Trace-based Semantics for Probabilistic Timed
I/O Automata*

Sayan Mitra and Nancy Lynch

MIT Computer Science and Al Laboratory
{lynch, mitras}@csail.mit.edu

Abstract. We describe the main features of the Probabilistic Timed I/O
Automata (PTIOA)—a framework for modeling and analyzing discretely
communicating probabilistic hybrid systems. A PTIOA can choose the
post-state of a discrete transition either nondeterministically or accord-
ing to (possibly continuous) probability distributions. The framework
supports modeling of large systems as compositions of concurrently ex-
ecuting PTIOAs, which interact through shared transition labels. We
develop a trace-based semantics for PTIOAs and show that PTIOAs are
compositional with respect a new notion of external behavior.

1. Introduction. Probabilistic automata with continuous state spaces provide
a framework for studying computing systems that interact with unpredictable
environments. In distributed systems, nondeterminism enables us to describe
arbitrary interleaving of concurrently executing processes. For modeling and
analyzing systems which have traits of both hybrid and distributed systems, such
as sensor networks and mobile-robotic systems, we need frameworks that support
continuous dynamics, probabilistic transitions, and nondeterminism. There are
continuous state automaton frameworks which eschew internal nondeterminism
in favor of fully probabilistic evolution such as [1I5JTT], and those that support
both nondeterministic and probabilistic transitions but restrict the state spaces
and the probability distributions to be discrete [6/4U217]. In this note we describe
the main features of the Probabilistic Timed Input/Output Automaton (PTIOA)
framework (full version available as [9]) which generalizes both the Timed I/0
Automaton [8] and the Probabilistic I/O Automaton [2] frameworks, and provides
a basis for describing concurrent, continuous state-space systems, with both
probabilistic and nondeterministic transitions.

Definition 1. A PTIOA is a 6-tuple A = (X, Fx),Z, A, R,D,T) where: (1)
(X, Fx) is a measurable space called the state space. (2) T € X is the start
state. (8) A is a countable set of actions, partitioned into internal H, input [
and output O actions. L = OUH is the set of local actions and E = OUI is the
set of external actions. A is said to be closed if I = 0. (4) R is an equivalence
relation on L; the equivalence classes of R are called tasks. A task T is called
an output task if T'C O. (5) D C X x Ax P(X,Fx) is the set of probabilistic
transitions. If (z,a, p) is an element of D, we write x 2 1 and action a is said to
be enabled at x. (6) T is a set of deterministic trajectories for X. In addition,
a PTIOA satisfies the following axioms:

* This work was supported by NSF’s CSR program (Embedded and Hybrid Systems
area) under grant NSF CNS-0614993.

MO For all B C A, set of states in which at least one action from B is enabled is
measurable. For measurable sets R C R>¢ and Y C X, the set of states from
which some r € R amount of time can elapse and a state y € Y is reached
(according to some trajectory in 7), is measurable.

DO Input actions are enabled in all states.

D1 For any state « at most one of the following may exist: (1) a local action
enabled at x (2) a non-point trajectory starting from x.

D2 For any state z, if there are actions a, b in the same task 7' and = % p; and

$i>LL2 then a = b and p1 = po.
D3 An execution of finite duration has at most finite number of internal actions.

The MO axiom ensures measurability of reasonable sets of executions. DO is
a non-blocking axiom standard in I/O automata literature. Axiom D1 allows
resolution of nondeterminism in a structured manner; this axiom will be removed
in Section 4. D1 prevents an action to remain enabled while time elapses. If time
can elapse from z, then the state evolves according to the longest trajectory
starting from x. If local actions are enabled at = then time cannot elapse and A
nondeterministically chooses one action a from the set of enabled actions. This
nondeterministic choice is resolved by a task scheduler (defined below). If a task
T is specified then D2 implies that at x there can be at most one enabled action
in T, and at most one probabilistic transition corresponding to that action.

