+11] identified Θ(log log n)
as a space complexity threshold in terms of the computational power of population protocols, i.e. the set of
predicates that such algorithms can compute. In particular, their results show that variants of such systems in
which nodes are limited to o(log log n) space per node are limited to only computing semilinear predicates,
whereas O(log n) space is sufficient to compute general symmetric predicates. By contrast, we show a
complexity separation between algorithms which use O(log log n) space per node, and algorithms employing
Ω(log n) space per node.

2 Preliminaries
Population Protocols: A population protocol is a set of n ≥ 2 agents, or nodes, each executing as a deter-
ministic state machine with states from a finite set Λn, whose size might depend on n. The agents do not
have identifiers, so two agents in the same state are identical and interchangeable. Thus, we can represent
any set of agents simply by the counts of agents in every state, which we call a configuration. Formally, a
configuration c is a function c : Λn → N, where c(s) represents the number of agents in state s in configura-
tion c. We let |c| stand for the sum, over all states s ∈ Λn, of c(s), which is the same as the total number of
agents in configuration c. For instance, if c is a configuration of all agents in the system, then c describes the
global state of the system, and |c| = n.

Further, we define the set In of all allowed initial configurations of the protocol for n agents, a finite set of
output symbolsO, a transition function δn : Λn×Λn → Λn×Λn, and an output function γn : Λn → O. The
system starts in one of the initial configurations in ∈ In (clearly, |in| = n), and each agent keeps updating
its local state following interactions with other agents, according to the transition function δn. The execution
proceeds in steps, where in each step a new pair of agents is selected uniformly at random from the set of all
pairs. Each of the two chosen agents updates its state according to the function δn.

A population protocol P will be a sequence of protocols P2,P3, . . . , where for each n ≥ 2 we have
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Pn = (Λn, In, δn, γn), defining the protocol states, initial configurations, transitions and output mapping,
respectively, for n agents. We say that a protocol is monotonic if, for all i ≥ 1, (1) the number of states
cannot decrease for higher node count i, i.e., |Λi| ≤ |Λi+1|, and (2) if the state counts are the same, then the
protocol is the same, i.e. if |Λi| = |Λj |, then Λi = Λj , Ii = Ij , δi = δj and γi = γj .

We say that a monotonic population protocol P is input-additive, if for all in ∈ In with |Λn| = |Λ2n|
(which by monotonicity implies Pn = P2n), it holds that in + in ∈ I2n, i.e. doubling the number of agents
in each state still leads to a valid initial configuration in a system of 2n agents.

A configuration c′ is reachable from a configuration c, denoted c =⇒ c′, if there exists a sequence
of consecutive steps (interactions from δn between pairs of agents) leading from c to c′. If the transition
sequence is p, we will also write c =⇒p c

′. We call a configuration c the sum of configurations c1 and c2 and
write c = c1 + c2, iff c(s) = c1(s) + c2(s) for all states s ∈ Λn.
Leader Election: Fix an n ≥ 2. In the leader election problem, all agents start in the same initial state An,
i.e. In = {in} with in(An) = n. The output set is O = {Win,Lose}.

We say that a configuration c has a single leader if there exists some state s ∈ Λn with γn(s) = Win
and c(s) = 1, such that for any other state s′ 6= s, c(s′) > 0 implies γn(s′) = Lose . A population protocol
Pn solves leader election within r steps with probability 1− φ, if, with probability 1− φ, any configuration
c reachable from in by the protocol within ≥ r steps has a single leader.
The Majority Problem: Fix an n ≥ 2. In the majority problem, we have two initial states An, Bn ∈ Λn,
and In consists of all configurations where each of the n agents is either in An or Bn. The output set is
O = {WinA,WinB}. Given an initial configuration in ∈ In let a = in(An) and b = in(Bn) be the count of
the two initial states, and let εn = |a− b| denote the initial relative advantage of the majority state.

We say that a configuration c correctly outputs the majority decision for in, when for any state s ∈ Λn,
if a > b then c(s) > 0 implies γn(s) = WinA, and if b > a then c(s) > 0 implies γn(s) = WinB . (The
output in case of an initial tie is arbitrary between the two.) A population protocol Pn solves the majority
problem from in within ` steps with probability 1 − φ, if for any configuration c reachable from in by the
protocol with ≥ ` steps, with probability 1 − φ, the protocol correctly outputs the majority for in. In this
paper we consider the exact majority task, as opposed to approximate majority [AAE08b], which allows the
wrong output with some probability.

Finally, a population protocol P solves a task if, for every n ≥ 2, the protocol instantiation Pn solves the
task. The complexity measures for a protocol (defined below), are functions of n.
Stabilization: A configuration c of n agents has a stable leader, if for all c′ reachable from c, it holds that
c′ has a single leader. Analogously, a configuration c has a stable correct majority decision for in, if for all
c′ with c =⇒ c′, c′ correctly outputs the majority decision for in. We say that a protocol stabilizes when it
reaches such a stable output configuration.
Complexity measures: The above setup considers sequential interactions; however, interactions between
pairs of distinct agents are independent, and are usually considered as occurring in parallel. It is customary
to define one unit of parallel time as n consecutive steps of the protocol. We are interested in the expected
parallel time for a population protocol to stabilize, i.e. the total number of (sequential) interactions from the
initial configuration required to reach a configuration with a stable leader or with a stable correct majority
decision, divided by n. We also refer to this quantity as the stabilization time. If the expected time is finite,
then we say that population protocol stably elects a leader (or stably computes majority decision). The space
complexity of a protocol is the number of states in the protocol with respect to n, i.e. |Λn|.

3 Lower Bound
Our definition of population protocols allows the protocol to arbitrarily change its structure as the number of
states changes. This generality strengthens the lower bound, and to our knowledge, the definition covers all
known population protocols.
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Technical machinery: We now lay the groundwork for our main argument by proving a set of technical
lemmas. In the following, we assume n to be fixed; Λn is the set of all states of the protocol. Let S be an
arbitrary set of states. Abusing notation, we denote by δn(S, S) the set of all states which can be generated by
transitions between states in S. Then, we let S0 be the set of states in the initial configurations of the protocol
and for all integers k ≥ 1, we define inductively the set of states Sk = Sk−1 ∪ δn(Sk−1, Sk−1). Simply put,
Sk is the set of all states which can be generated by the protocol after k steps.

Assume without loss of generality that all states in Λn actually occur in some configurations reachable by
the protocol Pn from some initial configuration. Then, it holds that S|Λn|−1 = S|Λn| = . . . , and S|Λn|−1 =
Λn. We say that a configuration c is X-rich with respect to a set of states S if in the configuration c all states
in S have count ≥ X . A configuration is dense with respect to a set of states S if it is n/M -rich with respect
to S, for some constant M > 1. We call an initial configuration fully dense, if it is dense with respect to
the set of initial states S0: practically, such configurations contain at least n/M agents in each of the initial
states. We now prove the following statement, which says that all protocols with a limited state count will
end up in a configuration in which all reachable states are present in large count. This lemma generalizes the
main result of [Dot14] to a super-constant state space.

Lemma A.1. For all population protocolsA using |Λn| ≤ 1/2 log log n states, starting in a fully dense initial
configuration, with probability≥ 1−(1/n)0.99, there exists a step j such that the configuration reached after
j steps is n0.99-rich with respect to Λn.

Fix a function f : N → R+. Fix a configuration c, and states r1 and r2 in c. A transition α : (r1, r2) →
(z1, z2) is an f -bottleneck for c, if c(r1) · c(r2) ≤ f(|c|). This bottleneck transition implies that the prob-
ability of a transition (r1, r2) → (z1, z2) is bounded. Hence, proving that transition sequences from initial
configuration to final configurations contain a bottleneck implies a lower bound on the stabilization time.
Conversely, the next lemma shows that, if a protocol stabilizes fast, then it must be possible to stabilize using
a transition sequence which does not contain any bottleneck.

Lemma A.3. Let P be a population protocol with |Λn| ≤ 1/2 log log n states, and let Dn ⊆ In be a non-
empty set of fully dense initial configurations. Fix a function f . Assume that for sufficiently large n, P
stabilizes in expected time o

(
n

f(n)|Λn|2

)
from all in ∈ Dn. Then, for all sufficiently large m ∈ N there is a

configuration xm with m agents, reachable from some i ∈ Dm and a transition sequence pm, such that:

1. xm(s) ≥ m0.99 for all s ∈ Λm,

2. xm =⇒pm ym, where ym is a stable output configuration, and

3. pm has no f -bottleneck.

Hence, fast stabilization from a sufficiently rich configuration requires the existence of a bottleneck-free
transition sequence. The next transition ordering lemma, due to [CCDS14], proves a property of such a
transition sequence: there exists an order over all states whose counts decrease more than some set threshold
such that, for each of these states dj , the sequence contains at least a certain number of a specific transition
that consumes dj , but does not consume or produce any states d1, . . . , dj−1 that are earlier in the ordering.

Lemma A.4. Fix b ∈ N, and let B = |Λn|2 · b + |Λn| · b. Let x, y : Λn → N be configurations of n agents,
such that for all states s ∈ Λn we have x(s) ≥ B2 and x =⇒q y via a transition sequence q without a
B2-bottleneck. Define

∆ = {d ∈ Λn | y(d) ≤ b}
to be the set of states whose count in configuration y is at most b. Then there is an order ∆ = {d1, d2, . . . , dk},
such that, for all j ∈ {1, . . . , k}, there is a transition αj of the form (dj , sj) → (oj , o

′
j) with sj , oj , o′j 6∈

{d1, . . . , dj}, and αj occurs at least b times in q.
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The Lower Bound Argument: Given a population protocol Pn, a configuration c : Λn → N and a function
g : N → N+, we define the sets Γg(c) = {s ∈ Λn | c(s) > g(|c|)} and ∆g(c) = {s ∈ Λn | c(s) ≤ g(|c|)}.
Intuitively, Γg(c) contains states above a certain count, while ∆g(c) contains state below that count. Notice
that Γg(c) = Λn −∆g(c).

The proof strategy is to first show that if a protocol stabilizes “too fast,” then it can also reach configura-
tions where all agents are in states in Γg(c). Recall that a configuration c is defined as a function Λn → N.
Let S ⊆ Λn be some subset of states such that all agents in configuration c are in states from S, formally,
{s ∈ Λn | c(s) > 0} ⊆ S. For notational convenience, we will write c>0 ⊆ S to mean the same.

Theorem 3.1. Let P be a monotonic input-additive population protocol using |Λn| ≤ 1/2 log log n states.
Let g : N→ N+ be a function such that g(n) ≥ 2|Λn| for all n and 6|Λn| · |Λn|2 · g(n) = o(n0.99).

Suppose P stabilizes in o
(

n
(6|Λn|·|Λn|3·g(n))2

)
time from any initial configuration, and that it has fully

dense initial configurations for all sufficiently large n. Then, for infinitely many m with |Λm| = . . . = |Λ3m|,
there exists an initial configuration of 2m agents i ∈ I2m and stable output configuration y ofm agents, such
that for any configuration u that satisfies the boundedness predicate B(m, y) below, it holds that i+u =⇒ z
where z>0 ⊆ Γg(y).

We say that a configuration u satisfies the boundedness predicate B(m, y) if 1) it contains between 0 and
m agents, 2) all agents in u are in states from ∆g(y), i.e. u>0 ⊆ ∆g(y), and 3) y(s) + u(s) ≤ g(m) for all
states s ∈ ∆g(y).

