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Abstract

A local tester for a code probabilistically looks at a given word at a small set of coordinates
and based on this local view accepts codewords with probability one while rejecting words far
from the code with constant probabilility. A local tester for a code is said to be “robust” if the
local views of the tester are far from acceptable views when the word being tested is far from the
code. Robust testability of codes play a fundamental role in constructions of probabilistically
checkable proofs where robustness is a critical element in composition. In this work we consider
a broad class of codes, called lifted codes, that include codes formed by low-degree polynomials,
and show that an almost natural test, extending a low-degree test proposed by Raz and Safra
(STOC 1997), is robust. Our result is clean and general — the robustness of the test depends
only on the distance of the code being lifted, and is positive whenever the distance is positive.

We use our result to get the first robust low-degree test that works when the degree of the
polynomial being tested is more than half the field size. Our results also show that the high-rate
codes of Guo et al. (ITCS 2013) are robustly locally testable with sublinear query complexity.
Guo et al. also show several other interesting classes of locally testable codes that can be derived
from lifting and our result shows all such codes have robust testers, at the cost of a quadratic
blowup in the query complexity of the tester. Of technical interest is an intriguing relationship
between tensor product codes and lifted codes that we explore and exploit.
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1 Introduction

In this we work prove that a natural class of “testers” for a broad class of codes called “lifted codes”
are “robust”. We explain these terms below.

Let Fq denote the finite field of cardinality q. In this work we consider codes C ⊆ Fn
q that are

linear (i.e., C forms a vector space over Fq). Rather than thinking of words in Fn
q as sequences of

length n, we will view them as functions from some fixed set S of cardinality n to the range Fq.
(The structure of the set S and symmetries will play a role later in the paper.) We use {S → Fq}
to denote the set of all such functions. The rate of a code is the ratio dim(C)/n and (relative)
distance is the quantity minf 6=g∈C{δ(f, g)} where δ(f, g) =

1
n
· |{x ∈ S|f(x) 6= g(x)}| is the distance

between f and g. We say f is τ -far from C if δ(f, C) , ming∈C{δ(f, g)} ≥ τ .
Given a code C ⊆ {S → Fq} and integer ℓ, an ℓ-local tester T is a distribution D on (Sℓ,P(Fℓ

q))
1

with the semantics as follows: Given oracle access to f : S → Fq, the tester T samples (π, V )← D,
where π = (π1, . . . , πℓ) ∈ Sℓ and V ⊆ Fℓ

q, and accepts f if and only if f |π , (f(a1), . . . , f(aℓ)) ∈ V .
The tester is said to be ǫ-sound if T accepts f ∈ C with probability one, while rejecting f that is
δ-far from C with probability at least ǫ · δ.

In this work we are interested in a stronger property of testers known as their robustness,
formally defined by Ben-Sasson and Sudan [BSS06] based on analogous notions in complexity theory
due to Ben-Sasson et al. [BSGH+04] and Dinur and Reingold [DR04]. The hope with a robust tester
is that, while it may make a few more queries than the minimum possible, the rejection is “more
emphatic” in that functions that are far from C typically yield far from acceptable views, i.e., if
δ(f, C) is large then so is δ(f |π, V ) for typical choices of (π, V ) ← D. Formally, we say that a
tester T is α-robust if E(π,V )←D[δ(f |π, V )] ≥ α · δ(f, C). In this work we will be interested in tests
for infinite families of codes {Cn ⊆ Fn

q }n with sublinear locality, i.e., ℓ(n) = o(n), and constant
robustness α(n) ≥ α > 0.

From the definitions, and the fact that δ(f |π, V ) ≤ 1 for every (π, V ), it follows that an α-robust
tester is also α-sound. On the other hand an α-sound ℓ-local tester is at least (α/ℓ)-robust. But
robustness can be a much stronger property than mere soundness since it allows for composition
with other local testers. In particular, if there is an α-robust tester for f with distribution D and
if for every (π, V ) in the support of D, the property of being in V has an ℓ′-local tester that is
ǫ-sound, then C has an ℓ′-local tester that is α · ǫ-sound. The hope that membership in V has a
nice local test for every V in the support of D may seem overly optimistic, but for many symmetric
codes (as the ones considered in this work) all the V ’s are isomorphic — so this is really just one
hope. We illustrate the concept of robustness in the context of low-degree testing and describe the
role it has played in applications.

1.1 Low-degree testing

One of the classical problems for which testers have been explored extensively and many applica-
tions found is the task of low-degree testing. This task corresponds to the case where C = Cm,d,q

has as its domain S = Fm
q and C consists of all m-variate functions that are polynomials of de-

gree at most d. Low-degree testing was studied first in the work of Rubinfeld and Sudan [RS96]
and many variations have been analyzed in many subsequent works — a partial list includes
[ALM+98, FS95, AS03, RS97, MR06, AKK+05, KR06, JPRZ09, BKS+10, HSS11]. When d ≪ q

1For a finite set U , P(U) denotes the set of all subsets of U .
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low-degree tests making as few as d + 2 queries are known, that have 1/poly(d)-soundness (see,
for instance, Friedl-Sudan [FS95]). However, tests that make O(d) queries achieve constant sound-
ness (a universal constant independent of m,d, q provided q is sufficiently larger than d), and even
constant robustness. This constant robustness is central to the PCP construction of Arora et
al.[ALM+98]. In all cases with d ≪ q, low-degree tests operate by considering the restriction of
a function to a random line, or “plane” (namely a 2-dimensional affine subspace), in the domain,
and accepting a function if it is a polynomial of degree at most d on the restricted subspaces.
Thus, the different restrictions π are different affine subspaces of low-dimension (one or two) and
the acceptable pattern V is the same for all π. In particular the robust analysis of the low-degree
test allows for low-query tests, or even proofs, of membership in V in constant dimensional spaces
to be composed with the low-degree test in high-dimensions to yield low-query PCPs. Robustness
turns out to be much more significant as a parameter to analyze in these results than the query
complexity of the outer test. Indeed subsequent strengthenings of the PCP theorem in various
senses (e.g., in [AS03, RS97, MR06] rely on improving the robustness to a quantity close to 1, and
this leads to PCPs of arbitrarily small constant, and then even o(1), error.

1.2 Lifted Codes and Testing

In this work we consider robust testing of “lifted codes”. A family of lifted codes is specified by a
base code C ⊆ {Ft

q → Fq}. The family is indexed by positive integer m ≥ t and the m-dimensional

lifted code Ctրm consists of all functions f : Fm
q → Fq such that for every t-dimensional affine

subspace A in Fm
q , the restriction of f to A, denoted f |A, is contained in C. (For the definition

to be natural it is best if C is affine-invariant, i.e., f ∈ C ⇔ f ◦ T ∈ C for every affine bijection
T : Fm

q → Fm
q .)

Lifted codes were first defined by Ben-Sasson et al. [BSMSS11] and subsequently explored sys-
tematically by Guo et al. [GKS13]. Lifted codes naturally generalize the notion of low-degree
polynomials. Indeed the characterization that for d < q/2 the family of degree d m-variate polyno-
mials is the lift of univariate degree polynomials, is the basis of the low-degree test in [RS96, FS95];
and extensions to settings where d > q/2 in [KR06] forms the basis of their low-degree test. But
lifted codes give other families of codes as well. They form a natural subclass of “affine-invariant”
codes that have been studied in the context of local testing by Kaufman and Sudan [KS08] and
many subsequent works (e.g., [GKS08, GKS09, KL10, BGM+11]): A code C ⊆ {Fm

qt
→ Fq} is affine-

invariant if for every affine bijection (permutation) A : Fm
qt
→ Fm

qt
we have f ∈ C ⇔ f ◦A ∈ C. They

satisfy a property termed the “single-orbit” property in [KS08] that makes them locally testable,
and indeed with some fairly strong analysis as shown by Haramaty et al. [HRS13]. In particular,
they give codes of rate arbitrarily close to 1 and positive distance that have nα-local testers on
codes of length n for arbitrarily small α [GKS13]. Lifted codes have essentially the same distance
as base code, and they are locally correctible as well, making them general and sometimes powerful
extensions of low-degree polynomials.

Lifted codes have a natural test - to test Ctրm, pick a random t-dimensional subspace A in Fm
q

and verify that f |A ∈ C. Such a test is known to be q−2t-sound [KS08] and even ǫq-sound (indepen-
dent of t) [HRS13]. These analyses however are not robust, or more accurately, the soundness as
well as robustness of these tests degrades with q. In this work we analyze a slightly less natural test
and show that it has good robustness if the underlying code has good distance, with the robustness
depending only on the distance.
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1.3 Our results

In this work we propose and analyze the following test for Ctրm: Pick a random 2t-dimensional
subspace A in Fm

q and accept if f |A ∈ C
tր2t. Our main theorem relates the robustness of this test

to the distance of the code C.

Theorem 1.1. ∀δ > 0 ∃α > 0 such that the following holds: For every finite field Fq, for every pair
of positive integers t and m and for every affine-invariant code C ⊆ {Ft

q → Fq} satisfying δ(C) ≥ δ,

the code Ctրm has a q2t-local test that is α-robust.

Theorem 1.1 is proved in Section 3. As we elaborate below, Theorem 1.1 immediately implies a
robust analysis for low-degree tests. Whereas almost all previous robust analyses of low-degree tests
had more complex conditions on the relationship betwen the robustness, the degree, and the field
size - our relationship is extremely clean. The dependence α on δ that we prove is polynomial but
of fairly high degree α = Ω(δ74). We do not attempt to improve this relationship in this paper and
choose instead to keep the intermediate statements simple and general. We note that a significant
portion of this complexity arises due to our desire to lift t-dimensional codes for general t, and here
the fact that the robustness lower-bound is independent of t is itself significant.

Comparing with other testing results for lifted codes, there are only two prior works to com-
pare with: Kaufman and Sudan [KS08] analyze a tester for a broader family of codes that they
call “single-orbit” codes. Their result would yield a robustness of Θ(q−3t). (See Corollary 2.9.)
Haramaty et al. [HRS13] also give a tester for lifted codes. They don’t state their results in terms
of robustness but their techniques would turn into a robustness of ǫq · δ, where the ǫq is a positive
constant for constant q but goes to zero extremely quickly as q → ∞. Thus for growing q (and
even slowly shrinking δ) our results are much stronger.

Turning to consequences of our main theorem, a direct corollary obtained by applying Theo-
rem 1.1 to codes developed by Guo et al. [GKS13] are codes of rate close to 1 that have nǫ-local
Ω(1)-robust local testers.

Corollary 1.2. ∀ǫ, β > 0, ∃α > 0 such that for infinitely many n there exists q = q(n) = O(nǫ)
and a linear code C ⊆ Fn

q of rate 1− β that has an α-robust nǫ-local tester.

The only other prior construction of codes that achieve such properties were the tensor product
codes of Viderman [Vid12].

Even applied to the classical task of low-degree testing our results are new. An almost direct
corollary of our main theorem is a q4-local robust low-degree test for the setting d ≤ (1− δ)q. To
see why we get q4 queries, note that when d > q/2 then the set of m-variate degree d polynomials
are not equal to the m-dimensional lift of the set of degree d univariate polynomials. But they do
turn out to be the m-dimensional lifts of the set of degree d bivariate polynomials. Applying our
testing result to this lifted family yields robust test making q4 queries. But with some slight extra
work we can get a better tester that makes only q2 queries and this yields the following theorem.