2. Distributions over executions and traces. An ezecution fragment of an
PTIOA A is a sequence o = Tgai71as ..., where each 7; € 7, a; € A and a; is
enabled at the last state of 7;,_1. An execution fragment « is an execution of A
if the first trajectory starts from Z. The trace of an execution « represents its
externally visible part, namely the external actions and time passage. It is ob-
tained by removing internal actions, concatenating consecutive trajectories, and
replacing all the trajectories with their lengths. We denote the set of executions,
and the set of traces of A by Execs4 and Traces 4.

In order to construct a probability measure over Execsy we have to first
define a o-algebra over Execs 4. Adapting a construction given in [3], we proceed
as follows: A base is a finite sequence A = XoRoX1A1R1 ... XA R Xon41,
where for every i € {0,...,m + 1}, X; € Fx, R; is a measurable set in R>q
and for every i € {1,...,m}, A; C A. The basic set Cy corresponding to this
base A is the set of all executions which have a prefix that matches the pattern
of actions and trajectories in A. We show that collection € of all basic sets of
A generates a o-algebra over Execsy, which we denote by Fexecs,. We define
the measurable space of executions of A to be (Execs, Fexecs,). In a similar
manner, we construct a measurable space (Traces 4, Frraces,) Of traces of A from
trace bases, which are defined to be finite alternating sequences of the measurable
sets in R>(and subsets of E.

We combine A with a task scheduler for resolving nondeterministic choice
over enabled actions, which is is simply a finite or infinite sequence p = T175 . ..
of tasks in R. A task scheduler [2] chooses the next action deterministically
and independently of the information produced during an execution. In [9] we
inductively define a function apply such that given any task schedule p for A,
apply(dz, p) gives a probability measure over (Execs 4, Fexecs,) by “applying” p

to A, one task at a time. This probability distribution over executions is called
a probabilistic execution of A.

For any probabilistic execution p of a PTIOA we would like to have a sin-
gle corresponding measure on Traces 4. This requires trace : (Execs 4, Fexecs) —
(Traces 4, Fraces .) t0 be a measurable function. A difficulty in proving this arises
because the trace function concatenates trajectories that are separated by in-
ternal actions. Consider, for example, a simple trace base [0,r]{a}, where r is a
positive real and a is an external action. Then, £ = trace‘l(C[Oyr]{a}) is the set
of all finite executions of the form 7 h1m2hs ... h,_1Tha, such that all the h;’s are
internal actions and Z?:l T;.ltime < r. For trace to be a measurable function
& expressible as a countable union of basic sets. We prove the measurability of
trace in [9] making use of several PTIOA properties including the D3 axiom.
With this result, we are able to prove a key theorem which asserts that each
task schedule for a PTIOA A gives rise to a single distribution over the traces
of A. For each task schedule the corresponding distribution over traces is called
a trace distribution and the set of all possible trace distributions of A is denoted
by tdists(A).

3. Composition and External Behavior. The composition operation allows a
PTIOA representing a complex system to be constructed by composing PTIOAs
representing smaller subsystems. In [9] we state the conditions under which two
PTIOAs A; and Ay can be composed, we define the parallel composition op-
erator, and we prove a theorem asserting that a composition A;||As is a valid
PTIOA.

An environment for PTIOA A is a PTIOA £ such that A and £ can be com-
posed and their composition A||€ is closed. The external behavior of a PTIOA
A, written as extbeh 4, is defined as a function that maps each environment
E for A to the set tdists(A||E). Two PTIOAs A; and Ay are comparable if
Ey = E,. If Ay and Ay are comparable then A; is said to implement As,
written as A; < Ay if, for every environment PTIOA & for both A; and As,
extbeh 4, (E) C extbeh 4,(E). Viewing external behavior as a mapping from en-
vironments as opposed to a set of trace distributions is natural in many applica-
tions, including analysis of security protocols [2], and indeed, it lets us circumvent
some of the difficulties that underlie compositionality in the probabilistic setting.

Theorem 1. Suppose A; and Ay are comparable PTIOAs and A; < As. If
PTIOA B can be composed with both Ay and Az then A1||B < Asl|B.