Proof. For simplicity, set b(n) = (6|Λn|+2|Λn|)·g(n), b2(n) = |Λn|2·b(n)+|Λn|·b(n), and f(n) = (b2(n))2.
The theorem statement implies that the protocol stabilizes in o

(
n

f(n)|Λn|2

)
time. By Lemma A.3, for all

sufficiently large m we can find configurations of m agents im, xm, y : Λm → N, such that:
• im ∈ Im is a fully dense initial configuration of m agents.
• im =⇒ xm =⇒pm y, where y is a stable final configuration, as desired, and the transition sequence
pm does not contain an f -bottleneck (i.e. a (b2)2-bottleneck).
• ∀s ∈ Λm : xm(s) ≥ b2(m). (Here, we use the assumption on the function g.)
Moreover, because |Λn| ≤ 1/2 log log n for sufficiently large n, for infinitely manym it also additionally

holds that |Λm| = |Λm+1| = . . . = |Λ3m| (otherwise |Λn| would grow at least logarithmically in n). This,
due to monotonicity implies that population protocols Pm,Pm+1, . . . ,P3m are all the same.

Consider any suchm. Then, we can invoke Lemma A.4 with xm, y, transition sequence pm and parameter
b = b(m). The definition of ∆ in the lemma statement matches ∆b(y), and b2 matches b2(m). Thus, we get
an ordering of states ∆b(y) = {d1, d2, . . . , dk} and a corresponding sequence of transitions α1, α2, . . . , αk,
where each αj is of the form (dj , sj) → (oj , o

′
j) with sj , oj , o′j 6∈ {d1, d2, . . . , dj}. Finally, each transition

αj occurs at least b(m) = (6|Λm| + 2|Λm|) · g(m) times in pm.
We will now perform a set of transformations on the transition sequence pm, called surgeries, with the

goal of converging to a desired type of configuration. The next two claims specify these transformations,
which are similar to the surgeries used in [DS15], but with some key differences due to configuration u and
the new general definitions of Γ and ∆. The proofs are provided in the appendix. Configuration u is defined
as in the theorem statement. For brevity, we use Γg = Γg(y), ∆g = ∆g(y), Γb = Γb(y) and ∆b = ∆b(y).

Claim A.5. There exist configurations e : Λm → N and z′ with z′>0 ⊆ Γg, such that e + u + xm =⇒ z′.
Moreover, we have an upper bound on the counts of states in e: ∀s ∈ Λm : e(s) ≤ 2|Λm| · g(m).

The configuration e+ u+ xm has at most 2|Λm| · g(m) · |Λm|+ g(m) +m agents, which is less than 3m for
sufficiently large m. The state transitions used here and everywhere below are from δm = . . . = δ3m.

For any configuration e : Λm → N, let e∆ be its projection onto ∆, i.e. a configuration consisting of only
the agents from e in states ∆. We can define eΓ analogously. By definition, eΓ = e− e∆.
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Claim A.6. Let e be any configuration satisfying ∀s ∈ Λm : e(s) ≤ 2|Λm| · g(m). There exist configurations
p and w, such that p>0 ⊆ ∆b, w>0 ⊆ Γg and p+ xm =⇒ p+ w + e∆g . Moreover, for counts in p, we have
that ∀s ∈ Λm : p(s) ≤ b(m) and for counts in wΓg , we have ∀s ∈ Γg : w(s) ≥ 2|Λm| · g(m).

Let our initial configuration i be im+im, which because im is fully dense and because of input-additivity,
must also be a fully dense initial configuration from I2m. Trivially, i =⇒ xm + xm. Let us apply Claim A.6
with e as defined in Claim A.5, but use one xm instead of p. This is possible because ∀s ∈ Λm : x(s) ≥
b2(m) ≥ b(m) ≥ p(s). Hence, we get xm+xm =⇒ xm+w+e∆g = xm+e+(w−eΓg). The configuration
w − eΓg is well-defined because both w and eΓg contain agents in states in Γg, with each count in w being
larger or equal to the respective count in eΓg , by the bounds from the claims.

Finally, by Claim A.5, we have u + xm + e + (w − eΓg) =⇒ z′ + (w − eΓg). We denote the resulting
configuration (with all agents in states in Γg) by z, and have i =⇒ z, as desired.

The following lemma is a technical tool that critically relies on our definitions of Γ and ∆.

Lemma A.7. Consider a population protocol in a system with any fixed number of agents n, and an arbitrary
fixed function h : N→ N+ such that h(n) ≥ 2|Λn|. Let ξ(n) = 2|Λn|. For all configurations c, c′ : Λn → N,
such that c>0 ⊆ Γh(c) ⊆ Γξ(c

′), any state producible from c is also producible from c′. Formally, for any
state s ∈ Λn, c =⇒ y with y(s) > 0 implies c′ =⇒ y′ with y′(s) > 0.

Now we can prove the lower bounds on majority and leader election.

Corollary 3.2. Any monotonic population protocol with |Λn| ≤ 1/2 log log n states for all sufficiently large
number of agents n that stably elects at least one and at most `(n) leaders, must take Ω

(
n

144|Λn|·|Λn|6·`(n)2

)
expected parallel time to stabilize.

Proof. We set g(n) = 2|Λn| · `(n). In the initial configurations for leader election all agents are in the same
starting state. Hence, all initial configurations are fully dense, and all monotonic population protocols for
leader election have to be input-additive.

Assume for contradiction that the protocol stabilizes in parallel time o
(

n
144|Λn|·|Λn|6·`(n)2

)
. For all n, In

contains the only initial fully dense configuration with n agents in the same initial state. Using Theorem 3.1
and setting u to be a configuration of zero agents, we can find infinitely many configurations i and z of 2m
agents, such that (1) i =⇒ z, (2) i ∈ I2m, (3) |Λm| = |Λ2m| and by monotonicity, the same protocol is used
for all number of agents between m and 2m, (4) z>0 ⊆ Γg(y), i.e. all agents in z are in states that each have
counts of at least 2|Λm| · `(m) in some stable output configuration y (of |y| = m agents).

Because y is a stable output configuration of a protocol that elects at most `(m) leaders, none of these
states in Γg(y) that are present in strictly larger counts (2|Λm| · `(m) > `(m)) in y and z can be leader
states (i.e. γm = γ2m maps these states to output Lose). Therefore, the configuration z does not contain a
leader. This is not sufficient for a contradiction, because a leader election protocol may well pass through a
leaderless configuration before stabilizing to a configuration with at most `(m) leaders. We prove below that
any configuration reachable from z must also have zero leaders. This implies an infinite time on stabilization
from a valid initial configuration i (as i =⇒ z) and completes the proof by contradiction.

If we could reach a configuration from z with an agent in a leader state, then by Lemma A.7, from a
configuration c′ that consists of 2|Λm| agents in each of the states in Γg(y), it is also possible to reach a
configuration with a leader, let us say through transition sequence q. Recall that the configuration y contains
at least 2|Λm| · `(m) agents in each of these states in Γg(y), hence there exist disjoint configurations c′1 ⊆ y,
c′2 ⊆ y, etc, . . . , c′`(m) ⊆ y contained in y and corresponding transition sequences q1, q2, . . . , q`(m), such
that qj only affects agents in c′j and leads one of the agents in c′j to become a leader. Configuration y is a
output configuration so it contains at least one leader agent already, which does not belong to any c′j because
as mentioned above, all agents in c′j are in non-leader states. Therefore, it is possible to reach a configuration
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from y with `(m) + 1 leaders via a transition sequence q1 on the c′1 component of y, followed by q2 on c′2,
etc, q`(m) on c′`(m), contradicting that y is a stable output configuration.

The proof of the majority lower bound follows similarly, and is deferred to the Appendix.

Corollary A.8. Any monotonic population protocol with |Λn| ≤ 1/2 log log n states for all sufficiently large
number of agents n that stably computes correct majority decision for initial configurations with majority
advantage εn, must take Ω

(
n

36|Λn|·|Λn|6·max(2|Λn|,εn)2

)
expected parallel time to stabilize.

4 Synthetic Coin Flips
The state transition rules in population protocols are deterministic, i.e. the interacting nodes do not have
access to random coin flips. In this section, we introduce a general technique that extracts randomness from
the schedule and after only constant parallel time, allows the interactions to rely on close-to-uniform synthetic
coin flips. This turns out to be an useful gadget for designing efficient protocols.

Suppose that every node in the system has a boolean parameter coin , initialized with zero. This extra
parameter can be maintained independently of the rest of the protocol, and only doubles the state space.
When agents x and y interact, they both flip the values of their coins. Formally, x′.coin ← 1 − x.coin and
y′.coin ← 1− y.coin , and the update rule is fully symmetric.

The nodes can use the coin value of the interaction partner as a random bit in a randomized algorithm.
Clearly, these bits are not independent or uniform. However, we prove that with high probability the distri-
bution of coin quickly becomes close to uniform and remains that way. We use the concentration properties
of random walks on the hypercube, analyzed previously in various other contexts, e.g. [AR16]. We also
note that a similar algorithm is used by Laurenti et al. [CKL16] to generate randomness in chemical reaction
networks, although they do not prove convergence bounds.

Theorem 4.1. For any i ≥ 0, let Xi be the number of coin values equal to one in the system after i inter-
actions. Fix interaction index k ≥ αn for a fixed constant α ≥ 2. For all sufficiently large n, we have that
Pr[|Xk − n/2| ≥ n/24α] ≤ 2 exp(−α

√
n/8).

Proof. We label the nodes from 1 to n, and represent their coin values by a binary vector of size n. Let
k0 = k−αn, and fix the vector v0 representing the coin values of the nodes after the interaction of index k0.
For example, if k0 = 0, we know v is a zero vector, because of the way the algorithm is initialized.

For 1 ≤ t ≤ αn, denote by Yt the pair of nodes that are flipped during interaction k0 + t. Then, given
v0 and Y1, . . . , Yαn, Xk can be computed deterministically. Moreover, it is important to note that Yj are
independent random variables and that changing any one Yj can only change the value of Xk by at most 4.
Hence, we can apply McDiarmid’s inequality [McD89], stated below.

Claim 4.2 (McDiarmid’s inequality). Let Y1, . . . , Ym be independent random variables and let X be a func-
tion X = f(Y1, . . . , Ym), such that changing variable Yj only changes the function value by at most cj .
Then, we have that

Pr[|X − E[X]| ≥ ε] ≤ 2 · exp

(
− 2ε2∑m

j=1 c
2
j

)
.

Returning to our argument, assume that the sum of coin values after interaction k−αn is fixed and represented
by the vector v0. In the above inequality, we set Xk = fv0(Y1, . . . , Yαn), ε = αn3/4 and cj = 4, for all j
from 1 to αn. We get that

Pr[|Xk − E[Xk|] ≥ αn3/4] ≤ 2 · exp(−α2√n/8).

Fixing v0 also fixes the number of ones among coin values in the system at that moment, which we will
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denote by x, i.e.

x :=

n∑
j=1

vj(k0) = Xk−αn.

We then notice that the following claim holds, whose proof is deferred to the Appendix.

Claim C.1. E[Xi+m | Xi = x] = n/2 + (1− 4/n)m · (x− n/2).

By Claim C.1 we have
E[Xk | Xk−αn = x] = n/2 + (1− 4/n)αn · (x− n/2).

Since 0 ≤ x ≤ n and (1− 4/n)αn ≤ exp(−4α), we have that
n/2− n/24α+1 ≤ E[Xk | Xk−αn = x] ≤ n/2 + n/24α+1.

For any fixed v, we can apply McDiarmid’s inequality as above, and get an upper bound on the probability
that Xk (given fixed v0), diverges from the expectation by at most αn3/4. But, as we just established, for any
v0, the expectation we get in the bound will be at most n/24α+1 away from n/2. Combining these and using
that n/24α+1 ≥ αn3/4 for all sufficiently large n gives the desired bound.

Approximate Counting: Synthetic coins can be used to estimate the number of agents in the system, as
follows. Each node executes the coin-flipping protocol, and counts the number of consecutive 1 flips it
observes, until the first 0. Each agent records the number of consecutive 1 coin flips as its estimates. The
agents then exchange their estimates, always adopting the maximum estimate. It is easy to prove that the
nodes will eventually stabilize to a number which is a constant-factor approximation of log n, with high
probability. This property is made precise in the proof of Lemma D.2.