Theorem 1.3. ∀δ > 0 ∃α > 0 such that the following holds: For every finite field Fq, for every
integer d ≤ (1 − δ)q and every positive integer m, there is a q2-query α-robust low-degree test for
the class of m-variate polynomials of degree at most d over Fq.

We note that previous works on low-degree testing worked only when d < q/2. This ratio seems
to be achieved by Friedl and Sudan (see [FS95, Theorem 13]). Other works [RS96, ALM+98, RS97,
AS03, MR06] seem to achieve weaker ratios for a variety of reasons that we discuss below.
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1.4 Proof approach and some technical contributions

In order to describe our test and analysis techniques, we briefly review the two main tests proposed
in the literature for “low-degree testing”, when the field size is much larger than the degree. The
most natural test for this task is the one that picks a random line in Fm

q and computes the proximity
of the function restricted to this line to the space of univariate degree d polynomials. This is the
test proposed by Rubinfeld and Sudan [RS96] and analyzed in [RS96, ALM+98, AS03]. A second
low-degree test is somewhat less efficient in its query complexity (quadratically so) but turns out to
have a much simpler analysis — this test would pick a random two-dimensional (affine) subspace
in Fm

q and verify that the function is a bivariate polynomial of degree at most d on this subspace.
This is the test proposed by Raz and Safra [RS97] and analyzed in [RS97, MR06]. Both tests can
be analyzed by first reducing the testing problem to that of testing constant variate functions (at
most four variate functions) and then analyzing the constant dimensional problem as a second step.

The first step is completely generic or at least it was sensed to be so. However there was no
prior formalization of the fact that it is generic. The only class of functions to which it has been
applied are the class of low-degree polynomials and a priori it is not clear how to even justify the
claim of genericity. Here we show that the first step applies to all lifted codes and thus giving
the first justification of the presumed genericity of this step, which we consider to be a conceptual
contribution.

For the second step, the robust analyses in [ALM+98, AS03] are quite algebraic and there seems
to be no hope to use them on general lifted codes. The test and analysis of Raz and Safra [RS97]
on the other hand feels much more generic. In this work we use their test, and extend it to general
lifted codes and show that it is robust. Even the extension of the test is not completely obvious.
In particular, to test low-degree polynomials they look at restrictions of the given function to 2-
dimensional “planes”. When lifting t-dimensional properties, it is not immediate what would be
the dimension of the restrictions the test should look at: Should it be t+ 1? or 2t or maybe 3t− 1
(each of which does make logical sense)? We show that the 2t dimensional tests are robust, with
robustness being independent of t.

Next we turn to our analysis. In showing robustness of their test, applied to generic lifted
codes there is a major barrier: Almost all analyses of low-degree tests, for polynomials of degree
at most d, attempt to show first that a function passing the test with high probability is close to a
polynomial of degree twice the degree, i.e., at most 2d, with some additional features. They then
use the distance of the space of polynomials of degree 2d and the additional features to establish
that the function being tested is really close to a degree d polynomial. In extending such analyses
to our setting we face two obstacles: In the completely generic setting, there is no nice notion
corresponding to the set of degree 2d polynomials. One approach might be to consider the linear
space spanned by products of functions in our basic space and work with them, but the algebra
gets hairy to understand and analyze. Even if we abandon the complete genericity and stick to the
space of polynomials of degree d, but now allow d > q/2 we hit a second obstacle: The space of
polynomials of degree 2d have negligible relative distance compared to the space of polynomials of
degree d.

Thus we need to search for a new proof technique and we find one by unearthing a new connec-
tion between “lifted codes” and “tensor product” codes. The tensor product is a natural operation
in linear algebra and when applied to two linear codes, it produces a new linear code in a natural
way. Tensor products of codes are well-studied in the literature on coding theory. The testing of
tensor product codes was initiated by Ben-Sasson and Sudan [BSS06] and subsequently has been
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well-studied [DSW06, Val05, BSV09b, BSV09a, GGR09]. Specifically, a recent result of Vider-
man [Vid12] gives a powerful analysis which we are able to reproduce in a slightly different setting
to get our results. In particular this is the ingredient that allows us to work with base codes whose
distance is less than 1/2. Also, for the sake of the exposition we pretend that this test can test
two-dimensional tensor products of one dimensional codes, with one-dimensional tests. (Actually,
the test works with three dimensional tensors and tests them by looking at two-dimensional planes,
but by suppressing this difference, our exposition becomes a little simpler.)

To explain the connection between lifted codes and tensor product codes, and the idea that we
introduce to test the former, we turn to the simple case of testing a bivariate lift of a univariate
Reed-Solomon code. Specifically, let C be the family of univariate polynomials of degree at most
d mapping Fq to Fq. Let C2 be the family of bivariate polynomials that become a univariate
polynomial of degree at most d on every restriction to a line. The tensor product of the C with
itself, which we denote C⊗2 corresponds to the set of bivariate polynomials of degree at most d in
each variable. Clearly C2 ⊆ C

⊗2 but such subset relationships are not of immediate use in testing
a code. (Indeed locally testable codes contain many non-LTCs.) To get a tighter relationship, now
fix two “directions”2 d1 and d2 and let Cd1,d2 be the code containing all bivariate polynomials over
Fq that on every restriction to lines in directions d1 and d2 form univariate degree d polynomials.
On the one hand the code Cd1,d2 is just isomorphic to the tensor product code C⊗2 which is testable
by the natural test, by our assumption. On the other hand, we now have C2 = ∩d1,d2Cd1,d2 so we
now have a characterization of the lifted codes in terms of the tensor product. One might hope
that one could use this characterization to get a (robust) analysis of the lifted test since it tests
membership in Cd1,d2 for random choices of d1 and d2, but unfortunately we do not see a simple
way to implement this hope.

Our key idea is look instead at a more complex family of codes Cd1,d2,d3 that consists of functions
of degree d in directions d1, d2 and d3. (Of course now d1, d2, d3 are linearly dependent and so
Cd1,d2,d3 is not a tensor product code. We will return to this issue later.) We still have C2 =
∩d1,d2,d3Cd1,d2,d3 . Indeed we can even fix d1, d2 arbitrarily (only requiring them to be linearly
independent) and we have C2 = ∩d3Cd1,d2,d3 . This view turns out to be more advantageous since
we now have that for any d3 and d′3 we have Cd1,d2,d3 ∪ Cd1,d2,d′3 ⊆ Cd1,d2 which is a code of decent
distance. This allows us to show that if the function being tested is close to Cd1,d2,d3 for many
choices of d3 then the nearest codewords for all these choices of d3 are the same. An algebraic
analysis of lifted codes tells us that a codeword of Cd1,d2 can not be in Cd1,d2,d3 for many choices of
d3 without being a codeword of the lifted code and this lends promise to our idea. But we are not
done, since we still need to test the given function for proximity to Cd1,d2,d3 and this is no longer
a tensor product code so Viderman’s result does not apply directly. Fortunately, we are able to
develop the ideas from Viderman’s analysis for tensor product codes [Vid12] and apply them also
to our case and this yields our test and analysis. We note that this extension is not immediate —
indeed one of the central properties of tensor product codes is that they are decodable from some
clean erasure patterns and this feature is missing in our codes. Nevertheless the analysis can be
modified to apply to our codes and this suffices to complete the analysis.

In the actual implementation, as noted earlier, we can’t work with univariate tests even for
the simple case above, and work instead by using a bivariate test for trivariate and 4-variate
functions. (This is similar to the reasons why Raz and Safra used a bivariate test.) This complicates

2Informally a direction refers to the slope of the line. This may be formalized by considering all non-zero pairs
(a, b) ∈ F2

q under the equivalence (a, b) ∼ (c, d) if ad = bc.
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the notations a bit, but the idea remains similar to the description above. Our task gets more
complicated when the base code being lifted is t-dimensional for t > 1. The most natural adaptation
of our analysis leads to dependencies involving δ (the distance of the base code) and t. We work
somewhat harder in this case to eliminate any dependence on t while working within the framework
described above.

Organization. We describe some preliminary background in Section 2. We analyze the test for
lifted codes in Section 3. We then apply the lifted-code tester to get an efficient and robust low-
degree test in Section 4. Sections 3 and 4 depend on some algebraic analyses of lifted, tensored and
affine-invariant codes which we defer to Section 5.

2 Preliminaries

We present some basic background and definitions related to lifted codes and their testing. We
describe some previous testers that offer weak robustness (that depends on q and t). We then
introduce the notion of tensor product codes which will play a central role in our proofs. Finally,
we describe some of the basic geometry of affine subspaces in Fm

q .

2.1 Affine-invariance and degree sets

Definition 2.1. A code C ⊆ {Fm
q → Fq} is affine-invariant if f ∈ C if and only if f ◦ A ∈ C for

every affine bijection A : Fm
q → Fm

q .

Definition 2.2. For prime p and integers a =
∑

i≥0 a
(i)pi and b =

∑

i≥0 b
(i)pi with 0 ≤ a(i), b(i) ≤

p − 1 for each i ≥ 0, a is in the p-shadow of b, denoted by a ≤p b, if a(i) ≤ b(i) for all i ≥ 0. For
m ≥ 1 and vectors a = (a1, . . . , am) ∈ Nm and b = (b1, . . . , bm) ∈ Nm, a is in the p-shadow of b,
denoted a ≤p b, if ai ≤p bi for i ∈ [m].

Definition 2.3. A code C ⊆ {Fm
q → Fq} has a degree set if there is a set D ⊆ {0, 1, . . . , q−1}m such

that C = {f : Fm
q → Fq | supp(f) ⊆ D}, where supp(f) is the set of all exponents of monomials in

the support of the unique polynomial representing f . Denote Deg(C) , D. The degree set Deg(C)
is p-shadow-closed if, whenever d ∈ Deg(C) and e ≤p d, then e ∈ Deg(C).

Proposition 2.4. Every linear affine-invariant code over Fq of characteristic p has a p-shadow-
closed degree set.

2.2 Lifting

Whenever f : Fm
q → Fq and A ⊆ Fm

q is a t-dimensional affine subspace, we think of A as being
parameterized by some affine function A : Ft

q → Fm
q (abusing notation) and by the restriction f |A

of f to A, we mean the t-variate function f ◦ A. This definition depends on the parameterization
of A, but if C is affine-invariant, then whether f |A ∈ C does not depend on this parameterization.

Definition 2.5. Let t ≤ m and let C ⊆ {Ft
q → Fq} be affine-invariant. Then the m-dimensional

lift Ctրm of C is the code

Ctրm ,
{
f : Fm

q → Fq

∣
∣ f |A ∈ C for any t-dimensional affine subspace A

}
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Proposition 2.6 (Distance of lifted codes [GKS13, Theorem 5.1, Part (2)]). Let t ≤ m and let
C ⊆ {Ft

q → Fq} be affine-invariant. Then δ(Ctրm) ≥ δ(C) − q−t.

2.3 Testing and robustness

We now define the robustness of a lifted code, specializing the definition to robustness with respect
to subspace testers. We include the dimension of the testing subspace as a parameter in the
robustness since this will be convenient later.