4. Generalized PTIOAs. In this section, we relax the deterministic assump-
tions (axiom D1) on PTIOAs. A Generalized PTIOA is a tuple A = ((X, Fx),
Z,A, R,D,T) as in Definition |1} but .4 does not necessarily satisfy D1 and 7
is not necessarily deterministic. Thus, from a given state x € X of a generalized
PTIOA A there may be nondeterministic choice of actions and also choice of
distinct trajectories. A local scheduler for generalized PTIOA A, is a PTIOA
S = ((X,Fx),z,A,R,D',T') that is identical to A except that D’ C D and
T' CT. A local scheduler S satisfies D1 and has deterministic trajectories.

A probabilistic-system is a pair M = (A, S), where A is a generalized PTIOA
and S is a set of local schedulers for A. An environment for M is any PTIOA
& such that A||€ is closed. A probabilistic execution for M is defined to be any

probabilistic execution of S, for any S € S. The notion of trace distribution
carries over naturally to generalized PTIOAs. For probabilistic system M =
(A, S), we define the ezternal behavior of M to be the total function extbeh
that maps each environment PTIOA £ for M to the set Ugrestdists(S’||E). Thus
for each environment, we consider the set of trace distributions that arise from
the choices of the local scheduler of M and the task scheduler p. This leads to
a notion of implementation of probabilistic systems, similar to that of PTIOAs.
Let My = (A1,81) and My = (Az,S2) be probabilistic systems such that A4
and As are comparable generalized PTIOAs. Then, My implements My if for
every environment & of M and My, extbehpy, (€) C extbehpy, (E). Theorem 2]
gives a sufficient condition for implementation of probabilistic systems:

Theorem 2. If My = (A;1,81), Mo = (Az,S2) are comparable and there ex-
ists f : S1 — Sa, such that for all S; € Sy, S1 implements f(S1), then My
implements M.

In the future we would like to extend PTIOAs to support shared variables and
develop a suite of analysis techniques for proving probabilistic safety, stability
and approximate implementation relations [10].

We thank Sanjoy Mitter for many valuable comments on this work.

References

1. M. Bujorianu and J. Lygeros. General stochastic hybrid systems: Modelling and
optimal control. In IEEE Conference on Decision and Control, December 2004.

2. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Task-structured probabilistic I/O automata. Tech. Report MIT-CSAIL-TR-2006-
060, MIT, Cambridge, 2006.

3. S. Cattani, R. Segala, M. Z. Kwiatkowska, and G. Norman. Stochastic transition
systems for continuous state spaces and non-determinism. In FoSSaCS’05, LNCS
3441, pages 125-139, 2005.

4. L. Cheung. Reconciling nondeterministic and probabilistic choices. PhD thesis,
ICIS, Radboud University Nijmegen, The Netherlands, 2006.

5. V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and
cocongruence for probabilistic systems. Information and Computation, Special
issue for selected papers from CMCS04, 2005.

6. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, CA, 1997. Technical Report STAN-CS-TR-98-1601.

7. S. Smolka E. Stark, R. Cleaveland. A process-algebraic language for probabilistic
I/O automata. In Proc. CONCUR 03, LNCS 2761:189-203, 2003.

H200. H. Hermanns. Interactive Markov Chains : The Quest for Quantified Quality.
Springer, 2002.

8. D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/0
Automata. Synthesis Lectures on Computer Science. Morgan Claypool, 2005.

9. S. Mitra and N. Lynch. Trace-based Semantics for Probabilistic Timed
I/O Automata Full version http://theory.lcs.mit.edu/~mitras/research/
PTIOAO6-full.pdf

10. S. Mitra and N. Lynch Approximate simulations for task-structured probabilistic
I/O automata. In LICS Workshop on Probabilistic Automata and Logics, 2006.

11. F.van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain theory, testing
and simulation for labelled markov processes. Theoretical Computer Science, 2005.

http://theory.lcs.mit.edu/~mitras/research/PTIOA06-full.pdf
http://theory.lcs.mit.edu/~mitras/research/PTIOA06-full.pdf

	Trace-based Semantics for Probabilistic Timed I/O Automata
	Sayan Mitra and Nancy Lynch