5 The Lottery Leader Election Algorithm
Overview: We now present a leader election population protocol using O(log2 n) states. The protocol is
split conceptually into two stages: in the first lottery stage, each agent generates an individual payoff by
flipping synthetic coins. In the second competition stage, each agent starts as a potential leader, and proceeds
to compare a value associated with local state against that of each interaction partner. Of any two interacting
agents, the one with “larger” value wins, and remains in contention, while the other drops out and becomes
a minion. Importantly, a minion agent can no longer be a leader, but carries the value of its victor in future
interactions. Thus, if an agent still in contention meets a minion with higher value, it will drop out and
adopt the higher value. Similarly, a minion will always adopt the highest leader value it encounters. This
minion-based propagation mechanism has been used previously, where the value corresponded to interaction
counts [AG15]; here, we employ a more complex value function, which requires less states to store.

We now present the algorithm in detail. Initially, all nodes start in the same state, which is determined
by seven parameters: coin , mode , payoff , level , counter , phase and ones . The coin parameter stores the
synthetic coin value; it is binary, initially 0. The agent can be in one of four modes: seeding (preparing the
random coin), lottery (generating the payoff value), tournament (competing), or minion (out of contention).

We fix a parameter m such that m ≥ (10 log n)2. The protocol will use O(m) states per node.
Seeding Mode: All agents start in seeding mode, with payoff and level values 0, and counter value 4. The
goal of the four-interaction seeding mode is for the synthetic coin implemented by the coin parameter to mix
well, generating values which are close to uniform random. In the first four interactions, each agent simply
decreases its counter value. Once this counter reaches 0, the agent moves to lottery mode. By the properties
of synthetic coins, when agents finish seeding, they hold 0 or 1 values in roughly equal proportion.
Lottery Mode: In lottery mode, an agent starts counting in its own payoff the number of consecutive inter-
actions until observing 0 as the coin value of an interaction partner, by incrementing payoff upon observing
1 coins. When the agent first meets a 0, or if the agent reaches the maximum possible value that payoff can
hold, set to

√
m, the agent x finalizes its payoff , and changes its mode to tournament.
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Tournament Mode: The goal of tournament mode is two-fold: to force agents to compete (by comparing
states), and to generate additional tie-breaking random values (via the level variable).

Agents start with level = 0 and repeatedly attempt to increase their level. Each agent x keeps track of
phases, consisting of Θ(log payoff ) consecutive interactions. In each phase, if all coin values of interaction
partners are 1, then the x.level is incremented; otherwise, it stays the same. An agent which reaches the
maximum possible level , set at

√
m/ logm, remains in tournament mode, but stops increasing its level.

Phases can be implemented by the phase parameter used as a counter, and a boolean ones parameter.
phase starts with 0, and is incremented every interaction until it is reset to 0 when the phase ends. ones is
set to true at the beginning of each phase and becomes false is coin value 0 is encountered. As mentioned
above, the phase consists of Θ(log payoff ) interactions, and the exact function will be provided later.

When two agents x and y in tournament mode meet, they compare (x.payoff , x.level , x.coin) and
(y.payoff , y.level , y.coin). If the former is larger, then agent x eliminates agent y from the tournament,
and vice versa. Practically, agent y sets its mode to minion, and adopts the payoff and level values of the
other agent. Note that agents with higher lottery payoff always have priority; if both payoff and level are
equal, the coin value is used as a tie-breaker.
Minion Mode: An agent in minion mode keeps a record of the maximum .payoff , .level pair ever en-
countered in any interaction in its own payoff and level parameters. If x.mode = minion and y.mode =
tournament, and (x.payoff , x.level) > (y.payoff , y.level), then the agent in state y will be eliminated
from contention, and turned into a minion. Intuitively, minions help leaders with high payoffs and levels to
eliminate other contenders by spreading information. Importantly, minions do not use the coin value as a
tie-breaker (as this could lead to a leader eliminating itself via a cycle of interactions).
Analysis Overview: The main intuition is that one agent with the highest lottery payoff eventually becomes
the leader. This is an agent that manages to reach a high level, and turns other competitors into its minions,
that further propagate the information about the highest payoff and level through the system.

Only nodes with mode = minion are non-leaders, and once a node becomes a minion it remains a minion.
Therefore, we first prove in Lemma D.1 that not all nodes can become minions, and if there are n−1 minions
in the system, then there is a stable leader. The proofs are provided in the appendix.

The number of possible states of an agent can be determined by multiplying the maximum different
values of state parameters, giving O(1) ·

√
m ·

√
m

logm ·O(logm) = O(m) as desired.
Next, we prove in Lemma D.2 that with probability at least 1 − O(1)/n3, after O(n log n) interactions,

all agents will be in the competition stage, that is, either in tournament or minion mode, with maximum
payoff at least log n/2 and at most 9 log n, and at most 5 log n agents will have this maximum payoff .

We set the phase size of an agent with payoff = p to 4.2(log p + 1). We then show in Lemma D.3 that
with probability at least 1−O(1)/n3, only one contender reaches level ` = 3 log n/ log logn, and it takes at
most O(n log5.3 log log n) interactions for a new level to be reached up to `.

The above claims imply that with high probability (at least 1 − O(1)/n3), the protocol elects a single
leader within O(n log n) +O(n log5.3 log log n) · ` = O(n log6.3 n) interactions, that is, O(log6.3 n) parallel
time. Finally, Lemma D.4 gives a O(log5.3 n log logn) bound on expected parallel time until stabilization.

6 The Split-Join Majority Algorithm
Overview: In this section, we present an algorithm for exact majority using O(log2 n) states per node. The
main idea behind the algorithm is that each node state corresponds to an integer value: the sign of the value
corresponds to the node’s opinion about the majority state—by convention, A is positive, and B is negative.
To minimize the state space, we will devise a special representation for the integer values, where not all
integers will be representable. Whenever two nodes meet, they modify their respective values following a
sequence of simple operations. The intuition is that, on each interaction, nodes average their corresponding
values. Averaging ensures that the sign of the sum over all values in the system never changes, while, initially,
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this sign corresponds to the sign of the majority value. Thus, the crux of the analysis will be to show that all
nodes stabilize to values of the same sign, and do so quickly.
States: We now describe the algorithm in detail. Each node state corresponds to a pair of integers x and y,
represented by 〈x, y〉, whereby both integers are powers of two from x, y ∈ {0, 1, 2, 22, . . . , 2dlogne}, where
n is the number of nodes. The value of a state corresponding to a pair 〈x, y〉 is value(〈x, y〉) = x− y.

Nodes start in one of two special states. By convention, nodes starting in state A have the initial pair
〈2dlogne, 0〉, and the nodes starting in state B have the initial pair 〈0, 2dlogne〉. (Here, we assume that nodes
have an estimate of n.) We distinguish between two types of states: strong states represent non-zero values,
and will always satisfy x 6= y and 2 min(x, y) 6= max(x, y). The weak states are represented as pairs 〈0, 0〉+
and 〈0, 0〉−, corresponding to value 0, leaning towards A or B, respectively. We will refer to states and their
corresponding value pairs interchangeably. The output function γ maps each state to the output based the
sign of its value (treating 〈0, 0〉+ as positive and 〈0, 0〉− as negative).
Interactions: The algorithm, specified in Figure 2, consists of a set of simple deterministic update rules
for the node state, to be applied on every interaction. In the pseudocode, we make the distinction between
pairs 〈x, y〉, which correspond to states, and pairs [x, y] corresponding to tuples of integer values. The
interaction rule between the states 〈x1, y1〉 and 〈x2, y2〉 of two interacting nodes is described by the function
interact. The states after the interaction are 〈x′1, y′1〉 and 〈x′2, y′2〉. All nodes start in the designated initial
states and continue to interact according to the interact rule. If both interacting states are weak, nothing
changes (line 24). Otherwise, three elementary reactions, cancel, join, and split are applied, in this order.
Each reaction takes four values x1, y1, x2, y2 and returns (possibly updated) values x′1, y

′
1, x
′
2, y
′
2.

The cancel reaction matches positive and negative powers of 2 from the two interaction partners. The
join operation matches values of the same sign, attempting to create higher powers of two. The split reaction
does the opposite, by breaking powers of two into smaller powers. Please see Figure 3 for an illustration.
Before returning, the interact procedure normalizes the two states to satisfy some simple well-formedness
conditions. Notice that all these operations preserve the sum of values corresponding to their inputs.
Correctness and Stabilization: The first observation is that the sum of values in the system is constant
throughout the execution. By construction, the initial sum is of the majority sign; since the sum stays constant,
the algorithm may not reach a state in which all nodes have an opinion corresponding to the initial minority.
This guarantees correctness. The stabilization bound follows by carefully tracking the maximum value in the
system, and showing that minority values get cancelled out and switch sign quickly.

Theorem B.1. The Split-Join algorithm will never stabilize to the minority decision, and is guaranteed to
stabilize to the majority decision within O(log3 n) parallel time, both in expectation and w.h.p.

7 Conclusion
We have studied the trade-off between time and space complexity in population protocols, and showed that a
super-constant state space is necessary to obtain fast, poly-logarithmic stabilization time for both leader elec-
tion and exact majority. On the positive side, we gave algorithms which achieve poly-logarithmic expected
stabilization time using O(log2 n) states per node for both tasks. Our findings are not great news for practi-
tioners, as even small constant state counts are currently difficult to implement [CDS+13]. It is interesting
to note how nature appears to have overcome this impossibility [CCN12]: algorithms solving majority at the
cell level do so approximately, allowing for a positive probability of error, using small constant states per
node and stabilizing in poly-logarithmic time [AAE08b].

We open several avenues for future work. The first is to characterize the time-space trade-off be-
tween log log n and log2 n states. This question will likely require the development of analytic techniques
parametrized by the number of states. A second direction is exploring the space-time trade-offs for approxi-
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State Space:
StrongStates = {〈x, y〉|x, y ∈ {0, 1, 2, 22, . . . , 2dlog ne}, x 6= y, 2 ·min(x, y) 6= max(x, y)},
WeakStates = {〈0, 0〉+, 〈0, 0〉−}
Input: States of two nodes, 〈x1, y1〉 and 〈x2, y2〉
Output: Updated states 〈x′1, y′1〉 and 〈x′2, y′2〉

1 Reduce(u, v) =


[0, 0] if u = v
[u− v, 0] if u = 2v
[0, v − u] if 2u = v
[u, v] otherwise.

2 procedure cancel(x1, y1, x2, y2)
3 [x′1, y

′
2]← Reduce(x1, y2)

4 [x′2, y
′
1]← Reduce(x2, y1)

5 procedure join(x1, y1, x2, y2)
6 if (x1 − y1 > 0 and x2 − y2 > 0 and y1 = y2) then y′1 ← y1 + y2 and y′2 ← 0
7 else y′1 ← y1 and y′2 ← y2

8 if (x1 − y1 < 0 and x2 − y2 < 0 and x1 = x2) then x′1 ← x1 + x2 and x′2 ← 0
9 else x′1 ← x1 and x′2 ← x2

10 procedure split(〈x1, y1〉, 〈x2, y2〉)
11 if (x1 − y1 > 0 or x2 − y2 > 0) and max(x1, x2) > 1 and min(x1, x2) = 0 then
12 x′1 ← max(x1, x2)/2 and x′2 ← max(x1, x2)/2
13 else x′1 ← x1 and x′2 ← x2

14 if (x1 − y1 < 0 or x2 − y2 < 0) and max(y1, y2) > 1 and min(y1, y2) = 0 then
15 y′1 ← max(y1, y2)/2 and y′2 ← max(y1, y2)/2
16 else y′1 ← y1 and y′2 ← y2

17 procedure normalize(x, y, v)
18 [x̂, ŷ]← Reduce(x, y)
19 if x = 0 and y = 0 then
20 if v ≥ 0 then 〈x′, y′〉 ← 〈0, 0〉+
21 else 〈x′, y′〉 ← 〈0, 0〉−
22 else 〈x′, y′〉 ← 〈x, y〉
23 procedure interact(〈x1, y1〉, 〈x2, y2〉)
24 if x1 = y1 = x2 = y2 = 0 then [〈x′1, y′1〉, 〈x′2, y′2〉]← [〈x1, y1〉, 〈x2, y2〉]
25 else
26 [x̂1, ŷ1, x̂2, ŷ2]← split(join(cancel(x1, y1, x2, y2)))
27 〈x′1, y′1〉 ← normalize(x̂1, ŷ1, x̂2 − ŷ2)
28 〈x′2, y′2〉 ← normalize(x̂2, ŷ2, x̂1 − ŷ1)

Figure 2: The state update rules for the Split-Join majority algorithm.

mately correct algorithms.
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A Lower Bound
Lemma A.1 (Density Lemma). For all population protocolsA using |Λn| ≤ 1/2 log log n states and starting
in a fully dense initial configuration, with probability ≥ 1− (1/n)0.99, there exists an integer j such that the
configuration reached after j steps is n0.99-rich with respect to Λn.