Definition 2.7. Let t ≤ k ≤ m. The code Ctրm is (α, k)-robust if, for every r : Fm
q → Fq,

EA

[

δ
(

r|A, C
tրk
)]

≥ α · δ
(

r, Ctրm
)

where the expectation is over uniformly random k-dimensional subspaces A ⊆ Fm
q . When k is clear

from context, we say the code is α-robust.

In this terminology we wish to show that Ctրm is (α, 2t)-robust for some α depending only on
δ(C).

Observe that if A is a random k1-dimensional subspace and B is a random k2-dimensional
subspace, where k2 ≥ k1, then

EA

[

δ
(

r|A, C
tրk1

)]

= EB

[

EA⊆B

[

δ
(

r|A, C
tրk1

)]]

≤ EB

[

δ
(

r|B, C
tրk2

)]

so if Ctրm is (α, k1)-robust, then it is also (α, k2)-robust.
The following theorem follows from Kaufman and Sudan [KS08, Theorem 2.9].

Theorem 2.8. If C ⊆ {Ft
q → Fq} is linear affine-invariant, then Ctրm has a t-dimensional subspace

test which rejects with probability
δ(r,Ctրn)

(2qt+1)(qt−1) .

As a corollary to Theorem 2.8, the k-dimensional test (for k ≥ t) for Ctրm is O(q−3t)-robust.

Corollary 2.9. If C ⊆ {Ft
q → Fq} is linear affine-invariant, then Ctրm is ( q

−3t

2 , k)-robust for k ≥ t.

Proof. It suffices to show that Ctրm is ( q
−3t

2 , t)-robust. Let r : Fm
q → Fq and u be a random

t-dimensional affine subspace. Then

Eu [δ (r|u, C)] = Eu [δ (r|u, C) | r|u /∈ C] · Pr
u
[r|u /∈ C]

≥ q−t · Pr
u
[r|u /∈ C]

(Theorem 2.8) ≥ q−t ·
δ
(
r, Ctրm

)

(2qt + 1)(qt − 1)

≥
q−3t

2
· δ
(

r, Ctրm
)

.

We will also use the fact that we can compose robustness.

Proposition 2.10 (Robustness composes multiplicatively). Let t ≤ k1 ≤ k2 ≤ m and let
C ⊆ {Ft

q → Fq} be linear affine-invariant. If Ctրm is (α2, k2)-robust and C
tրk2 is (α1, k1)-robust,

then Ctրm is (α1 · α2, k1)-robust.
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2.4 Tensor codes

Tensor product codes play an important role in our proof. There are many equivalent ways to
define the tensor product of two codes. Since in this work we think of codes as linear subspaces of
functions in {Fm

q → Fq}, we define the tensor product in this context.

Definition 2.11. Let n ≥ 2, let t1, . . . , tn ≥ 1 and m =
∑n

i=1 ti, and for each i ∈ [n], let the code
Ci ⊆ {F

ti
q → Fq} be linear and let Vi,a ⊆ Fm

q be the ti dimensional subspace consisting of all points

where the i-th block (of ti coordinates) is free and all the [n] \ {i} blocks are fixed to a ∈
∏

j 6=i F
tj
q .

The tensor product code C1 ⊗ · · · ⊗ Cn ⊆ {F
m
q → Fq} is the code

C1 ⊗ · · · ⊗ Cn ,






f : Fm

q → Fq

∣
∣
∣
∣
∣
∣

f |Vi,a ∈ Ci for every i ∈ [n] and a ∈
∏

j 6=i

F
tj
q







Define C⊗n ,

n
︷ ︸︸ ︷

C ⊗ · · · ⊗ C.

The following characterization of tensor product codes will be helpful.

Proposition 2.12. Let n ≥ 2, let t1, . . . , tn ≥ 1 and m =
∑n

i=1 ti, and for each i ∈ [n], let the code
Ci ⊆ {F

ti
q → Fq} be linear, and let Xi = (Xi1, . . . ,Xiti) be variables. Then

C1 ⊗ · · · ⊗ Cn = spanFq

{
n∏

i=1

fi(Xi)

∣
∣
∣
∣
∣
fi ∈ Ci

}

Corollary 2.13. If C ⊆ {Ft
q → Fq} has a degree set Deg(C), and n ≥ 1, then C⊗n has degree set

Deg(C⊗n) = Deg(C)n. In particular, if C is linear affine-invariant, and Fq has characteristic p,
then C⊗n has a p-shadow-closed degree set.

Proposition 2.14. Let C1 and C2 be codes with distance δ1 and δ2 repectively. Then δ(C1 ⊗ C2) is
at least δ1δ2. In particular, δ (C⊗n) ≥ δ(C)n.

The following is a statement about the erasure decoding properties of tensor product codes.

Proposition 2.15. Let C = C1 ⊗ . . . Cn ∈
{
Fm
q → Fq

}
and S ⊆ Fm

q be a subset such that for every

i ∈ [n] and a ∈
∏

j 6=i F
tj
q satisfy |S ∩ Vi,a| ≥ (1 − δ(Ci))q

ti . Let r : S → Fq be such that for every

i ∈ [n] and a ∈
∏

j 6=i F
tj
q satisfy that r|S∩Vi,a can be extended into a codeword of Ci on Vi,a. Then

there exists a unique r′ ∈ C such that r′|S = r.

2.5 Geometry over finite fields

For two sets A,B ⊆ Fm
q , define the Minkowski sum

A+B , {a+ b | a ∈ A,b ∈ B}

and define

span(A) ,

{
∑

a∈A

ca · a

∣
∣
∣
∣
∣
ca ∈ Fq

}

.

For x ∈ Fm
q and A ⊆ Fm

q , define the subspace through x in directions A to be

(x, A) , {x}+ span(A).
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Lemma 2.16. Let t ≤ k < m. Let u ⊆ Fm
q be a fixed affine subspace of dimension t, and let

v ⊆ Fm
q be a uniformly random affine subspace of dimension k. Then Prv [u ∩ v 6= ∅] < q−(m−k−t).

Proof. By affine symmetry, we may assume that v is fixed and u is random. Furthermore, we can
assume that v = (0, B), where B is a basis and hence |B| = k. We choose u by choosing random
x ∈ Fm

q , random basis A = {a1, . . . ,at}, and setting u , (x, A). Let E be the event that u∩ v 6= ∅.
Re-arrange a1, . . . ,at so that for some 0 ≤ s ≤ t − 1, ai ∈ span(B) if and only if i ≤ s. Note

that E holds if and only if there exist c1, . . . , ct ∈ Fm
q such that x+ c1a1+ · · ·+ ctat ∈ span(B). Let

P : Fm
q → Fm−k

q be the linear map that projects onto the lastm−k coordinates. Note that ker(P ) =

B. For each i ∈ [t], let a′i , Pai ∈ Fm−k
q . Then E holds if and only if Px ∈ span(a′s+1, . . . ,a

′
t).

Therefore, there are at most qt choices for Px, hence at most qk+t choices for x, out of qm total

choices for x, so Pr[E] ≤ qk+t

qm
= q−(m−k−t).

Lemma 2.17. Let k < m and a1, . . . ,ak ∈ Fm
q be uniformly chosen vectors. Then the probability

that {ai}
k
i=1 are linearly independent is at least 1− q−(m−k). In particular, the probability that two

t-dimensional subspaces through a point x ∈ Fm
q will intersect only on x is at least 1− q−(m−2t).

Proof. The probability that ai+1 /∈ span {a1, . . . ,ai} given that the latter are linearly independent
is 1− q−(m−i). Therefore the probability that all of them are independent is

k−1∏

i=0

(1− q−(m−i)) ≥ 1−
k−1∑

i=0

q−(m−i) = 1− q−(m−k)
k∑

i=1

q−i ≥ 1− q−(m−k) .

For the last part, observe that choosing two t-dimensional subspaces through x is equivalent to
choose 2t basis vectors, given that each t are linearly independent. So the probability that they
intersect only on x, is the same as that those vectors are linearly independent. Hence, by the first
part, this probability is at least 1− q−(m−2t).

3 Robustness of lifted codes

In this section, we prove Theorem 3.15, which is simply a more precise restatement of Theorem 1.1.
Our approach is a standard one - we first analyze the test for low-dimensional settings (Theo-
rem 3.1), and then use a general projection argument (“bootstrapping”) to get an analysis for all
dimensions (Theorem 3.15).

3.1 Robustness for small dimension

Throughout Sections 3.1 and 3.2, fix a linear affine invariant code C ⊆ {Ft
q → Fq} with relative

distance δ , δ(C). Let n ≥ 1 be an integer (we will use n = 3 or 4) and let m = nt. Two codes that
play a prominent role are the lift Ctրm of C to m dimensions, and the n-fold tensor product C⊗n of
C, which is also an m-dimensional code. We begin by giving a tester with robust analysis for Ctրm

for this restricted choice of m. We will show that the (m− t)-dimensional test is
(
δn

n

)O(1)
-robust.

(Note the robustness degrades poorly with n = m/t and so can only be applied for small n). It is
important, for Section 3.3, that there is no dependence on t.

9



Theorem 3.1. Let n ≥ 3 and t ≥ 1 and set m = nt. Then Ctրm is (α0,m − t)-robust for

α0 =
δ3n

16(n2+3n+2)3 .

Overview. For simplicity, we describe the proof idea for t = 1. Suppose the average local distance
to C1ր(m−1) on random hyperplanes is small. For a ∈ Fm

q , let Ca be the code consisting of tensor
codewords in C⊗n whose restrictions to lines in direction a are also codewords of C. Note that
⋂

a Ca = C1րm. Our main technical result (Theorem 3.8) of this section shows that Ca is
(
δn

n

)O(1)
-

robust. Now, observe that choosing a random hyperplane can be done by choosing m random
linearly independent directions, choosing an additional random direction a that is not spanned by
any m−1 of the former, and choosing a random hyperplane spanned by m−1 of these m+1 random
directions (call such a hyperplane “special”). Viewing the first m chosen directions as the standard
basis directions, we see that the average local distance to C1ր(m−1), and hence to C⊗(m−1), when
restricting to special hyperplanes, is still small. Therefore, for most a, the average local distance
to C⊗(m−1) on special hyperplanes is small. By the robustness of Ca, this implies that our received
word is close to some codeword ca ∈ Ca for most a. But these codewords ca are all codewords of
C⊗m and close to each other, so they must be the same codeword c ∈ C⊗m. So we have shown
that we are close to c ∈ C⊗m. We proceed by showing that in fact c ∈ C1րm. Note that c ∈ Ca
for most a. Another technical result, Corollary 5.8, implies that in fact c ∈ Ca for all a and we are
done.

To generalize to t > 1, we replace dimension k subspaces with dimension kt subspaces through-
out. Some work needs to be done to ensure that Theorem 3.8 still works, and also Corollary 5.8
must be generalized appropriately to remove the dependence on t. These issues will be discussed
in the corresponding sections.

For a set S and integer c, let
(
S
c

)
denote the collection of subsets of S of size c:

(
S

c

)

, {T ⊆ S | |T | = c} .

Definition 3.2. Let ℓ ≤ m be an integer. A collection D ⊆
(Fm

q
t

)
is ℓ-proper if for every k and every

distinct A1, . . . , Ak ∈ D, the union
⋃k

i=1 Ai contains at least min {kt,m− ℓ} linearly independent
vectors.

Definition 3.3. For a set D ⊆
(Fm

q
t

)
, for every x ∈ Fm

q define VkD(x) to be the collection of subspaces
through x in directions from k different sets from D. More precisely,

VkD(x) ,

{

(x, A)

∣
∣
∣
∣
∣
A =

k⋃

i=1

Di, {D1, . . . ,Dk} ∈

(
D

k

)}

Define
VkD ,

⋃

x∈Fn
q

VkD(x).

The testing subspaces through x are TD(x) , Vm−1D (x) and the decoding subspaces through x are
DD(x) , V

1
D(x). Similarly, the testing subspaces are TD , Vm−1D and the decoding subspaces are

DD , V1D. If S = (x,∪ki=1Di) ∈ V
k
D, then the blocks of S are the sets D1, . . . ,Dk. Two testing

subspaces are adjacent if they differ in at most one block.

10



Remark 3.4. If D is ℓ-proper for ℓ ≤ t then for any k < n we have that VkD consists of kt-
dimensional subspaces.

Definition 3.5. Define CnD to be the code of all words f : Fm
q → Fq such that f |u ∈ C for every

decoding subspace u ∈ DD.

Remark 3.6. Observe that Ctրm is a subcode of CnD for any D. If
⋃
D contains the standard

basis vectors, then CnD is a subcode of C⊗n.

Proof of Theorem 3.1. Define ℓ ,

⌊
n log( 1

δ )+log(n2+3n+2)+1

log(q)

⌋

. We note that for the most interesting

cases, where δ > 0 and n are fixed and q → ∞, ℓ = 0. Our first step handles the less interesting
cases (by appealing to a known result). Specifically, if ℓ ≥ t then by Corollary 2.9 we are done since

q−3t

2
≥

q−3ℓ

2
≥

q
−3

(

n log( 1
δ )+log(n2+3n+2)+1

log(q)

)

2
=

δ3n

16(n2 + 3n+ 2)3
= α0 .

Now assume ℓ < t and let ρ , Ev

[
δ
(
r|v, C

tր(m−t)
)]
, where v ⊆ Fm

q is a uniformly random
(m− t)-dimensional affine subspace. We will assume without lost of generality that ρ ≤ α0 and in

particular ρ ≤ δ3n

16(n+1
n−1)

2
(n2+3n+2)

≤ δ2nq−ℓ

8(n+1
n−1)

2 .

Observe that

ρ = E
A1,...,An∈(F

m
q
t )

E
A∈(F

n
q
t )
Ev∈T{A1,...,An,A}

[

δ
(

r|v, C
tր(m−t)

)]

where A1, . . . , An are random sets such that their union is linearly independent, and A is a random
set such that {A1, . . . , An, A} is ℓ-proper. Fix A1, . . . , An such that

E
A∈(F

m
q
t )

Ev∈T{A1,...,An,A}

[

δ
(

r|v, C
tր(m−t)

)]

≤ ρ.

Since Ctր(m−t) ⊆ C⊗(n−1),

E
A∈(F

m
q
t )

Ev∈T{A1,...,An,A}

[

δ
(

r|v, C
⊗(n−1)

)]

≤ ρ.

By affine-invariance, we may assume without loss of generality that A1, . . . , An form the standard
basis vectors for Fm

q . For any A ∈
(Fm

q
t

)
, let DA , {A1, . . . , An, A}. By Markov’s inequality,

Pr
A

[

Ev∈TDA

[

δ
(

r|v, C
⊗(n−1)

)

≥ 2δ−nρ
]]

<
1

2
δn.

So, for more than 1 − 1
2δ

n fraction of blocks A such that DA is ℓ-proper, we have a codeword

cA ∈ C
n
DA
⊆ C⊗n such that (by Theorem 3.8) δ(r, cA) < 2δ−nρ

(
n+1
n−1

)
< 1

2δ
n. For every two such

blocks A,A′, we have δ(cA, cA′) ≤ δ(cA, r) + δ(r, cA′ ) < δn = δ(C⊗n), so there is some codeword
c ∈ C⊗n such that cA = c for every such A. For such A, it follows that for every b ∈ Fm

q , the
restriction of c to the subspace (b, A) is a codeword of C, i.e. c|(b,A) ∈ C. By Claim 3.14, for more

than 1− 1
2δ

n −
(
n
2

)
q−t

q−1 − n q−l

q−1 fraction of blocks A (without the requirement that DA be proper),

c|(b,A) ∈ C for every b ∈ Fm
q . In particular, c ∈ C⊗n and for every b ∈ Fm

q , c|(b,A) /∈ C for less than

11



1
2δ

n+
(
n
2

)
q−t

q−1 +n q−ℓ

q−1 fraction of A. It sufficient to show that 1
2δ

n+
(
n
2

)
q−t

q−1 +n q−l

q−1 ≤ δn− (n+1)q−t.

Then it will follow from Corollary 5.8 that c ∈ Ctրm and since δ(r, c) ≤ 2δ−nρ
(
n+1
n−1

)
we are done.

Calculating:

(
n

2

)
q−t

q − 1
+n

q−l

q − 1
+(n+1)q−t ≤

(
n

2

)
q−l

q − 1
+n

q−l

q − 1
+(n+1)

q−l

q − 1
=

q−l

q − 1

(
n2 + 3n+ 2

2

)

≤
qδn

4(q − 1)
≤

1

2
δn

The composability of robust tests immediately yields the following corollary where the test is
now 2t dimensional.

Corollary 3.7. Ctր4t is (α1, 2t)-robust, where α1 ≥
δ21

6·1010
.

Proof. By Theorem 3.1, Ctր4t is
(

δ12

432,000 , 3t
)

-robust and Ctր3t is
(

δ9

128,000 , 2t
)

-robust. Therefore,

by composing, the 2t-dimensional robustness of Ctր4t is at least δ12

432,000 ·
δ9

128,000 = δ21

55,296,000,000

3.2 Robustness of special tensor codes

In this section, we prove the main technical result (Theorem 3.8) used in Section 3.1.

Theorem 3.8. Let n ≥ 3 and ℓ ≤ t. Set m = nt. Let D ⊆
(Fn

q
t

)
be ℓ-proper with |D| ≥ n blocks. Let

r : Fm
q → Fq be a word with ρ , Ev∈TD

[
δ
(
r|v, C

⊗(n−1)
)]
. If ρ < δnq−ℓ

4( |D|
n−1)

2 , then δ(r, CnD) ≤ ρ
(
|D|
n−1

)
.

Overview. Our analysis is an adaptation of Viderman’s [Vid12]. For simplicity, assume t = 1.
We define a function c : Fm

q → Fq, which we show is both close to r and a codeword of CnD. Following
Viderman’s analysis, we partition Fm

q into “good”, “fixable”, and “bad” points. Each hyperplane

v ∈ TD has an associated codeword cv ∈ C
⊗(m−1), the nearest codeword to r|v, and an opinion

cv(x) about x. “Good” points are points for which any hyperplane agrees with r. “Fixable” points
are points for which hyperplanes agree with each other, but not with r. “Bad” points are points
for which at least two hyperplanes disagree with each other. For good or fixable x, we naturally
define c(x) to be the common opinion cv(x) of any hyperplane v through x. Claim 3.10 implies
that there are not many bad points, which immediately shows that c is close to r.

So far, our proof has been a straightforward adaptation of Viderman’s. However, at this point,
we are forced to depart from Viderman’s proof. A hyperplane is “bad” if it has more than 1

2δ
m−1

fraction bad points. Claim 3.9 shows that every bad point is in a bad hyperplane, and Claim 3.11
shows that there are less than 1

2δq bad hyperplanes. In [Vid12], which analyses C⊗m and axis-
parallel hyperplanes instead of CnD and TD, this is already enough, since this implies that in each
axis-parallel direction, there are less than δq bad hyperplanes, so the remaining points are all good
or fixable and with a little bit more work, one can show that c can be extended uniquely to a tensor
codeword using the erasure-decoding properties of tensor codes. Unfortunately, we do not have this
structure.

We say a line is “good” if it is contained in some good hyperplane, otherwise it is bad. We must
further partition the bad points into merely bad and “super-bad” points, which are points such
that either every hyperplane is bad, or there are two disagreeing good hyperplanes. For merely
bad x, we define c(x) to be the common opinion cv(x) of any good hyperplane v through x. For
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super-bad x, we pick any line u through x, take the restriction of c to the non-super-bad points
on u, and extend it to a codeword cu ∈ C, and define c(x) , cu(x). Two non-trivial steps remain:
showing that c(x) is well-defined for super-bad x, and showing that c ∈ CnD.

Claim 3.12 shows that, for any special plane, there are less than 1
2δq lines in each direction that

are bad (not contained in any good hyperplane) or contain a super-bad point. This is proved by
exhibiting, for each such undesirable line, a bad hyperplane in a fixed direction containing the line.
If there were too many undesirable lines, this would result in too many parallel bad hyperplanes,
contradicting Claim 3.11. Finally Claim 3.13 shows if u is a line with no super-bad points, then
c|u ∈ C is a codeword.

Now, we show that c is well-defined on super-bad x. Let u1, u2 be two lines through x. Let
P be the plane through x containing u1, u2. On this plane, by Claim 3.12, in each direction we
have enough lines u with no super-bad points, for which c|u ∈ C (by Claim 3.13), so that we can
uniquely extend c onto the entire plane (by Proposition 2.15). This gives a well-defined value for
c(x).

Finally, we show that c ∈ CnD. Let u be any line. If u has no super-bad points, then c|u ∈ C
follows from Claim 3.13. If c does have a super-bad point x, then c|u ∈ C by the way we defined c(x).

This completes our analysis for the case t = 1. To generalize to t > 1, we replace lines
with “decoding subspaces” (subspaces of dimension t), planes with subspaces of dimension 2t, and
hyperplanes with “testing subspaces” (subspaces of codimension t). Some care must be taken
when proving Claim 3.12, because the intersection of two decoding subspaces may have non-trivial
dimension. We therefore require the notion of “ℓ-properness” of D, and must modify Claim 3.11
and also prove Claim 3.14 to accommodate this notion.

Proof of Theorem 3.8. For each testing subspace v ∈ TD, define cv ∈ C
⊗(n−1) to be the closest

codeword to r|v (break ties arbitrarily). We will partition Fm
q into three disjoint sets G,F,B (good,

fixable, and bad points, respectively) as follows:

G ,
{
x ∈ Fm

q | cv(x) = r(x) for every v ∈ TD(x)
}

F ,
{
x ∈ Fm

q | cv(x) = cv′(x) 6= r(x) for every v, v′ ∈ TD(x)
}

B ,
{
x ∈ Fm

q | cv(x) 6= cv′(x) for some v, v′ ∈ TD(x)
}
.

Call a testing subspace bad if at least 1
2δ

n−1 fraction of its points are in B, and good otherwise.
A decoding subspace is good if it is contained in some good testing subspace, and bad otherwise.
Further, define the set B′ of super-bad points

B′ , {x ∈ B | every v ∈ TD(x) is bad or ∃ good v, v′ ∈ TD(x) such that cv(x) 6= cv′(x)}.

Claim 3.9. If v, v′ ∈ TD are adjacent good testing subspaces, then cv |v∩v′ = cv′ |v∩v′ . In particular,
every bad point is in a bad testing subspace.