Proof. Recall that by definition, from a fully dense initial configuration every state in Λn is producible.
We begin by defining, for integers k ≥ 0, the function

f(k) = n51−2k+1.
Alternatively, we have that f(k)2 = f(k + 1)n/51.
Let c = 1/2. Given the above, we notice that, with this choice it holds that, for sufficiently large n ≥ 2,
• 3(c log logn)2/n ≤ (1/n)0.99, and
• for 0 ≤ k ≤ c log logn, we have that f(k) ≥ max(n0.99, 50

√
n log n).

We divide the execution into phases of index k ≥ 0, each containing n/2 consecutive interactions. For
each 0 ≤ k ≤ |Λn| − 1, we denote by Ck the system configuration at the beginning of phase k.
Inductive Claim.: We use probabilistic induction to prove the following claim: assuming that configuration
Ck is f(k)-rich with respect to the set of states Sk, with probability 1 − 3|Λn|/n, the configuration Ck+1 is
f(k + 1)-rich with respect to Sk+1.

For general k ≥ 0, let us fix the interactions up to the beginning of phase k, and assume that configuration
Ck is f(k)-rich with respect to the set of states Sk. Further, consider a state q ∈ Sk+1. We will aim to prove
that, with probability 1−O(1/n), the configuration Ck+1 contains state q with count ≥ f(k + 1).

First, we define the following auxiliary notation. For any node r and set of nodes I , count the number of
interactions between r and nodes in the set I , i.e.

intcount(I, r) = |{ interaction j in phase k : there exists i ∈ I such that ej = (i, r) }|.
Next, we define the set of nodes in a state s at the beginning of phase k as

W (s) = {v : v ∈ V and Ck(v) = s}.
Finally, we isolate the set of nodes in state s at the beginning of phase k which did not interact during phase
k as

W ′(s) = {v : v ∈W (s) and intcount(V, v) = 0}.
Returning to the proof, there are two possibilities for the state q. The first is when q ∈ Sk, that is, the

state is already present at the beginning of phase k. But then, by assumption, state q has count ≥ f(k) at the
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beginning of phase k. To lower bound its count at the end of phase k, it is sufficient to examine the size of
the set W ′(q). For a node v ∈W (q), the probability that v ∈W ′(q) is(

1− 1

n

)n/2
≥ 1/2,

by Bernoulli’s inequality. Therefore the expected size of W ′(q) is at least |W (q)|/2. Changing any interac-
tion during phase k may change |W ′(q)| by at most 1, and therefore we can apply the method of bounded
differences to obtain that

Pr

[
|W ′(q)| < |W (q)|

2
−
√
n log n

]
≤ exp

(
−n log n

n

)
=

1

n
.

Since, by assumption, |W (q)| ≥ f(k) ≥ 10
√
n log n, it follows that

Pr

[
|W ′(q)| < 2

5
f(k)

]
≤ 1

n
.

Since 2f(k)/5 ≥ f(k + 1), we have that Pr[#q(Ck+1) ≥ f(k + 1)] ≥ 1 − 1/n, which concludes the
proof of this case.

It remains to consider the case when q ∈ Sk+1 − Sk. Here, we know that there must exist states qi and
qr in Sk such that δ(qi, qr) = q. We wish to lower bound the number of interactions between nodes in state
qi and nodes in state qr throughout phase k. To this end, we isolate the set R of nodes which are in state qr at
the beginning of phase k, and only interact once during the phase, i.e.

R = {v : v ∈W (qr) and intcount(V, v) = 1},
and the set of nodes R′, which are in R, and only interacted once during phase k, with a node in the set

W ′(qi), i.e.
R′ = {v : v ∈ R and intcount(W ′(qi), v) = 1}.

Notice that any node in the set R′ is necessarily in state q at the end of phase k + 1. In the following, we
lower bound the size of this set.

First, a simple probabilistic argument yields that E[|R|] ≥ |W (qr)|/4. Since each interaction in this
phase affects the size of R by at most 2 (since it changes the count of both interaction partners), we can again
apply the method of bounded differences to obtain that

Pr

[
|R| < |W (qr)

4
− 2
√
n log n

]
≤ 1

n
,

implying that

Pr

[
|R| < 1

20
f(k)

]
≤ 1

n
.

To lower bound the size of R′, we apply again the method of bounded differences. We have that
|W ′(q)| ≥ (2/5)f(k), and that |R| ≥ (1/20)f(k), we have that

Pr

[
|R′| ≤ 1

50

(
f(k − 1)2

n

)
−
√
n log n

]
≤ 1

n
.

At the same time, we have that
1

50

(
f(k)2

n

)
−
√
n log n ≥ 51

50
f(k + 1)− 1

50
f(k + 1) = f(k + 1),

which concludes the claim in this case as well.
Final Argument.: According to the lemma statement, we are considering an initial configuration in which
all initial states have count ≥ n/M , for some constant M ≥ 0. Let k0 be the first positive integer such that
n/M ≥ f(k0). We have that the initial configuration is f(k0)-rich with respect to the set of initial states
S0. By a variant of the previous inductive claim, we obtain that, for any integer 0 ≤ ` ≤ |Λn| satisfying
f(k0 + `) ≥ max(n0.99, 10

√
n log n), at the beginning of phase `, configuration C` is f(k0 + `)-rich with

respect to S`.
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It therefore follows that, with probability at least
(1− 3|Λn|/n)|Λn| ≥ 1− 3(c log log n)2/n ≥ 1− 1/n0.99,

there exists an integer j such that the configuration reached after j steps is n0.99-rich with respect to Λn.

Given a protocol Pn, for a configuration c and a set of configurations Y , let us define T [c =⇒ Y ] as the
expected parallel time it takes from c to reach some configuration in Y for the first time. Pr[c =⇒ Y ] stands
for the probability of reaching a configuration in Y from c.

Claim A.2. In a system of n nodes, let γ > 0, f : N→ R+, c : Λn → N, and X,Y be sets of configurations,
such that Pr[c =⇒ X] ≥ γ, and every transition sequence from every x ∈ X to some y ∈ Y has an
f -bottleneck. Then T [c =⇒ Y ] ≥ γ n−1

2f(n)|Λn|2 .

Proof. We will prove that for any x ∈ X , T [x =⇒ Y ] ≥ n−1
2f(n)|Λn|2 holds, which implies the desired

claim. By definition, every transition sequence from x to a configuration y ∈ Y contains an f -bottleneck,
so it is sufficient to lower bound the expected time for the first f -bottleneck transition to occur from x
before reaching Y . In any configuration c reachable from x, for any pair of states r1, r2 ∈ Λn such that
r1, r2 → p1, p2 is a f -bottleneck transition in c, the definition implies that c(r1) · c(r2) ≤ f(n). Thus the
probability that the next pair of agents selected to interact are in states r1 and r2, is at most 2f(n)

n(n−1) . Taking an
union bound over all |Λn|2 possible such transitions, the probability that the next transition is f -bottleneck
is at most |Λn|2 2f(n)

n(n−1) . Bounding by a geometric variable with success probability 2f(n)|Λn|2
n(n−1) , the expected

number of interactions until the first f -bottleneck transition is at least n(n−1)
2f(n)|Λn|2 . The expected parallel time

is this quantity divided by n, completing the argument.

Lemma A.3. Let P be a population protocol with |Λn| ≤ 1/2 log log n states, and let Dn ⊆ In be a non-
empty set of fully dense initial configurations. Fix a function f . Assume that for sufficiently large n, P
stabilizes in expected time o

(
n

f(n)|Λn|2

)
from all in ∈ Dn. Then, for all sufficiently large m ∈ N there is a

configuration xm with m agents, reachable from some i ∈ Dm and a transition sequence pm, such that:

1. xm(s) ≥ m0.99 for all s ∈ Λm,

2. xm =⇒pm ym, where ym is a stable output configuration, and

3. pm has no f -bottleneck.

Proof. Dn is a set of some legal initial configurations for n agents, which are all given to be fully dense. We
know that the expected time to reach a stable output configuration from these initial configurations is finite.
Hence if i =⇒ xm for i ∈ Dm, then a stable output configuration ym must be reachable from xm through
some transition sequence pm, but we also need xm and pm to satisfy the first and third requirements.

We know |Λn| ≤ 1/2 log log n for all large enough n. Hence, by Lemma A.1, starting in any fully dense
configuration in ∈ Dn, with probability at least 1 − (1/n)0.99, an n0.99-rich configuration is reachable. So
for n > 2, we get that Pr[in =⇒ Xn] ≥ 1/2 where Xn = {x | in =⇒ x and (∀s ∈ Λn)x(s) ≥ n0.99}.

Let Yn be a set of all stable output configurations with n agents. Suppose that every transition sequence
from every configuration x ∈ Xn to some y ∈ Yn has an f -bottleneck. Then, using Claim A.2, the expected
time to stabilize from i ∈ Dn is T [in =⇒ Yn] ≥ 1

2 ·
n−1

2f(n)|Λn|2 = Θ( n
f(n)|Λn|2 ). But we know that the

protocol stabilizes from i ∈ Dn in time o( n
f(n)|Λn|2 ), implying that for all sufficiently large m, we can find

xm ∈ Xm from which it is possible to reach a stable output configuration in Ym without an f -bottleneck.
First requirement is satisfied by the definition of Xm, and we let pm be the transition sequence from xm to
some ym ∈ Ym without an f -bottleneck.

16



Lemma A.4. Fix b ∈ N, and let B = |Λn|2 · b + |Λn| · b. Let x, y : Λn → N be configurations of n agents,
such that for all states s ∈ Λn we have x(s) ≥ B2 and x =⇒q y via a transition sequence q without a
B2-bottleneck. Define

∆ = {d ∈ Λn | y(d) ≤ b}
to be the set of states whose count in configuration y is at most b. Then there is an order ∆ = {d1, d2, . . . , dk},
such that, for all j ∈ {1, . . . , k}, there is a transition αj of the form (dj , sj) → (oj , o

′
j) with sj , oj , o′j 6∈

{d1, . . . , dj}, and αj occurs at least b times in q.

Proof. This part of the argument is identical to [CCDS14, DS15] and is described below for the sake of
completeness.

Let k = |∆| and define ∆k = ∆. We will construct the ordering in reverse, i.e. we will determine dj for
j = k, k − 1, . . . , 1 in this order. At each step, we will define the next ∆j−1 as ∆j − {dj}.