Proof. Suppose b ∈ v ∩ v′ and cv(b) 6= cv′(b). Since v, v′ are adjacent, they have n − 2 blocks
A1, . . . , An−2 in common. Let v have blocks A1, . . . , An−2, A and let v′ have blocks A1, . . . , An−2, A

′.
Let u ∈ DD be the decoding subspace (b, A1). Since cv |u, cv′ |u ∈ C disagree on b, they are

distinct codewords and hence disagree on at least δqt points of u, say x1, . . . ,xδqt . For each
i ∈ [δqt], let vi ∈ TD be the testing subspace (xi, A2 ∪ · · · ∪An−2 ∪A ∪A′).
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Since cv(xi) 6= cv′(xi), that means cvi disagrees with one of cv, cv′ at xi. Without loss of
generality, suppose cv disagrees with cv1 , . . . , cvδqt/2 . We will show that v is bad, which proves the
first part of the claim.

For each i ∈ [δqt], let wi = (xi, A2 ∪ · · · ∪ An−2 ∪ A). Note that u ∩ wi = {xi} (since D is
ℓ-proper, for ℓ ≤ t), so all wi are different parallel subspaces and hence disjoint. Since wi ∈ V

n−2
D ,

the restrictions cv |wi , cvi |wi ∈ C
⊗n−2 are codewords and are distinct because they disagree on xi,

therefore, by Proposition 2.14, they disagree on at least δn−2qm−2t points in wi, which are therefore
bad. Thus, each vi contributes δn−2qm−2t bad points to v, for a total of 1

2δ
n−1qm−t bad points

since the wi are disjoint.
For the second part, suppose b ∈ B is a bad point. We will show that b lies in a bad testing

subspace. By definition, there are two testing subspaces v, v′ ∈ TD(b) such that cv(b) 6= cv′(b).
Suppose v has blocks A1, . . . , An−1 and v′ has directions A′1, . . . , A

′
n−1. Assume, without lost of

generality, that if Ai = A′j then i = j. Define v0 , v, and for i ∈ [n − 1], define vi ∈ TD to
be the testing subspace through b in directions A′1, . . . , A

′
i, Ai+1, . . . , An−1. Consider the sequence

v0, v1, . . . , vn−1 of testing subspaces. For each i, the testing subspaces vi, vi+1 are adjacent. Since
cv0(b) 6= cvn−1(b), there exists some i such that cvi(b) 6= cvi+1(b), and by the first part of the claim
it follows that one of vi, vi+1 is bad.

Claim 3.10. ρ ≥ |F |
qm

+ |B|

qm( |D|
n−1)

Proof. Observe that |TD| = qt
( |D|
n−1

)
. Therefore,

ρ = Ev∈TD

[

δ
(

r|v, C
⊗(n−1)

)]

= Ev∈TD [δ (r|v, cv)]

=
1

qt
( |D|
n−1

)

∑

v∈TD

1

qm−t

∑

x∈v

1cv(x)6=r(x)

=
1

qm
(
|D|
n−1

)

∑

x∈Fm
q

#{v ∈ TD(x) | cv(x) 6= r(x)}

≥
1

qm
( |D|
n−1

)

(
∑

x∈G

0 +
∑

x∈F

(
|D|

m− 1

)

+
∑

x∈B

1

)

=
|F |

qm
+

|B|

qm
( |D|
n−1

) .

Claim 3.11. There are less than 1
2δq

t−ℓ bad testing subspaces.

Proof. By Claim 3.10, there are at most |B| ≤ ρ
( |D|
n−1

)
qm bad points. Each bad testing subspace

has at least δn−1qm−t/2 bad points by definition. Each bad point has at most
(
|D|
n−1

)
bad testing

subspaces through it. Therefore, there are at most

|B|
1
2δ

n−1qm−t
·

(
|D|

n− 1

)

≤
2ρ

δn−1

(
|D|

n− 1

)2

qt <
1

2
δqt−ℓ

bad testing subspaces.
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Now we proceed to prove the lemma. We construct a codeword c ∈ CnD with δ(r, c) ≤ ρ
( |D|
n−1

)

in stages, as follows. First, for x ∈ G ∪ F , we define c(x) , cv(x) for any testing subspace
v ∈ TD(x). This is well-defined since, by definition of G and F , all testing subspaces v ∈ TD agree
on the value cv(x). Furthermore, since c(x) = cv(x) = r(x) for x ∈ G, we already guarantee that

δ(r, c) ≤ |F |+|B|
qm

≤ ρ
( |D|
n−1

)
.

For x ∈ B \ B′, define c(x) , cv(x) for any good testing subspace v ∈ TD(x), whose existence
is guaranteed by the fact that x /∈ B′. This is well-defined because if v, v′ ∈ TD(x) are both good,
then it follows from the fact that x /∈ B′ that cv(x) = cv′(x).

Claim 3.12. Let w ∈ V2D be a subspace in directions A1, A2 ∈ D. For each i ∈ {1, 2}, w contains
less than 1

2δq
t decoding subspaces in direction Ai which intersect B′ or are bad (not contained in

any good testing subspace).

Proof. By symmetry, it suffices to consider i = 2. Let A3, . . . , An ∈ D be blocks in some other
direction. Let u1, . . . , uk ⊆ w be decoding subspaces in direction A2 such that, for each j ∈ [k],
uj intersects B′ or is bad. It suffices to exhibit, for each j ∈ [k], a bad testing subspace v ∈ TD
containing uj which has block A2 but not A1. In this case we will show that |v ∩ w| ≤ qt+ℓ so each
such bad testing subspace contain at most qℓ of the ui-s. Since, by Claim 3.11, there are at most
1
2δq

t−ℓ such subspaces, we get that k ≤ 1
2δq

t. Indeed, since D is ℓ-proper, the subspace u+ v ∈ VnD
has dimension at least m− ℓ. Therefore,

dim(v ∩ w) = dim(v) + dim(w) − dim(v + w) ≤ m− t+ 2t− (m− l) = t+ l

and |v ∩w| ≤ qt+ℓ.
Fix j ∈ [l] and u , uj and we will show that u is contained in a bad testing subspace. If u is

bad, then we are done, since any testing subspace containing u, in particular the testing subspace
in directions A2, . . . , An, is bad. Now suppose u has a point x ∈ u ∩ B′. Let v ∈ TD be the
testing subspace (x, A2 ∪ · · · ∪An). If v is bad, we are done. Otherwise, since x ∈ B′, there exists
another good hyperplane v′ ∈ D, in directions A′1, . . . , A

′
n−1, such that cv(x) 6= cv′(x). Without

loss of generality, assume that if Ai = A′j then i = j (in particular A1 /∈ {A′2, . . . , A
′
n−1}). For each

i ∈ [n − 1], if A2 = A′2 define vi ∈ TD(x) to be the testing subspace (x, A′2, . . . , A
′
i, Ai+1, . . . , An),

and if A2 6= A′2 define v1 to be v and vi to be (x, A2, A
′
2, . . . , A

′
i, Ai+1, . . . , An−1). In any case

define vn , v′. For every i ∈ [n − 1], vi and vi+1 are adjacent. Note that for every i ∈ [n − 1], vi
contains the direction A2 and does not contain the direction A1. We will show that vi is bad for
some i ∈ [n − 1]. Since cv1(x) 6= cvn(x), there exists some i ∈ [n − 1] such that cvi(x) 6= cvi+1(x),
and therefore, by Claim 3.9, one of vi, vi+1 is bad. If i < n− 1, then i, i+1 ≤ n− 1, and so we are
done. If i = n− 1, then by assumption vn = v′ is good, so it must be that vn−1 is bad.

Claim 3.13. If u ∈ DD is a decoding subspace and u ∩ B′ = ∅, then for every x ∈ u there is a
codeword cx ∈ C defined on u such that cx(x) = c(x) and δ(cx, c|u) <

δ
2 . In particular, c|u ∈ C.

Proof. Fix x ∈ u. Let A = {a1, . . . ,at} ∈ D be the directions of u. Since x /∈ B′, there is a good
testing subspace v ∈ TD(x). Let A

′ = {a′1, . . . ,a
′
t} be some block in v not equal to A and consider

the subspace w = (x, A ∪A′) ∈ V2D. For s, s
′ ∈ Ft

q, let w(s, s
′) , x+

∑t
i=1 siai +

∑t
i=1 s

′
ia
′
i. Let

w(s, ∗) , {w(s, s′) | s′ ∈ Ft
q} ∈ DD
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and
w(∗, s′) , {w(s, s′) | s ∈ Ft

q} ∈ DD

Let I ⊆ Ft
q \ {0} be the set of points s 6= 0 such that w(s, ∗) intersects B′ or is bad. Similarly, let

I ′ ⊆ Ft
q \ {0} be the set of points s′ 6= 0 such that w(∗, s′) intersects B′ or is bad. By Claim 3.12,

|I|, |I ′| < 1
2δq

t. Note that for each (s, s′) ∈ (Ft
q \ I) × (Ft

q \ I
′), we have w(s, s′) /∈ B′: if s 6= 0 or

s′ 6= 0, this follows from the definition of I and I ′; if s = s′ = 0, then w(s, s′) = x /∈ B′. Thus c is
defined on w((Ft

q \ I) × (Ft
q \ I

′)). Note that for each s ∈ Ft
q \ I, the decoding subspace w(s, ∗) is

good and hence contained in a good testing subspace vs ∈ TD, therefore cvs |w(s,∗) ∈ C. Similarly, for
each s′ ∈ Ft

q \ I
′, the decoding subspace w(∗, s′) is contained in a good testing subspace vs′ ∈ TD,

hence cv
s′
|w(∗,s′) ∈ C. Since |I|, |I ′| < 1

2δq
t, by Proposition 2.15, c can be extended uniquely

into cw ∈ C
⊗2 defined on w. Define cx , cw|u. Note that cx ∈ C since it is the restriction of

cw ∈ C
⊗2 to u = w(∗,0). Also, if s ∈ Ft

q \ I, then c|w(s,∗) = cvs |w(s,∗) = cw|w(s,∗) and in particular,

c(w(s,0)) = cw(w(s,0)) = cx(w(s,0)). So δ(c, cx) ≤
|I|
qt

< δ
2 . Finally, since 0 /∈ I, I ′, we have

c(x) = c(w(0,0)) = cx(w(0,0)) = cx(x). This proves the first part of the claim.
For the second part (showing c|u ∈ C), fix some x0 ∈ u. For each x ∈ u, let cx be the codeword

guaranteed by the previous part. Then, for every x ∈ u, δ(cx0 , cx) ≤ δ(cx0 , c|u) + δ(c|u, cx) < δ,
therefore cx0 = cx. Moreover, for all x ∈ u, cx0(x) = cx(x) = c(x), so c|u = cx0 ∈ C.

We proceed to define c(x) for x ∈ B′. For such an x, pick any decoding subspace u ∈ DD(x),
extend c|u\B′ to a codeword cu ∈ C, and define c(x) , cu(x). We now argue that this is well-
defined. Suppose u1, u2 ∈ DD(x) in directions A1, A2 ∈ D, respectively. We need to show that
cu1 , cu2 are well-defined and that cu1(x) = cu2(x). Let w ∈ V2D be the unique subspace containing
u1, u2, so w = (x, A1 ∪ A2). By Claim 3.12, in each direction A1, A2, there are less than 1

2δq
t

decoding subspaces in that direction in w which intersect B′. In particular, this implies that u1, u2
each contain less than δqt points from B′. By what we just showed, there are sets J1, J2 ⊆ Ft

q of

size |J1|, |J2| > (1 − δ)qt such that the “sub-rectangle” R , w(J1 × J2) contains no points from
B′, and therefore c has already been defined on R. By Claim 3.13, on each decoding subspace
u in R in either direction A1 or A2, c|u ∈ C. Applying Proposition 2.15, we see that c|R can be
uniquely extended to a tensor codeword cw ∈ C

⊗2 on w, and this gives a way to extend c|ui\B′ to

the codeword cui , cw|ui ∈ C for i ∈ {1, 2}. Therefore, the extensions cu1 , c|u2 agree on x since
cu1(x) = cw(x) = cu2(x), and moreover for each decoding subspace ui this extension is unique since
each decoding subspace has less than δqt points from B′.

Now that we have defined c : Fm
q → Fq and have shown that δ(r, c) ≤ ρ

(
|D|
n−1

)
, it only remains

to show that c ∈ CnD. Let u ∈ DD be a decoding subspace. If u ∩ B′ = ∅, then c|u ∈ C follows
from Claim 3.13. If u intersects B′, by the way we defined c(x) for x ∈ B′, we showed that for any
decoding subspace u through x ∈ B′, c|u ∈ C by extending c|u\B′ to a codeword.

Claim 3.14. Let ℓ ≤ t be a natural number and A1, . . . , An ∈
(Fm

q
t

)
be such that their union is

linearly independent. Then at least 1−
(
n
2

)
q−t

q−1−n
q−ℓ

q−1 fraction of A ∈
(
Fm
q
t

)
satisfy that A,A1, . . . , An

is ℓ-proper.

Proof. Let a1, . . . ,at be the random elements comprising A. By a union bound, it suffices to show

for any S ∈
(

[n]
n−2

)
that

(⋃

i∈S Ai

)
∪A is linearly independent with probability at least 1− q−t

q−1 and
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for any T ∈
( [n]
n−1

)
the probability that

(⋃

i∈T Ai

)
∪A contains at least m− ℓ linearly independent

elements is at least 1− q−ℓ

q−1 .

Fix S ∈
( [n]
n−2

)
.For any j ∈ [t], the probability that aj ∈ Fm

q is in the span of
(⋃

i∈S Ai

)
∪

{a1, . . . ,aj−1}, conditioned on the event that the latter is linearly independent, is qm−2t+j−1

qm
=

q−2t+j−1. So the probability that
(⋃

i∈S Ai

)
∪A is linearly independent is

t∏

j=1

(
1− q−2t+j−1

)
≥ 1−

t∑

j=1

q−2t+j−1

≥ 1− q−t
∞∑

j=1

q−j

= 1−
q−t

q − 1
.

Now fix T ∈
( [n]
n−1

)
. Similarly, The probability that aj ∈

(⋃

i∈T Ai

)
∪{a1, . . . ,aj−1}, condition on

the event that the later linearly independent is q−t+j−1. So we get that
(⋃

i∈S Ai

)
∪ {a1, . . . ,at−ℓ}

are linearly independent is

t−ℓ∏

j=1

(
1− q−t+j−1

)
≥ 1−

t−ℓ∑

j=1

q−t+j−1

≥ 1− q−ℓ
∞∑

j=1

q−j

= 1−
q−ℓ

q − 1
.

3.3 Robustness for large dimension

In this section, we prove our main result:

Theorem 3.15. Let ρ , Ev[δ(r|v , C
tր2t)], where v is a random affine subspace of dimension 2t.

Let α1 be the 2t-dimensional robustness of Ctր4t given by Corollary 3.7. If ρ < α1δ
3

400 − 3q−t, then

ρ ≥
(
1− δ

4

)
· δ(r, Ctրm). In particular, Ctրm is (α2, 2t)-robust, where α2 ≥

δ72

2·1052
.

Notation. Throughout Section 3.3, fix the received word r : Fm
q → Fq and ρ , Ev[δ(r|v , C

tր2t)],

and we will assume that 0 < ρ < α1δ
3

400 − 3q−t. The case where α1δ
3

400 > 3q−t is easily dealt with at

the end of the proof by using Corollary 2.9. Note that, since α1, δ ≤ 1, this implies q−t ≤ δ
1200 .

Throughout this section we will assume m ≥ 4t. If m < 4t we can pad the function f to get a
function f̂ : F4t

q → Fq (by setting f̂(x,y) = f(x) for every x ∈ Fm
q and y ∈ F4t−m

q ) and applying

our tester to f̂ . We will typically use u, v, w to denote affine subspaces of dimension t, 2t, and
4t respectively. For any affine subspace A ⊆ Fm

q , let cA ∈ C
tրdim(A) be the codeword nearest
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to r|A, breaking ties arbitrarily. Let ρA , Ev⊆A[δ(r|v , C
tր2t)], where the expectation is taken over

uniformly random 2t-dimensional subspaces v ⊆ A. Fix the following constants:

γ ,
α1δ

2

40
− α1q

−t

ǫ ,
ρ+ 2q−t

γ
.

In particular, these constants are chosen so that the following bounds hold:

20δ−1(α−11 γ + q−t) ≤
δ

2

ǫ ≤
δ

10
.

Overview. This proof is a straightforward generalization of “bootstrapping” proofs originating
in the work of Rubinfeld and Sudan [RS96] and which also appears in [ALM+98, AS03, Aro94].
Our writeup in particular follows [Aro94]. For simplicity, assume t = 1. Our approach is to define
a function c : Fm

q → Fq and then show that it is both close to r and a codeword of C1րm. The
definition of c is simple: for every x ∈ Fm

q , consider the opinion cu(x) for every line u through x,
and define c(x) as the majority opinion. We need to show that c is well-defined (the majority is
actually a majority). Our main technical lemma (Lemma 3.18) of this section shows that most
lines agree with each other, so c is well-defined. Lemma 3.18 uses Claim 3.16, which shows that
for a 4-dimensional affine subspace w, if ρw is small, then for every x ∈ w, most lines u ⊆ w
satisfy cu(x) = cw(x). To prove Claim 3.16 we use the results of Section 3.1, in particular the
robustness of the plane test in m = 4 dimensions (Corollary 3.7). Since the average δ(r|u, cw|u)
over u through x is about δ(r|w, cw), by robustness this is less than α−11 ρw, which is small since ρw
is small. Therefore, for most u, δ(r|u, cw|u) is small and so it must be that cu = cw|u.

Once we have shown that c is well-defined, showing that c is close to r requires just a bit of
calculation. Showing that c ∈ C1րm involves more work. For each line u, define c′u ∈ C to be the
nearest codeword to c|u. Fix a line u and a point x ∈ u. We want to show that c|u(x) = c′u(x).
The idea is to show the existence of a “good” 4-dimensional w ⊇ u such that ρw is small and for
more than 1− δ

2 fraction of points y ∈ u (including x) are “good” in the sense that c(y) = cu′(y)
for a non-negligible fraction of lines u′ through y. Once we have such a w, we show that for every
good y ∈ u, c(y) = cw(y). Since u has more than 1 − δ

2 fraction good points, this implies that

δ(c|u, cw|u) <
δ
2 , hence c′u = c|w, so c′u(x) = c|w(x) = c(x), as desired.

Claim 3.16. If w ⊆ Fm
q be a 4t-dimensional affine subspace with ρw ≤ γ, then for every x ∈ w, at

least 1− δ
20 fraction of t-dimensional subspaces u ⊆ w satisfy cu(x) = cw(x).

Proof. Fix x ∈ w. Let U be the set of t-dimensional subspaces u containing x such that δ(r|u, cw|u) <
20δ−1(α−11 ρw + q−t). By Corollary 3.7, Eu⊆w

u∋x
[δ(r|u, cw|u)] ≤ δ(r|w, cw) + q−t ≤ α−11 ρw + q−t,

so by Markov’s inequality, the probability that δ(r|u, cw|u) ≥ 20δ−1(α−11 ρw + q−t) is at most
α−1
1 ρw+q−t

20δ−1(α−1
1 ρw+q−t)

= δ
20 . For u ∈ U , since δ(r|u, cw|u) < 20δ−1(α−11 ρw + q−t) ≤ δ

2 and cw|u ∈ C,

we have cu = cw|u and therefore cu(x) = cw(x).

The following claim says that Ew[ρw] ≈ ρ, even if we insist that w contains a fixed t-dimensional
subspace.

18



Claim 3.17. For any t-dimensional affine subspace u ⊆ Fm
q , Ew⊇u[ρw] ≤ ρ + 2q−t, where w

is a random 4t-dimensional affine subspace containing u. In particular, for any point x ∈ Fm
q ,

Ew∋x[ρw] ≤ ρ+ 2q−t.

Proof. Observe that

ρ = Ev

[

δ
(

r|v, C
tր2t

)]

≥ Ev:u∩v=∅

[

δ
(

r|v, C
tր2t

)]

· Pr
v
[u ∩ v = ∅]

(Lemma 2.16) ≥ Ev:u∩v=∅

[

δ
(

r|v, C
tր2t

)]

·
(

1− q−(m−3t)
)

.

Therefore,

Ew⊇u[ρw] = Ew⊇u

[

Ev⊆w

[

δ(r|v , C
tր2t)

]]

≤ Ew⊇u

[

Ev⊆w

[

δ(r|v , C
tր2t)

∣
∣
∣ u ∩ v = ∅

]

+ Pr
v⊆w

[u ∩ v 6= ∅]

]

(Lemma 2.16) ≤ Ew⊇u

[

Ev⊆w

[

δ(r|v , C
tր2t)

∣
∣
∣ u ∩ v = ∅

]]

+ q−t

= Ev:u∩v=∅[δ(r|v , C
tր2t)] + q−t

≤
ρ

1− q−(m−3t)
+ q−t

≤ ρ+ 2q−t

Lemma 3.18 (Main). For every x ∈ Fm
q , there is a collection U1 of at least 1− δ

5 −
δ

600 fraction of
the t-dimensional affine subspaces through x, such that cu(x) = cu′(x) for every u, u′ ∈ U1.

Proof. Let U be the set of all t-dimensional affine subspaces u through x. Partition U into disjoint
collections U1, . . . , Uk with |U1| ≥ · · · ≥ |Uk| according to the value of cu(x). We will show that
Pru∋x[u ∈ U1] ≥ 1 − δ

5 −
δ

600 . For every 4t-dimensional subspace w, let Uw be the collection of
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t-dimensional subspaces u through x, guaranteed by Claim 3.16, satisfying cu(x) = cw(x). Then

Pr
u∋x

[u ∈ U1] ≥ Pr
u,u′∋x

[∃i u, u′ ∈ Ui]

= Pr
u,u′∋x

[cu(x) = cu′(x)]

(Lemma 2.17) ≥ Pr
u∩u′={x}

[cu(x) = cu′(x)] − q−(m−2t)

= Ew∋x




 Pr

u,u′⊆w
u∩u′={x}

[cu(x) = cu′(x)]




 − q−(m−2t)

(Lemma 2.17) ≥ Ew∋x




 Pr
u,u′⊆w
u,u′∋x

[cu(x) = cu′(x)




− q−2t − q−(m−2t)

≥ Ew∋x




 Pr
u,u′⊆w
u,u′∋x

[cu(x) = cu′(x)




−

δ

600

≥ Ew∋x




 Pr
u,u′⊆w
u,u′∋x

[cu(x) = cu′(x)]

∣
∣
∣
∣
∣
∣
∣

ρw ≤ γ




 · Pr

w∋x
[ρw ≤ γ]−

δ

600

≥ Ew∋x




 Pr
u,u′⊆w
u,u′∋x

[u, u′ ∈ Uw]

∣
∣
∣
∣
∣
∣
∣

ρw ≤ γ




 · Pr

w∋x
[ρw ≤ γ]−

δ

600

(Claim 3.16) ≥

(

1−
δ

20

)2

· Pr
w∋x

[ρw ≤ γ]−
δ

600

(Markov) ≥

(

1−
δ

20

)2

·

(

1−
Ew∋x[ρw]

γ

)

−
δ

600

(Claim 3.17) ≥

(

1−
δ

20

)2

·

(

1−
ρ+ 2q−t

γ

)

−
δ

600

≥ 1−
δ

10
−

ρ+ 2q−t

γ
−

δ

600

= 1−
δ

10
− ǫ−

δ

600

≥ 1−
δ

5
−

δ

600

We are now ready to prove the main theorem.