We start by setting j = k. For all j we define Φj : (Λn → N)→ N based on ∆j as Φj(c) =
∑

d∈∆j
c(d),

i.e. the number of agents in states from ∆j in configuration c. Notice that once ∆j is well-defined, so is Φj .
The following works for all j ≥ 1 and lets us construct the ordering. Because y(d) ≤ b for all states in

∆, it follows that Φj(y) ≤ j · b ≤ |Λn| · b. On the other hand, we know that x(d) ≥ B for all d ∈ ∆j , hence
Φj(x) ≥ B ≥ |Λn| · b ≥ Φj(y). Let c′ be the last configuration along q from x to y where Φj(c

′) ≥ B,
and r be the suffix of q after c′. Then, r must contain a subsequence of transitions u each of which strictly
decreases Φj , with the total decrease over all of u being at least Φj(c

′)− Φj(y) ≥ B − |Λn| · b ≥ |Λn|2 · b.
Let α : r1, r2 → p1, p2 be any transition in u. α is in u so it strictly decreases Φj , and without loss of

generality r1 ∈ ∆j . Transition α is not a B2-bottleneck, since u (and q) do not contain such bottlenecks, and
all configurations c along u have c(d) < B for all d ∈ ∆j by definition of r. Hence, we must have c(r2) > B
meaning r2 6∈ ∆j . Exactly one state in ∆j decreases its count in transition α, but α strictly decreases Φj , so
it must be that both p1 6∈ ∆j and p2 6∈ ∆j . We take dj = r1, sj = r2, oj = p1 and o′j = p2.

There are |Λn|2 different types of transitions. As each transition in u decreases Φj by exactly one and
there are at least |Λn|2 · b such instances, at least one transition type must repeat in u at least b times,
completing the proof.

Claim A.5. There exist configurations e : Λm → N and z′ with z′>0 ⊆ Γg, such that e + u + xm =⇒ z′.
Moreover, we have an upper bound on the counts of states in e: ∀s ∈ Λm : e(s) ≤ 2|Λm| · g(m).

Proof. The proof is analogous to [DS15], but we consider a subsequence of the ordered transitions ∆b =
{d1, . . . , dk} obtained earlier by Lemma A.4. Since b(m) ≥ g(m), we can represent ∆g = {dj1 , . . . , djl},
with j1 ≤ . . . ≤ jl. We iteratively add groups of transitions at the end of transition sequence pm, (pm is
the transition sequence from xm to y), such that, after the first iteration, the resulting configuration does not
contain any agent in dj1 . Next, we add group of transitions and the resulting configuration will not contain
any agent agent in dj1 or dj2 , and we repeat this l times. In the end, no agents will be in states from ∆g.

The transition ordering lemma provides us with the transitions to add. Initially, there are at most g(m)
agents in state dj1 in the system (because of the requirement in Theorem 3.1 on counts in u + y). So, in
the first iteration, we add the same amount (at most g(m)) of transitions dj1 , sj1 → oj1 , o

′
j1

, after which,
as sj1 , oj1 , o

′
j1
6∈ {d1, . . . dj1}, the resulting configuration will not contain any agent in configuration di1 . If

there are not enough agents in the system in state sj1 already to add all these transitions, then we add the
remaining agents in state in sj1 to e. For the first iteration, we may need to add at most g(m) agents.

For the second iteration, we add transitions of type dj2 , sj2 → oj2 , o
′
j2

to the resulting transition sequence.
Therefore, the number of agents in dj2 that we may need to consume is at most 3 · g(m), g(m) of them could
have been there in y + u, and we may have added 2 · g(m) in the previous iteration, if for instance both oj1
and o′j1 were dj2 . In the end, we may need to add 3 · g(m) extra agents to e.

If we repeat these iterations for all remaining r = 3, . . . , l, in the end we will end up in a configuration
z that contains all agents in states in Γg as desired, because of the property of transition ordering lemma that

17



sjr , ojr , o
′
jr
6∈ {d1, . . . , djr}. For any r, the maximum total number of agents we may need to add to e at

iteration r is (2r − 1) · g(m). The worst case is when oj1 and o′j1 are both dj2 , and oj2 , o
′
j2

are both dj3 , etc.
Finally, it must hold that l < |Λm|, because the final configuration contains m agents in states in Γg

and none in {dj1 , . . . , djl}, so Γg cannot be empty. Therefore, the total number of agents added to e is
g(m) ·

∑l
r=1(2r − 1) < 2l+1 · g(m) ≤ 2|Λm| · g(m). This completes the proof because e(s) for any state s

can be at most the number of agents in e, which is at most 2|Λm| · g(m).

Claim A.6. Let e be any configuration satisfying ∀s ∈ Λm : e(s) ≤ 2|Λm| · g(m). There exist configurations
p and w, such that p>0 ⊆ ∆b, w>0 ⊆ Γg and p+ xm =⇒ p+ w + e∆g . Moreover, for counts in p, we have
that ∀s ∈ Λm : p(s) ≤ b(m) and for counts in wΓg , we have ∀s ∈ Γg : w(s) ≥ 2|Λm| · g(m).

Proof. As in the proof of Claim A.5, we define a subsequence (j1 ≤ jl), ∆g = {dj1 , . . . , djl} of ∆b =
{d1, . . . , dk} obtained using Lemma A.4. We start by the transition sequence pm from configuration xm to
y, and perform iterations for r = 1, . . . k. At each iteration, we modify the transition sequence, possibly add
some agents to configuration p, which we will define shortly, and consider the counts of all agents not in p in
the resulting configuration. Configuration p acts as a buffer of agents in certain states that we can temporarily
borrow. For example, if we need 5 agents in a certain state with count 0 to complete some iteration r, we
will temporarily let the count to −5 (add 5 agents to p), and then we will fix the count of the state to its target
value, which will also return the “borrowed” agents (so p will also appear in the resulting configuration). As
in [DS15], this allows us let the counts of certain states temporarily drop below 0.

We will maintain the following invariants on the count of agents, excluding the agents in p, in the resulting
configuration after iteration r:

1) The counts of all states (not in p) in ∆g ∩ {d1, . . . , dr} match to the desired counts in e∆g .
2) The counts of all states in {d1, . . . dr} −∆g are at least 2|Λm| · g(m).
3) The counts in any state diverged by at most (3r − 1) · 2|Λm| · g(m) from the respective counts in y.
These invariants guarantee that we get all the desired properties after the last iteration. Let us consider

the final configuration after iteration k. Due to the first invariant, the set of all agents (not in p) in states ∆g

is exactly e∆g . All the remaining agents (also excluding agents in p) are in w, and thus, by definition, the
counts of states in ∆g in configuration w will be zero, as desired. The counts of agents in states ∆b −∆g =
{d1, . . . dk} − ∆g that belong to w will be at least 2|Λm| · g(m), due to the second invariant. Finally, the
counts of agents in Γb that belong to w will also be at least b(m)− 3|Λm| · 2|Λm| · g(m) ≥ 2|Λm| · g(m), due
to the third invariant and the fact that the states in Γb had counts at least b(m) in y. Finally, the third invariant
also implies the upper bound on counts in p. The configuration p will only contain the agents in states ∆b,
because the agents in Γb have large enough starting counts in y borrowing is never necessary.

In iteration dr, we fix the count of state dr. Let us first consider the case when dr belongs to ∆g. Then,
the target count is the count of the state dr in e∆g , which we are given is at most 2|Λm| · g(m). Combined
with the third invariant, the maximum amount of fixing required may be is 3r−1 · 2|Λm| · g(m). If we have
to reduce the number of dr, then we add new transitions dr, sr → or, o

′
r, similar to Claim A.5 (as discussed

above, not worrying about the count of sr possibly turning negative). However, in the current case, we may
want to increase the count of dr. In this case, we remove instances of transition dr, sr → or, o

′
r from the

transition sequence. The transition ordering lemma tells us that there are at least b(m) of these transitions to
start with, so by the third invariant, we will always have enough transitions to remove. We matched the count
of dr to the count in e∆g , so the first invariant still holds. The second invariant holds as we assumed dr ∈ ∆g

and since by Lemma A.4, sr, or, o′r 6∈ {d1, . . . , dr}. The third invariant also holds, because we performed at
most 3r−1 · 2|Λm| · g(m) transition additions or removals, each affecting the count of any other given state by
at most 2, and hence the total count differ by at most

(3r−1 − 1) · 2|Λm| · g(m) + 2 · 3r−1 · 2|Λm| · g(m) = (3r − 1) · 2|Λm| · g(m).
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Now assume that dr belongs to ∆b − ∆g. If the count of dr is already larger than 2|Λm| · g(m), than
we do nothing and move to the next iteration, and all the invariants will hold. If the count is smaller than
2|Λm| ·g(m), then we set the target count to 2|Λm| ·g(m) and add or remove transitions as in the previous case,
and the first two invariants will hold after the iteration. The only case when the count might require fixing by
more than (3r−1 − 1) · 2|Λm| · g(m) is when it originally was between g(m) and 2|Λm| · g(m) and decreased.
Then, as in the previous case, the maximum amount of fixing required is at most 3r−1 · 2|Λm| · g(m) and
considering the maximum effect on counts, the new differences can be at most 3r · 2|Λm| · g(m). As before,
we also have enough transitions to remove and the third invariant holds.

Lemma A.7. Consider a population protocol in a system with any fixed number of agents n, and an arbitrary
fixed function h : N→ N+ such that h(n) ≥ 2|Λn|. Let ξ(n) = 2|Λn|. For all configurations c, c′ : Λn → N,
such that c>0 ⊆ Γh(c) ⊆ Γξ(c

′), any state producible from c is also producible from c′. Formally, for any
state s ∈ Λn, c =⇒ y with y(s) > 0 implies c′ =⇒ y′ with y′(s) > 0.

Proof. Since h(n) ≥ 2|Λn|, for any state from Γh(c), its count in c is at least 2|Λn|. As Γh(c) ⊆ Γξ(c
′), the

count of each of these states in c′ is also at least ξ(n) = 2|Λn|. We say two agents have the same type if they
are in the same state in c. We will prove by induction that any state that can be produced by some transition
sequence from c, can also be produced by a transition sequence in which at most 2|Λn| agents of the same type
participate (ever interact). Configuration c only has agents with types (states) in Γh(c), and configuration c′

also has at least 2|Λn| agents for each of those types, the same transition sequence can be performed from c′

to produce the same state as from c, proving the desired statement.
The inductive statement is the following. There is a k ≤ |Λn|, such that for each i = 0, 1, . . . , k we can

find sets S0 ⊂ S1 ⊂ . . . ⊂ Sk where Sk contains all the states that are producible from c, and all sets Sj
satisfy the following property. Let Aj be a set consisting of 2j agents of each type in Γh(c), out of all the
agents in configuration c (we could also use c′), for the total of 2j · |Γh(c)| agents. There are enough agents
of these types in c (and in c′) as j ≤ k ≤ |Λn|. Then, for each 0 ≤ j ≤ k and each state s ∈ Sj , there exists
a transition sequence from c in which only the agents in Aj ever interact and in the resulting configuration,
one of these agents from Aj ends up in state s.

We do induction on j and for the base case j = 0 we take S0 = Γh(c). The set A0 as defined contains
one (20) agent of each type in Γh(c) = S0

3. All states in S0 are immediately producible by agents in A0 via
an empty transition sequence (without any interactions).

Let us now assume inductive hypothesis for some j ≥ 0. If Sj contains all the producible states from
configuration c, then k = j and we are done. We will have k ≤ |Λn|, because S0 6= ∅ and S0 ⊂ S1 ⊂ . . . Sk
imply that Sk contains at least k different states, and there are |Λn| total. Otherwise, there must be some
state s 6∈ Sj that can be produced after an interaction between two agents both in states in Sj , let us say by a
transition α : r1, r2 → s, p with r1, r2 ∈ Sj (or there is no state that cannot already be produced). Also, as
Sj contains at least j states out of |Λn| total, and there is the state s 6∈ Sj , j < |Λn| holds and the set Aj+1 is
well-defined. Let us partition Aj+1 into two disjoint sets B1 and B2 where each contain 2j agents from c for
each type. Then, by induction hypothesis, there exists a transition sequence where only the agents in B1 ever
interact and in the end, one of the agents b1 ∈ B1 ends up in the state r1. Analogously, there is a transition
sequence for agents in B2, after which an agent b2 ∈ B2 ends up in state r2. Combining these two transition
and adding one instance of transition α in the end between agents b1 and b2 (in states r1 and r2 respectively)
leads to a configuration where one of the agents from Aj+1 is in state s. Also, all the transitions are between
agents in Aj+1. Hence, setting Sj+1 = Sj ∪ {s} completes the inductive step.