Proof of Theorem 3.15. We will define a function c : Fm
q → Fq and then show that it is close to r

and is a codeword of Ctրm. For x ∈ Fm
q , define c(x) , Majorityu∋x{cu(x)}, where the majority is
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over t-dimensional affine subspaces u through x. Since δ
5 + δ

600 < 1
2 , it follows from Lemma 3.18

that c is well-defined.
Next, we show that c is close to r. Indeed,

ρ = Ev[δ(r|v , cv)]

≥ Eu[δ(r|u, cu)]

= Eu

[
Ex∈u

[
1cu(x)6=r(x)

]]

= Ex

[
Eu∋x

[
1cu(x)6=r(x)

]]

≥ Ex

[
Eu∋x

[
1cu(x)6=r(x)

] ∣
∣ c(x) 6= r(x)

]
· Pr

x
[c(x) 6= r(x)]

≥ Ex

[

Pr
u∋x

[cu(x) = c(x)]
∣
∣
∣ c(x) 6= r(x)]

]

· δ(r, c)

(Lemma 3.18) ≥

(

1−
δ

4

)

· δ(r, c).

Finally, we show that c ∈ Ctրm. Let u ⊆ Fm
q a t-dimensional affine subspace. We wish to show

that c|u ∈ C. Let c′u ∈ C be the codeword of C nearest to c|u (not to be confused with cu, the
nearest codeword to r|u). Let x ∈ u. We will show that c′u(x) = c|u(x). For a 4t-dimensional affine
subspace w ⊆ Fm

q , we say a point y ∈ w is good for w if Pru′⊆w
u′∋y

[cu′(y) = c(y)] > δ
20 . We will show,

by a union bound, that there exists a 4t-dimensional affine subspace w ⊇ u such that

1. ρw ≤ γ;

2. x is good for w;

3. more than 1− δ
2 fraction of points y ∈ u are good for w.

Observe that for any y ∈ u, picking a random 4t-dimensional w containing u and then picking a
random t-dimensional u′ ⊆ w through y that intersect u only on y is equivalent to picking a random
t-dimensional u′ through y that intersect u only on y and then picking a random 4t-dimensional w
containing both u, u′. Therefore, for any fixed y ∈ u

Ew⊇u




 Pr
u′⊆w
u′∋y

[cu′(y) 6= c(y)]




 = E w⊇u

u′⊆w,u′∋y

[
1cu′(y)6=c(y)

]

≤ E w⊇u
u′⊆w,u′∋y

[
1cu′(y)6=c(y) | u ∩ u′ = {y}

]
+ Pr

w⊇u
u′⊆w,u′∋y

[
u ∩ u′ 6= {y}

]

(Lemma 2.17) ≤ Eu′∋y

[
1cu′(y)6=c(y) | u ∩ u′ = {y}

]
+ q−2t

(Lemma 2.17) ≤ Eu′∋y

[
1cu′(y)6=c(y)

]
+ q−(m−2t) + q−2t

(Lemma 3.18 and definition of c) ≤
δ

5
+

δ

600
+ 2q−2t ≤

δ

5
+

δ

300
≤

δ

4
.
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Therefore, by Markov’s inequality, for any fixed y ∈ u,

Pr
w⊇u

[y is not good for w] = Pr
w⊇u

[

Pr
u′⊇w,u′∋y

[cu′(y) 6= c(y)] ≥ 1−
δ

20

]

≤
δ
4

1− δ
20

≤
5

19
· δ.

In particular, this applies for y = x. Further applying Markov’s inequality, we find that

Pr
w⊇u

[

fraction of not good y in u ≥
δ

2

]

≤
5δ/19

δ/2
=

10

19
.

Finally, since Ew⊇u[ρw] ≤ ρ+ 2q−t (by Claim 3.17), we have

Pr
w⊇u

[ρw > γ] ≤
ρ+ 2q−t

γ
= ǫ ≤

δ

10
.

Since δ ≤ 1 and 5
19 + 10

19 +
1
10 < 1, by the union bound such a desired w exists.

Now that we have such a subspace w, consider cw. We claim that it suffices to prove that if
y ∈ u is good, then cw(y) = c(y). Indeed, since more than 1− δ

2 fraction of points in u are good,

we have δ(cw|u, c|u) <
δ
2 . Therefore cw|u = c′u, and since x is good, we have c(x) = cw(x) = c′u(x)

as desired. It remains to prove that cw(y) = c(y) for good y ∈ u. By Claim 3.16, at least 1 − δ
20

fraction of t-dimensional u′ ⊆ w through y satisfy cu′(y) = cw(y). Since y is good, more than δ
20

fraction of t-dimensional u′ ⊆ w through y satisfy cu′(y) = c(y). Therefore, there must be some
t-dimensional u′ ⊆ w through y which satisfies cw(y) = cu′(y) = c(y).

Finally, for the robustness statement: if q−t ≥ δ24

1014
, then by Corollary 2.9, the robustness is at

least q−3t

2 ≥ δ72

2·1052
. Otherwise, the robustness is at least α1δ

3

57,600·400 − 3q−t ≥ δ24

2·1014
.

4 Low-degree testing

In this section, we prove Theorem 4.2, which is simply a more precise restatement of Theorem 1.3.
We do so by proving Theorem 4.1, a generalization from which Theorem 4.2 follows immedi-
ately. Theorem 4.1 replaces the Reed-Solomon code with an arbitrary univariate linear affine-
invariant code C0 and replaces the bivariate Reed-Muller code with an arbitrary t-variate linear
affine-invariant code C1 which is a strict subcode of (C0)

1րt.

Theorem 4.1. Let t > 1 and let m ≥ 3. Let C0 ⊆ {Fq → Fq} and C1 ⊆ {F
t
q → Fq} be linear affine-

invariant codes such that C1 ( (C0)
1րt. Let δ , δ(C0). Fix r : Fm

q → Fq. Let ρ , Eu [δ (r|u, C1)],
where the expectation is taken over random t-dimensional u ⊆ Fm

q . Let α2 be the t-dimensional

robustness of (C0)
1րm. Then ρ ≥ min

{
α2δ

2

4 ,
(
δ
2 − 2q−1

)
· δ2

}

· δ(r, (C1)
tրm).

Theorem 4.2 (Robust plane testing for Reed-Muller). Let m ≥ 3. Fix a positive constant
δ > 0 and a degree d = (1− δ) · q. Let RM(m) be the m-variate Reed-Muller codes of degree d over

Fq. Then RM(m) is
(

δ74

8·1052 , 2
)

-robust.

22



Proof. Let RS be the Reed-Solomon code over Fq of degree d. Let p be the characteristic of q. Let

α1 be the 2-dimensional robustness of RS1րm. Then α2 ≥
δ72

2·1052 by Theorem 3.1 if m = 3, and by
Theorem 3.15 if m ≥ 4.

If d < q− q/p− 1, then RM(m) = RS1րm, and so in this case the theorem follows immediately
from Theorem 3.15. If d ≥ q − q/p and q ≥ 8

δ
, then RM(2) ( RS1ր2 but RM(m) = RM(2)2րm,

and so in this case the theorem follows immediately from Theorem 4.1, with C0 = RS, t = 2, and
C1 = RM(2). If q < 8

δ
then the theorem follows from Corollary 2.9.

Overview of Proof of Theorem 4.1. We illustrate the idea for the case where t = 2, C0 is the
Reed-Solomon code, and C1 is the bivariate Reed-Muller code of the same degree. The generalization
to arbitrary t and codes C0, C1 is straightforward. If r is far from the lifted code, then on random
planes r will be far from the bivariate lifted code and hence also from the bivariate Reed-Muller
code. So the remaining case is when r is close to the lifted code. If the nearest function is a Reed-
Muller codeword, then the theorem follows from the robustness of the lifted code. Otherwise, if the
nearest function c is not Reed-Muller, then we show (through Corollary 5.9) that on many planes
c is not a bivariate Reed-Muller codeword, and so r (being close to c) is not close to a bivariate
Reed-Muller codeword (by the distance of the code).

Proof of Theorem 4.1. Observe that, since (C1)
tրm ⊂ (C0)

1րm, we have δ(r, (C0)
1րm) ≤ δ(r, (C1)

tրm).

If δ(r, (C0)
1րm) ≥ min

{
δ2

4 , δ(r, (C1)
tրm)

}

, then we are done since

ρ = Eu [δ (r|u, C1)]

≥ Eu

[

δ
(

r|u, (C0)
1րt
)]

≥ α2 · δ(r, (C0)
1րm)

≥ α2 ·min

{
δ2

4
, δ(r, (C1)

tրm)

}

≥
α2δ

2

4
· δ(r, (C1)

tրm).

Therefore, suppose δ(r, (C0)
1րm) < min

{
δ2

4 , δ(r, (C1)
tրm)

}

. Let f ∈ (C0)
1րm be the nearest

codeword to r, so that f /∈ (C1)
tրm and δ(r, f) < δ2

4 . If u is a t-dimensional subspace for which

f |u /∈ C1, then, since C1 is a subcode of (C0)
1րt, δ(r|u, C1) ≥ δ − δ(r|u, f |u). Since

Eu [δ (r|u, f |u)] = δ(r, f) <
δ2

4
,

by Markov,

Pr
u

[

δ(r|u, f |u) ≥
δ

2

]

≤
δ

2

By Corollary 5.9,
Pr
u
[f |u ∈ C1] ≤ 1− δ + 2q−1.

By the union bound, it follows that for at least δ
2 − 2q−1 fraction of the t-dimensional u ⊆ Fm

q , it
holds that

δ(r|u, C1) ≥ δ − δ(r|u, f |u) ≥
δ

2
.
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Therefore,

ρ = Eu [δ (r|u, C1)] ≥

(
δ

2
− 2q−1

)

·
δ

2
.

5 Technical algebraic results

The purpose of this section is to prove Theorem 5.7 and its Corollaries 5.8 and 5.9. If we allow our
robustness in Theorem 3.15 to depend on t, the dimension of the base code, then proving what we
need for Theorem 5.7 is easy. However, removing the dependence on t requires some new ideas,
including the definition of a new operation (“degree lifting”) on codes, and the analysis of the
distance of degree lifted codes. In Section 5.1, we define degree lifting and analyze the degree lifted
codes (Proposition 5.4). In Section 5.2, we prove Theorem 5.7 and its corollaries.