3In c, all the agents are in one of the states of Γh(c), so as long as n > 0 there must be at least one agent per state (type). So, if
Γh(c) = ∅, then n must necessarily be 0, so nothing is producible A0 = ∅, k = 0 and we are done
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Corollary A.8. Any monotonic population protocol with |Λn| ≤ 1/2 log log n states for all sufficiently large
number of agents n that stably computes correct majority decision for initial configurations with majority
advantage εn, must take Ω

(
n

36|Λn|·|Λn|6·max(2|Λn|,εn)2

)
expected parallel time to stabilize.

Proof. We set g(n) = max(2|Λm|+1, 4εn). For majority computation, initial configurations consist of agents
in one of two states, with the majority state holding an εn advantage in the counts. Therefore, the sum
of two initial configurations of the same protocol is also a valid initial configuration, and thus monotonic
populations protocols for majority computation must be input-additive. The bound is nontrivial only in a
regime εn ∈ o(

√
n), which we will henceforth assume without loss of generality. The initial configurations

we consider from In will all have advantage εn, and are all be fully dense.
Let us prove that for all sufficiently large m, in any final stable configuration y, strictly less than 2|Λm| ≤

g(m)/2 agents will be in the initial minority state Bm. The reason is that if c is the initial configuration of all
m agents in state Bm, the protocol must stabilize from c to a final configuration where the states correspond
to decision WinB . By Lemma A.7, from any configuration that contains at least 2|Λm| agents in Bm it would
also be possible to reach a configuration where some agent supports decision Bm. Therefore, all stable final
configuration y have at most g(m)/2 − 1 agents in initial minority state Bm. This allows us to let u be a
configuration of g(m)/2 + 1 ≥ 2εm+ 1 agents in state Bm.

Assume, to the contrary, that the protocol stabilizes in parallel time o
(

n
36|Λn|·|Λn|6·max(2|Λn|,εn)2

)
. We

only consider initial configurations that are fully dense and contain (1+ε)n
2 agents in state An and (1−ε)n

2
agents in state Bn, i.e. having majority state An with advantage εn. Let I ′n ⊆ In contain only this fully
dense initial configuration for each n and using Theorem 3.1 with I ′n instead of In, we can find infinitely
many configurations i and z of at most 3m agents, such that (1) i + u =⇒ z, (2) i ∈ I ′2m, i.e. it is an
initial configuration of 2m agents with majority state A2m = Am and advantage 2εm. (3) |Λm| = |Λ2m| =
|Λ2m+|u|| = |Λ3m| and by monotonicity, the same protocol is used for all number of agents between m and
3m, (4) z>0 ⊆ Γg(y), i.e all agents in z are in states that have counts at least g(m) in some stable output
configuration y of m agents.

To get the desired contradiction we will prove two things. First, z is actually a stable output configuration
for decision WinA (majority opinion in i), and second, i + u is a valid initial configuration for the majority
problem, but with majority state Bm = B2m+|u|. This will imply that the protocol stabilize to a wrong
outcome, and complete the proof by contradiction.

If we could reach a configuration from z with any agent in a state s that maps to output WinB (γm(s) =
WinB), then by Lemma A.7, from a configuration y (which contains 2|Λm| agents in each of the states in
Γg(y)) we can also reach a configuration with an agent in a state s that maps to output WinB . However,
configuration y is a final stable configuration for an initial configuration in Im with a majority Am.

Configuration i ∈ I2m contains 2εm more agents in state Am states than in state Bm. Configuration u
consists of at least 2εm + 1 agents all in state Bm. Hence, i + u which is a legal initial configuration from
I2m+|u| has a majority of agents in state Bm.

B Analysis of the Majority Algorithm
The update rules in Figure 2 are chained, i.e. a cancel is followed by a join and a split. This is an optimization,
applying as many possible reactions as possible. However, for the analysis we consider a slight modification,
where we only apply split only if both join and cancel were unsuccessful.

For presentation purposes, we assume that n is a power of two, and when necessary, we assume that it
is sufficiently large. Throughout this proof, we denote the set of nodes executing the protocol by V . We
measure execution time in discrete steps (rounds), where each time step t corresponds to an interaction. The
configuration at a given time t is a function c : V → Q, where c(v) is the state of the node v at time t. (We
omit the explicit time t when clear from the context.)
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Recall that a value of a state 〈x, y〉 is defined as x− y and we will also refer to max(x, y) as the level of
this node. We call 〈x, y〉 a mixed state if both x and y are non-zero, and a pure state otherwise. A mixed or
pure node is a node in a mixed or a pure state, respectively.

The rest of this section is focused on proving the following result.

Theorem B.1. The Split-Join algorithm will never stabilize to the minority decision, and is guaranteed to
stabilize to the majority decision within O(log3 n) parallel time, both in expectation and w.h.p.

Correctness: We first prove that nodes never stabilize to the sign of the initial minority (safety), and that they
eventually stabilize to the sign of the initial majority (termination).

The first statement follows since given the interaction rules of the algorithm, the sum of the encoded
values stays constant as the algorithm progresses. The proof follows by the structure of the algorithm.

Invariant B.2. The sum
∑

v∈V value(c(v)) never changes, for all reachable configurations c of the protocol.

This invariant implies that the algorithm may never stabilize to a wrong decision value. For instance, if the
initial sum is positive, then positive values must always exist in the system. Therefore we only need to show
that the algorithm stabilizes to configurations where all nodes have the same sign. We do this via a rough
bound, assuming an arbitrary starting configuration.

Claim B.3. There are at most 2n2 split reactions in any execution.

Proof. A level of a node in state s = 〈x, y〉 is defined as level(s) = max(x, y). Consider a node in a state
with level l. Then, we say that the potential of the node is φ(l) = 2l for l > 0 and φ(0) = 1. In any
configuration c, the potential of the system is Φ(c) =

∑n
i=1 φ(level(si)).

Then, the potential of the system in the initial configuration is
∑

(2n) = 2n2, and it can never fall
below

∑
(1) = n. By the interaction rules of the algorithm, potential of the system never increases after an

interaction, and it decreases by at least one after each successful split interaction. This implies the claim.

Lemma B.4. Let c be an arbitrary starting configuration. Define S :=
∑

v∈V value(c(v)) 6= 0. With
probability 1, the algorithm will reach a configuration ĉ such that sgn(ĉ(v)) = sgn(S) for all nodes v ∈
V . Moreover, in all later configurations ce reachable from ĉ, no node can ever have a different sign, i.e.
∀v ∈ V : sgn(ce(v)) = sgn(ĉ(v)). For sufficiently large n, the stabilization time to ĉ is at most n5 expected
communication rounds, i.e. parallel time n4.

Proof. Assume without loss of generality that the sum S is positive.
We estimate the expected stabilization time by splitting the execution into three phases. The first phase

starts at the beginning of the execution, and lasts until either i) no node encodes a strictly negative value or
ii) each node encodes a value in {−1, 0, 1}, i.e. all nodes are in states 〈1, 0〉, 〈0, 0〉+. 〈0, 0〉− or 〈0, 1〉.

Due to Invariant B.2, at least one node encodes a strictly positive value. Also, by definition, during the
first phase there is always a node encoding a strictly negative value. Moreover, there is a node in state 〈x, y〉
with max(x, y) > 1. Assume that x > y for this node. Then, if there is another node in state 〈0, y2〉 for any
y2, then with probability at least 1/n2 these two nodes interact in the next round resulting in a split reaction.
Otherwise, every node 〈x1, y1〉 that encodes a strictly negative value must have min(x1, y1) > 0. At least one
such node exists and if there is another node in state 〈x2, 0〉 for any x2, then again with probability at least
1/n2 a split reaction occurs in the next round. The case of x < y is analogous and we get that during the first
phase, if there is no pair whose interaction would result in a split reaction, all nodes must be in states 〈x, y〉
with min(x, y) > 0, i.e. in mixed states. By Claim B.5, with probability at least 1

2(logn−1) a pure node appears
after the next communication round and by the above argument, if the first phase has not been completed,
in the subsequent round a split reaction will occur with probability at least 1/n2. Therefore, during the first
phase, the expected number of rounds until the next split reaction is at most 4n2(log n − 1). By Claim B.3,
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there can be at most 2n2 split reactions in any execution, thus the expected number of communication rounds
in the first phase is at most 8n4(log n− 1).

The second phase starts immediately after the first, and ends when no node encodes a strictly negative
value. Note that if this was already true when the first phase ended, then the second phase is trivially empty.
Consider the other case when all nodes encode values−1, 0 and 1 at the beginning of the second phase. Under
these circumstances, because of the update rules, no node will ever be in a state 〈x, y〉 with max(x, y) > 1
in any future configuration. Also, the number of nodes encoding non-zero values can only decrease. In each
round, with probability at least 1/n2, two nodes with values 1 and−1 interact, becoming 〈0, 0〉+ and 〈0, 0〉−.
Since this can only happen n/2 times, the expected number of communication rounds in the second phase is
at most n3/2.

The third phase lasts until the system stabilizes, that is, until all nodes with value 0 are in state 〈0, 0〉+.
By Invariant B.2, S > 0 holds throughout the execution, so there is at least one node with a positive sign
and non-zero value. There are also at most n − 1 conflicting nodes with negative sign, all in state 〈0, 0〉−.
Thus, independently in each round, with probability at least 1/n2, a conflicting node meets a node with
strictly positive value and becomes 〈0, 0〉+, decreasing the number of conflicting nodes by one. The number
of conflicting nodes can never increase and when it becomes zero, the system has stabilized to the desired
configuration ĉ. Therefore, the expected number of rounds in the third phase is at most n3.

Combining the results and using the linearity of expectation, the total expected number of communication
rounds before reaching ĉ is at most n3(8n(log n − 1) + 1/2 + 1) ≤ n5 for sufficiently large n. Finite
expectation implies that the algorithm stabilizes with probability 1. Finally, when two nodes with positive
sign meet, they both remain positive, so any configuration ce reachable from ĉ has the correct signs.

Stabilization Time: Next, we bound the time until all nodes stabilize to the correct sign.

Claim B.5. Consider a configuration where nδ out of the n nodes are in a mixed state, for δ ≥ 2(logn−1)
n . In

the next interaction round, the number of mixed nodes strictly decreases with probability at least δ2

2(logn−1) .

Proof. Consider log n − 1 buckets corresponding to values 1, 2, 4, . . . , n/4. Let us assign mixed nodes to
these buckets according to their states, where node in state 〈x, y〉 goes into bucket min(x, y). All nodes fall
into one of the log n− 1 buckets because of the definition of (mixed) states.

If two nodes in the same bucket interact, either cancel or join will be successful, and since we consider
the algorithm where split is not applied in this case, and the number of mixed nodes will strictly decrease.
Thus, if there are d1, d2, . . . , dlogn−1 nodes in the buckets, the number of possible interactions that decrease

the number of mixed nodes is at least
∑logn−1

i=1
di(di−1)

2 =
(
∑
d2
i )−nδ
2 .

By the Cauchy-Schwartz inequality,
∑
d2
i ≥ n2δ2

logn−1 . Combining this with the above and using nδ ≥
2(log n−1) we get that the there are at least n2δ2

4(logn−1) pairs of nodes whose interactions decrease the number
of mixed nodes. The total number of pairs is n(n− 1)/2, proving the desired probability bound.

Claim B.6. Suppose f is a function such that f(n) ∈ O(poly(n)). For all sufficiently large n, the probability
of having less than n

211 logn
pure nodes in the system at any time during the first f(n) communication rounds

is at most 1− 1/n5.

Proof. Assume that this number became less than n
211 logn

for the first time at time T after some number of
communication rounds. Let t be the last time when the number of pure nodes was at least n

29 logn
(such a time

exists since the initial number of pure nodes is n) and let α be the number of communication rounds between
t and T . The number of mixed nodes increases by at most two in each round, so α ≥ n

211 logn
.

By definition of t and T , at all times during the α communication rounds between t and T , at least
n(29 logn−1)

29 logn
≥ n

2 nodes are mixed. Thus, by Claim B.5 in each of these communication rounds, the number
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of mixed nodes decreases by at least one with probability at least 1
8 logn . Let us describe by a random variable

X ∼ Bin(α, 1
8 logn) at least how often the number of mixed nodes decreased. Each node is pure or mixed,

and by Chernoff Bound, the probability that the number of pure nodes increased less than α
16 logn times is

Pr
[
X ≤ α

16 logn

]
= Pr

[
X ≤ α

8 logn (1− 1/2)
]
≤ exp

(
− α

8 logn·22·2

)
≤ exp

(
− n

217 log2 n

)
On the other hand, in each of these α rounds, the number of pure nodes can decrease only if one of

the interacting nodes was in a pure state. By definition of t and T , the number of such pairs is at most
n2

218 log2 n
+ 2n

2(29 logn−1)

218 log2 n
≤ 2n2

29 logn
. This implies that in each round the probability that the number of pure

nodes will decrease is at most 1
26 logn

. Let us describe the (upper bound on the) number of such rounds by a
random variable Y ∼ Bin(α, 1

26 logn
). Since in each such round the number of pure nodes can decrease by at

most 2, using Chernoff bound the probability that the number of pure nodes decreases by more than α
16 logn

during the α communication rounds is at most Pr [Y ≥ α/(32 log n)] ≤ exp
(
− n

219 log2 n

)
In order for the number of pure nodes to have decreased from n

29 logn
at time t to n

211 logn
at time T , either

the number of mixed nodes must have increased by at most α
16 logn , or the number of pure nodes must have

decreased by at least α
16 logn during the α communication rounds between t and T . Otherwise, the increase

in mixed nodes would be more than the decrease in pure nodes. However, by union bound, the probability of
this is at most exp

(
− n

217 log2 n

)
+ exp

(
− n

219 log2 n

)
.

We can now take union bound over the number of communication rounds until the number of pure nodes
drops below n

211 logn
(time T ). For at most f(n) ∈ O(poly(n)) rounds, we get that the probability of the

number of pure nodes ever being less than n
211 logn

is at most 1/n5 for all large enough n.

Consider the high probability case of the above claim, where a fraction of pure nodes are present in
every configuration in the execution prefix. We call a round a negative-round if, in the configuration c at the
beginning of the round, there are at least n

211 logn
pure nodes and at least half of the pure nodes encode a

non-positive value. Analogously, we call a round a positive-round if there are at least n
211 logn

pure nodes, at
least half of which encode a non-negative value. A round can be simultaneously negative and positive, for
instance when all pure nodes encode value 0. Next claim establishes the speed at which the maximum level
in the system decreases. The proof follows by bounding the probability that a node with the maximum level
meets a pure node with value 0 or a value of the opposite sign. This results in a split (or cancel) reaction
decreasing the level of the node, and we use Chernoff and Union Bounds to bound the probability that the
node avoids such a meeting for significant time.

Claim B.7. Let w > 1 be the maximum level among the nodes with a negative (resp., positive) sign. There
is a constant β, such that after βn log2 n positive-rounds (resp., negative-rounds) the maximum level among
the nodes with a negative (resp., positive) sign will be at most bw/2c with probability at least 1− 1

n5 .

Proof. We will prove the claim for nodes with negative values. (The converse claim follows analogously.)
Fix a round r, and recall that w > 1 is the maximum level of a node with a negative value at the beginning
of the round. Let U be the set of all nodes with negative values and the same level w at the beginning of the
round, and let u = |U |. We call these nodes target nodes.

By the structure of the algorithm, the number of target nodes never increases and decreases by one in
every eliminating round where a target node meets a pure node with a non-negative value, due to a split or
cancel reaction. Consider a set of αn log n consecutive positive-rounds after r, for some constant α > 212.
In each round, if there are still at least du/2e target nodes, then the probability of this round being eliminating
is at least du/2e

212n logn
(since in a positive round at least half of n

211 logn
pure nodes have non-negative value).

Let us describe the process by considering a random variable Z ∼ Bin(αn log n, du/2e
212n logn

), where each
success event corresponds to an eliminating round. By a Chernoff Bound, the probability of having αn log n
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iterations with at most du/2e eliminations is at most:

Pr [Z ≤ du/2e] = Pr

[
Z ≤ αdu/2e

212

(
1− α− 212

α

)]
≤ exp

(
−αdu/2e(α− 212)2

213α2

)
For sufficiently large α and u ≥ log n, the probability of this event is at most 1

n6 for αn log n positive-
rounds. Applying the same rationale iteratively as long as u ≥ log n, we obtain by using a Union Bound that
the number of target nodes will become less than log n within αn log n(log n − log log n) positive-rounds,
with probability at least 1− logn−log logn

n6 .
Finally, we wish to upper bound the remaining number of positive-rounds until no target node remains.

Again for sufficiently large α, but when u < log n, we get from the same argument as above that the number
of target nodes is reduced to bu/2c within αn log2 n

u consecutive positive-rounds with probability 1/n6. So
we consider increasing numbers of consecutive positive-rounds, and obtain that no target nodes will be left
after at most αn log n+ 2αn log n+ . . .+αn log2 n ≤ 2αn log2 n positive-rounds, with probability at least
1− log logn

n6 , where we have taken the union bound over log logn events. The original claim follows by setting
β = 3α, taking Union Bound over the above two events (u ≥ log n and u < log n) and log n ≤ n.

We get a condition for halving the maximum level (among positive or negative values) in the system with
high probability. The initial levels in the system is n, which can only be halved log n times for each sign.
Combining everything results in the following claim:

Claim B.8. There exists a constant β, such that if during the first 2βn log3 n rounds the number of pure nodes
is always at least n

211 logn
, then with probability at least 1 − 2 logn

n5 , one of the following three events occurs
at some point during these rounds:

1. Nodes only encode values in {−1, 0, 1};

2. There are less than n
212 logn

nodes with non-positive values, all encoding 0 or −1,

3. There are less than n
212 logn

nodes with non-negative values, all encoding 0 or 1.

Proof. We take a constant β that works for Claim B.7. Since there are at least n
211 logn

pure node at all times
during the first 2βn log3 n rounds, each round during this interval is a negative-round, a positive-round, or
both. We call maximum positive (resp. negative) level the maximum level among all the nodes encoding non-
negative (resp. non-positive) values. Unless the maximum positive level in the system is ≤ 1, by Claim B.7,
a stretch of βn log2 n negative-rounds halves the maximum positive level, with probability at least 1 − 1

n5 .
The same holds for stretches of βn log2 n positive-rounds and the maximum negative level.

Assume that none of the three events hold at any time during the first 2βn log3 n rounds. In that case,
each round can be classified as either:
• a negative-round where the maximum positive level is strictly larger than 1, or
• a positive-round where the maximum negative level is strictly larger than 1.

To show this, without a loss of generality consider any positive-round (we showed earlier that each round is
positive-round or a negative-round). If the maximum negative level is > 1 then the round can be classified
as claimed, thus all non-positive values in the system must be 0 or −1. Now if there are less than n

212 logn
such nodes, then we have the second event, so there must be more than n

212 logn
nodes encoding 0 and −1.

However, all these nodes are pure, so the round is simultaneously a negative-round. Now if the maximum
positive level is > 1 then the round can again be classified as claimed, and if the maximum positive level is
at most 1, then all nodes in the system are encoding values −1, 0 or 1 and we have the first event.

Thus, each round contributes to at least one of the stretches of βn log2 n rounds that halve the maximum
(positive or negative) level, w.h.p. However, this may happen at most 2 log n times. By applying Claim B.7
2 log n times and the Union Bound we get that after the first 2βn log3 n rounds, with probability at least
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1 − 2 logn
n5 only values −1, 0 and 1 may remain. However, this is the same as the first event above. Hence,

the probability that none of these events happen is at most 2 logn
n5 .

Final Argument: To see how this claim can be used to obtain the stabilization upper bound, let us assume
without loss of generality that the initial majority of nodes was in A (positive) state, i.e. a > b.

Setting β as in Claim B.8, by Claim B.6, with high probability, we have at least n
211 logn

pure nodes during
the first 2βn log3 n rounds. Thus, w.h.p. during these rounds the execution reaches a configuration where
one of the three events from Claim B.8 holds. Consider this point T in the execution.

By our assumption about the initial majority and Invariant B.2,
∑

v∈V value(c(v)) = εn2 holds in every
reachable configuration c. The third event is impossible, because the total sum would be negative. In the first
event, the total sum is εn2 ≥ n of n encoded values each being −1, 0 or 1. Therefore, in this case, all nodes
must be in state 〈1, 0〉 and we are done.

In the second event implies there are at least n(212 logn−1)
212 logn

≥ 2n
3 nodes encoding strictly positive values.

Hence, at time T during the first 2βn log3 n rounds there are at least n/3 more strictly positive than strictly
negative values. Moreover, −1’s are the only strictly negative values of the nodes at point T , and this will be
the case for the rest of the execution because of the update rules. After time T , we have

Claim B.9. Consider a configuration where all nodes with strictly negative values encode −1, while at least
2n
3 nodes encode strictly positive values. The number of rounds until stabilization isO(n log n) in expectation

and O(n log2 n) with high probability.

Using this, and by Union Bound over Claim B.6 and Claim B.8, with probability 1− logn+1
n5 the number

of communication rounds to stabilization is thus 2βn log3 n+O(n log2 n) = O(n log3 n).
In the remaining low probability event, with probability at most logn+1

n5 , the remaining number of rounds
is at most O(n5) by Lemma B.4. Therefore, the same O(n log3 n) bound also holds in expectation,

Claim B.9. Consider a configuration where all nodes with strictly negative values encode −1, while at least
2n
3 nodes encode strictly positive values. The number of rounds until stabilization isO(n log n) in expectation

and O(n log2 n) with high probability.

Proof. In any configuration, let us call conflicting any node that encodes −1, and target node any node that
has a strictly positive value. Because of the structure of the algorithm, and that in configuration c the only
nodes with non-positive sign encode −1 or 0, in all configurations reachable from c nodes with negative
values will also only encode −1 or −0. Moreover, the number of conflicting nodes can never increase after
an interaction. Observe that the number of conflicting nodes decreases by one after an interaction where
a target node (with a stritly positive value) meets a node with value −1, while the number of target nodes
may also decrease by at most 1. This is because a split reaction happens on the positive component of the
target node (since the positive component of the conflicting node is 0) and both nodes get value ≥ 0 after
the interaction. There are at least n/3 more target nodes than conflicting nodes in c, therefore, in every later
configuration, there must always be at least n/3 target nodes.

Let us estimate the number of rounds until each conflicting node has interacted with a target node, at
which point no more conflicting nodes may exist. Let us say there were x conflicting nodes in configuration
c. The expected number of rounds until the first conflicting node meets a target node is at most 3n

x , since the
probability of such an interaction happening in each round is at least xn ·

n
3n . The expected number of rounds

for the second node is then 3n
(x−1) , and so on. By linearity of expectation, the expected number of rounds until

all conflicting nodes are eliminated is O(n log x) ≤ O(n log n).
At this point, all nodes that do not have a positive sign must be in state 〈0, 0〉−. If we redefine conflicting

to describe these nodes, it is still true that an interaction of a conflicting node with a target node brings the
conflicting node to state 〈0, 0〉+, decreasing the number of conflicting nodes. As we discussed at least n/3
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target nodes are still permanently present in the system. By the structure of the algorithm no interaction can
increase the number of conflicting nodes, and the system stabilizes when all conflicting nodes are eliminated.
This takes expected O(n log n) rounds by exactly the same argument as above.

To get the high probability claim, simply observe that when there are x conflicting nodes in the system,
a conflicting node will interact with a target node within 3nO(logn)

x rounds, with high probability. The same
applies for the next conflicting node, etc. Taking Union Bound over these events gives the desired result.

C Synthetic Coins
Claim C.1. E[Xi+m | Xi = x] = n/2 + (1− 4/n)m · (x− n/2).

Proof. If two agents both with coin values one are selected, the number of ones decreases by two. If both
coin values are zero, it increases by two, and otherwise stays the same. Hence, we have that
E[Xi+m | Xi+m−1 = t] = (t− 2) · Pr[Xi+m = t− 2] + t · Pr[Xi+m = t] + (t+ 2) · Pr[Xi+m = t+ 2]

= (t− 2) · t(t− 1)

n(n− 1)
+ t · 2t(n− t)

n(n− 1)
+ (t+ 2) · (n− t)(n− t− 1)

n(n− 1)

= t+
2

n(n− 1)
·
(
n2 − 2nt− n+ 2t

)
= t ·

(
1− 4

n

)
+ 2

Thus, we get a recursive dependence E[Xi+m] = E[Xi+m−1] · (1− 4/n) + 2, that gives

E[Xi+m] = 2 ·
m−1∑
j=0

(
1− 4

n

)j
+ E[Xi] ·

(
1− 4

n

)m
=
n

2
+

(
1− 4

n

)m (
x− n

2

)
by telescoping.

D Analysis of the Leader Election Algorithm
Lemma D.1. All nodes can never be minions. A configuration with n− 1 minions must have a stable leader,
meaning that the non-minion node will never become a minion, while minions will remain minions.

Proof. Assume for contradiction that all nodes are minions at some time T , and let u be a maximum
(.payoff , .level) pair (lexicographically) among all the minions at this time. No node in the system could
ever have had a larger pair, because no interaction can decrease a pair. The minions only record the values of
such pairs they encounter, and never increase them, so there must have been a contender in the system with
a payoff and level pair u that turned minion by time T . Among all such contenders, consider the one that
turned minion the last. It could not have interacted with a minion, because no minion (and no node) in the
system ever held a larger pair. On the other hand, even if it interacted with another contender, the contender
also could not have held a larger pair. Thus, it could only have been an interaction with another contender,
that held the same pair and a larger coin value used as a tie-breaker. However, that interaction partner would
remain a contender and and must have turned minion later, contradicting our assumption that the interaction
we considered was the last one where a contender with a pair u got eliminated.

By the structure of the algorithm, minions can never change their mode. In any configuration with n− 1
minions, the only non-minion must remain so forever, and thus be a stable leader, because otherwise we
would get n minions and violate the above argument.

Lemma D.2. With probability 1−O(1)/n3, afterO(n log n) interactions, all agents will be in the competition
stage, that is, either in tournament or minion mode, with maximum payoff at least log n/2 and at most
9 log n, and at most 5 log n agents will have this maximum payoff .

Proof. Let us call the first 2n interactions the irrelevant interactions, and all interactions after that the relevant
interactions. By Theorem 4.1, during relevant interactions, with probability at least 1−2 exp(−

√
n/4), there
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are at least n(1/2−1/28) and at most n(1/2+1/28) agents holding each possible coin value. Taking an union
bound, this holds for all of the first n4 relevant interactions with probability at least 1− 2n4

exp(
√
n/4)

< 1−1/n3.
From now on, we will consider this high probability event of synthetic coin working properly and implicitly
take unoin bound over it.

During any relevant interaction, any agent in lottery mode with probability at least 1/2−1/28 observes 0
and changes its mode to the tournament. Hence, the probability that it increases its payoff more than 5 log n
times is at most (1/2 + 1/28)5 logn ≤ 1/n4. Taking the union bound over all agents gives that the increase
in payoffs in the relevant interactions for all agents are less than 5 log n with probability at least 1 − 1/n3.
During the first 2n irrelevant interactions, by the Chernoff bound, the probability that a given agent interacts
more than 4 log n times is at most 1/n4. Taking an union bound, all agents interact at most 4 log n times with
probability at least 1 − 1/n3. Even if they increase their payoff each time, in total, with probability at least
1−O(1)/n3, all agents will have payoffs at most 9 log n.

Since every agent stays in seeding mode for four interactions, we can find at least n/2 agents, who move
to lottery mode during a relevant interaction. Consider any one of the n/2 agents. By assumption, the agent
will have probability at least 1/2 − 1/28 of finalizing its payoff and moving to tournament mode. The
probability that the payoff of this agent will be larger than log n/2 is thus at least (1/2 − 1/28)logn/2 ≥
1/n0.6. If the payoff is indeed larger, we are done, otherwise, we can find another agent among the n/2 −
log n/2 whose interactions we have not yet considered, and analogously get that with probability at least
1/n0.6, it would get a payoff at least log n/2. We can continue this process, and will end up with about
n/ log n agents, whose interactions were completely independent, and because of the bias, each of them had
a probability of at least 1/n0.6 of getting a larger payoff than log n/2. If we describe this process as a random
variable Bin

(
n

logn ,
1
n0.6

)
with expectation n0.4/ log n, we get by the Chernoff Bound that the probability of

no node getting ≥ log n/2 payoff is extremely low (in particular, less than 1/n3).
Again, considering all the high probability events from above, we know that the maximum payoff in the

system is between log n/2 and 9 log n. Consider any fixed payoff k in this interval, and let us say it is the
maximum. Then, any agent that reaches this payoff, has to flip 0, but they might flip 1 with probability at
least 1/2 − 1/28. Thus, the probability that at least 12 log n agents will stop exactly at payoff k is at most
(1/2 + 1/28)5 logn ≤ 1/n4. Taking the union bound over at most 9 log n < n payoffs, and the above high
probability events, we get that with probability at most 1 − O(1)/n3, at most 5 log n agents will have the
maximum payoff, which will be between log n/2 and 9 log n.

It only remains to prove that after O(n log n) interactions, all agents will be in the tournament stage with
probability 1 − O(1)/n3, which is a standard high probability coupon collector argument. Recall that after
2n irrelevant interactions, with probability at least 1 − 1/n3 synthetic coins work properly for the next n4

interactions, and thus, each agent that has not yet moved to the tournament stage and interacts, has probability
of at least 1/2− 1/28 of doing so. Thus, after O(n log n) interactions, by the Chernoff bound, a given agent
will interact O(log n) times with very high probability and move to the tournament stage at least during one
of these O(log n) interactions also with very high probability. Taking union bound over all agents and these
events completes the proof.

Lemma D.3. with probability at least 1−O(1)/n3, only one contender reaches level ` = 3 log n/ log log n,
and it takes at most O(n log5.3 log log n) interactions for a new level to be reached up to `.

Proof. By our assumption on m, it holds that m
logm ≥

3 logn
log logn , so this level can always be reached. We

consider the high probability case in Lemma D.2, which occurs with probability ≥ 1−O(1)/n3. Hence, we
need to prove that the probability that more than one competitor reaches level ` is also at most O(1)/n3.

Consider some competitor v which just increased the maximum level among competitors in the system.
Until some other competitor reaches the same level, v will turn every interaction partner into its minion.
Furthermore, as in epidemic spreading, these minions will also turn their interaction partners into minions of
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the highest level contender v. Let the payoff and level pair of this competitor be u. We call a node whose
pair also at least u an up-to-date node; the node is out-of-date otherwise. Initially, only the contender v that
reached the maximum level is up-to-date.

We will show that if in some configuration x < n nodes are up-to-date, after a phase of 16n(n−1) logn
4x(n−x)

interactions, at least x + 1 nodes will be up-to-date with probability at least 1 − 1
n5 . Up-to-date nodes

may never become out-of-date. On the other hand, an out-of-date node becomes up-to-date itself after an
interaction with any up-to-date node. If we have x up-to-date nodes, in each interaction, the probability that
an out-of-date node interacts with an up-to-date node increasing the number of up-to-date nodes to x+ 1, is
2x(n−x)
n(n−1) , which we denote by 1/α. To probability that this never happens during 16n(n−1) logn

4x(n−x) = 8α log n

interactions is then (1− 1/α)8α logn ≤ 1− 1/n5.
An Union Bound over at most n phases gives that with probability at least 1− 1/n4, after at most

n−1∑
x=1

16n(n− 1) log n

4x(n− x)
≤ 16(n− 1) log n

4

n−1∑
x=1

(
1

x
+

1

n− x

)
≤ 16n log2 n

rounds, all nodes will have value at least u. Taking an union bound over all possible levels ` < log n < n,
and all previous events, we get that with probability at least 1 − O(1)/n3, once a contender reaches some
level, unless some other contender reaches the same level within the next 16n log2 n interactions, the original
node will turn every other node into minions and become a stable leader.

Once some contender has increased the maximum level, it needs to observe between 4.2 log log n and
4.2(log log n + log 9 + 1) consecutive ones to increase a level, as with high probability we knew that the
payoff was between log n/2 and 9 log n and we set the phase size to 4.2(log payoff +1). Notice that all nodes
that did not get a maximum payoff are not considered as contenders, because they will all be eliminated by
maximum payoff contenders within O(n log n) interactions.

A given node at each iteration observes coin value one with probability at least (1/2 − 1/28), so the
probability that a stretch of 4.2 log log n + O(1) consecutive interactions results in a level increase is at
least Θ(1/ log4.3 n). If we consider an interval containing O(n log5.3 n log log n) interactions, then the agent
increases the level in expectation O(log5.3 n/ log4.3 n) = O(log n) times and by the Chernoff bound, at least
once with high probability.

For the rest of the argument, we will bound the probability that any of the other contenders, whose
number is at most 5 log n by Lemma D.2, will be able to increment their level during an arbitrary stretch
of 6 log log n + 12 consecutive interactions. This probability will be low, and therefore it is likely that the
process will terminate after a level increase.

More precisely, once a new level is reached after a level increment, the nodes have 16n log2 n interactions
to increment to the same level, or they will soon all become minions. To do so, they should all have at least
one iteration of observing at least 4.2 log log n consecutive ones.

Hence, there can be at most 5 log n ·Θ(log2 n/ log logn) such interaction intervals and each interaction
interval has probability at most (1/2 + 1/28)4.2 log logn ≤ 1/ log4 n of success. Hence, by taking sufficiently
large n, we can make the expectation of the number of successful iterations be less than 1/ log n.

Hence, the probability that there is no second survivor among contenders at each level (which would
correspond to a stable leader being elected) is at most 1/ log n, every time the maximum level is incremented.
The probability that this does not happen for all ` = 3 logn

log logn levels is then at most ( 1
logn)` ≤ 1

n3 .

Lemma D.4. The expected parallel time until stabilization is O(log5.3 n log log n).

Proof. To get the same bound on expected parallel time as in the with high probability case, we should
incorporate the expected time in the low probability event. The lottery stage takes expected O(n log n)
interactions by standard coupon collector argument (see the argument in Lemma D.2).
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During competition, as we saw in Lemma D.3, with high probability, a new level is reached within every
O(n log5.3 n log logn) interactions, and with more than constant probability a single contender remains after
each level. Therefore, in the high probability case, only constantly many levels will be used in expectation
and expected parallel time will be O(log5.3 n log logn).

Otherwise, during competition, recall that non-minions can always eliminate each other in direct interac-
tions comparing their payoffs, levels, and the coin as a tie-breaker. So, for any given two non-minion nodes
x and y, in every interaction, there is a probability of at least O(1/n2) that they meet, and one eliminates
each other for certain if they had different coin values. If not, then with probability at least 1/n, one of the
nodes, say x, interacts with some other node in this interaction, and then immediately afterward, interacts
with y, this time with different coin values. Hence, in every two iterations, with probability at least O(1/n3),
the number of contenders decreases by at least one. The expected number of interactions until one remains is
O(n4), thus parallel time O(n3) with probability at most O(1/n3), which gives negligible expectation O(1)
on parallel time in this low probability case.
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