Notation. For any vector a = (a1, . . . , am) ∈ Nm, define ‖a‖ ,
∑m

i=1 ai. For an integer a =
∑

i aip
j, 0 ≤ ai ≤ p − 1, and integers b1, . . . , bm, with bj =

∑

i bjip
i, 0 ≤ bji ≤ p − 1, we say that

b = (b1, . . . , bm) ≤p a if
∑

j bji = ai for every i. Moreover, let
(
a
b

)
, a!

b1!···bm! denote the m-nomial

coefficient, which is the coefficient of Xb in (X1 + · · ·+Xm)a. If B is an m× n matrix, let Bi∗ be
the i-th row of B and let B∗j be the j-th column of B. If a = (a1, . . . , am), then we say B ≤p a if
Bi∗ ≤p ai for each i, i.e. row-wise p-shadow.

5.1 Degree lift

In this section, we define the degree lift operation on codes with degree sets. The operation can be
thought of as “Reed-Mullerization”, in the sense that the degree lift of the Reed-Solomon code of
degree d is the Reed-Muller code of degree d. This resembles the degree lift operation of Ben-Sasson
et al. [BGK+13] who defined a “Reed-Mullerization” for algebraic-geometry codes (in constrast,
we want to define it for codes over Fm

q spanned by monomials).

Definition 5.1 (Degree lift). Let C ⊆ {Fm
q → Fq} have degree set Deg(C). For positive integer

s ≥ 1, define the s-wise degree lift C(s) ⊆ {Fms
q → Fq} of C to be the code with degree set

Deg(C(s)) ,






(d1, . . . ,ds) ∈ {0, 1, . . . , q − 1}m×s

∣
∣
∣
∣
∣
∣

s∑

j=1

dj ∈ Deg(C)






.

Our goal with this definition is to prove Proposition 5.4, which says that the distance of C(s) is
nearly the same as the distance of C. One can show that δ(C(s)) ≥ δ(C) −mq−1 To do so, we will
use the following fact.

Proposition 5.2. Let t, n ≥ 1 and let m = nt. Let C0 ⊆ {F
t
q → Fq} be linear affine-invariant and

let C , (C0)
⊗n. For each i ∈ [n], let Xi = (Xi1, . . . ,Xit). If f(X1, . . . ,Xn) ∈ C, and A1, . . . , An :

Ft
q → Ft

q are affine transformations, then f(A1(X1), . . . , An(Xn)) ∈ C.

Proof. By linearity, it suffices to consider the case where f(X1, . . . ,Xn) =
∏n

i=1 Xi
di is a monomial,

where di = (di1, . . . , dit) ∈ {0, 1, . . . , q− 1}t. Each Xi
di ∈ C0, so by affine-invariance Ai(Xi)

di ∈ C0.
Therefore, by Proposition 2.12, f(A1(X1), . . . , A)n(Xn)) =

∏n
i=1 Ai(Xi)

di ∈ (C0)
⊗n = C.
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Overview. To prove Proposition 5.4, we show, through Lemma 5.3, that there is a special subset
of m-dimensional subspaces A, such that for any f ∈ C(s), f |A ∈ C. Then, we analyze the distance
of from f to the zero function by looking at the distance on a random special m-dimensional A.
This will yield a distance of δ(C(s)) ≥ δ(C)− o(1) as long as the special subspaces sample Fm

q well.

However, we require the o(1) term to be (nq−t)O(1), otherwise we would not be able to remove the
dependence on t in the robustness of Theorem 3.15. In order to do so, we need to further assume
that C is the tensor product (C0)

n of some t-dimensional code C0 (which is satisfied by our use case).
We now describe the special subspaces we consider in Lemma 5.3. Label the variables of

Fms
q = Fnts

q by Xcij, where c ∈ [n], i ∈ [t], j ∈ [s]. Let Yci, for c ∈ [n], i ∈ [t], be the variables
parameterizing A. Note that an arbitrary subspace restriction corresponds to substituting, for each
Xcij, an affine function of all of the variables Y11, . . . , Ynt. This is too much to hope for. However,
if we substitute for Xcij an affine function of just Yc1, . . . , Yct, this works.

Lemma 5.3. Let t, n ≥ 1 and m = nt. Let C0 ⊆ {F
t
q → Fq} be linear affine-invariant and let C ,

(C0)
⊗n. Let s ≥ 1, and let f(X) ∈ C(s), with variables X = (Xcij)c∈[n],i∈[t],j∈[s]. Let g(Y11, . . . , Ynt)

be the m-variate polynomial obtained from f(X) by setting, for each c ∈ [n], i ∈ [t], and j ∈ [s],
Xcij =

∑t
k=1 acijkYck + bcij, for some acijk, bcij ∈ Fq. That is, for all (c, i, j) ∈ [n]× [t]× [s] Xcij is

an affine function of Yc1, . . . , Yct. Then g ∈ C.

Proof. By linearity, it suffices to consider the case where f(X) =
∏n

c=1

∏t
i=1

∏s
j=1X

dcij
cij is a

monomial, for some 0 ≤ dcij ≤ q − 1. For each j ∈ [s], define dj , (d11j , . . . , dntj), so that
(d1, . . . ,ds) ∈ Deg(C(s)), i.e.

∑s
i=1 di ∈ Deg(C). Then

g(Y11, . . . , Ynt) =

n∏

c=1

t∏

i=1

s∏

j=1

(
t∑

k=1

acijkYck + bcij

)dcij

=

n∏

c=1

t∏

i=1

s∏

j=1

∑

ecij≤dcij

(
dcij
ecij

)

b
ecij0
cij

t∏

k=1

a
ecijk
cijk Y

ecijk
ck

=
∑

ecij≤pdcij
∀ i,j

(· · · )
n∏

c=1

t∏

k=1

Y
∑t

i=1

∑s
j=1 ecijk

ck

where the (· · · ) denotes constants in Fq. So, it suffices to show that each monomial of the form
∏n

c=1

∏t
k=1 Y

∑t
i=1

∑n
j=1 ecijk

ck ∈ C, which we show in the remainder of the proof.
Let h(Y11, . . . , Ynt) be the m-variate polynomial obtained from f by substituting Xcij = Yci for

each c ∈ [n], i ∈ [t], j ∈ [s]. Then h(Y11, . . . , Ynt) =
∏n

c=1

∏t
i=1

∏s
j=1 Y

dcij
ci =

∏n
c=1

∏t
i=1 Y

∑s
j=1 dcij

ci

is a monomial with degree
(
∑s

j=1 d11j , . . . ,
∑s

j=1 dntj

)

=
∑s

j=1 dj ∈ Deg(C), hence h ∈ C. Now,

consider applying an affine transformation as follows: for each 1 ≤ c ≤ n and each 1 ≤ i ≤ t,
substitute Yci ←

∑t
k=1 αcikYck + βci, and call the new polynomial h′. By Proposition 5.2, h′ ∈ C.
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On the other hand,

h′(Y1, . . . , Ym) =

n∏

c=1

t∏

i=1

(
t∑

k=1

αcikYck + βci

)
∑s

j=1 dcij

=

n∏

c=1

t∏

i=1

s∏

j=1

(
t∑

k=1

αcikYck + βci

)dcij

=
n∏

c=1

t∏

i=1

s∏

j=1

∑

ecij≤pdcij

(
dcij
ecijk

)

β
ecij0
ci

t∏

k=1

α
ecijk
cik Y

ecijk
ck

=
∑

ecij≤pdcij
∀ c,i,j




∏

c,i,j

(
dcij
ecijk

)

β
ecij0
ci





n∏

c=1

t∏

k=1

(
t∏

i=1

α
∑s

j=1 ecijk

cik

)

Y
∑t

i=1

∑s
j=1 ecijk

ck

and since the αcik and the βci are arbitrary and C has a degree set Deg(C) = Deg(C0)
n, each

monomial
∏n−

c=1

∏t
k=1 Y

∑t
i=1

∑n
j=1 ecijk

ck ∈ C, as desired.

Proposition 5.4. Let t, n ≥ 1 and m = nt. Let C0 ⊆ {F
t
q → Fq} be linear affine-invariant and let

C , (C0)
⊗n. For any positive integer s ≥ 1, δ(C(s)) ≥ δ(C) − nq−t = δ(C0)

n − nq−t.

Proof. Let f(X) ∈ C(s) be a nonzero codeword with variables X = (Xcij)c∈[n],i∈t],j∈[s]. For c ∈

[n], i ∈ [m], j ∈ [s], k ∈ [t], let acijk, bcij ∈ Fq, and let a , (acijk)c∈[n],i∈[t],j∈[s],k∈[t] and b ,

(bcij)c∈[n],i∈[t],j∈[s]. Let ga,b(Y11, . . . , Ynt) be the m-variate polynomial obtained by setting Xcij =
∑t

k=1 acijkYck + bcij for each 1 ≤ c ≤ n and 1 ≤ i ≤ t.
By linearity of C and thus of C(s), it suffices to show that δ(f, 0) ≥ δ(C) − nq−t. Let b ∈ Fnts

q

be a point such that f(b) 6= 0. Consider choosing a uniformly at random. Then ga,b 6= 0 since
ga,b(0) = f(b) 6= 0. For fixed y11, . . . , ynt, as long as for each c ∈ [n] there is some k ∈ [t] such that
yck 6= 0, then the points

∑t
k=1 acijkyck + bcij are independent and uniform over Fq. This occurs

with probability at least 1− nq−t. Therefore,

δ(C) ≤ Ea [δ (ga,b, 0)]

= Ea

[

Ey

[

1ga,b(y)6=0

]]

= Ey

[

Ea

[

1ga,b(y)6=0

]]

≤ nq−t + Ey 6=0

[

1ga,b(y)6=0

]

= nq−t + Ey 6=0

[

1f((
∑t

k=1 acijkyck+bcij))6=0

]

= nq−t + δ(f, 0).

5.2 Analysis of subspace restrictions

In this section we prove Theorem 5.7 and its corollaries.
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Overview. Corollary 5.8 says that if a codeword f of the tensor product C⊗n of a t-dimensional
code C is not a codeword of Ctրnt, then on there is a point b such that on many t-dimensional
subspaces u through b, the restriction f |u /∈ C. We use this in the proof of Theorem 3.1 when
arguing that if a tensor codeword c ∈ C⊗m satisfies c ∈ Ca (see overview) for many a, then
c ∈

⋂

a Ca = C1րm. A special case of Corollary 5.9 says that if f is a lifted Reed-Solomon codeword
but not a Reed-Muller codeword, then on many planes f is not a bivariate Reed-Muller code. The
actual corollary merely generalizes this to arbitrary t and codes C0, C1.

Both Corollaries 5.8 and 5.9 are proved in a similar manner. Note that both are statements
of the form “if f is in some big code but not in a lifted code, then on many subspaces it is not
a codeword of the base code”. A natural approach is to write f out as a linear combination of
monomials, restrict to an arbitrary subspace of the appropriate dimension, re-write the restriction
as a linear combination of monomials in the parameterizing variables, and note that the coefficients
of the monomials are functions in the parameterization coefficients. Since f is not in the lift, there
is a monomial outside the base code whose coefficient (the “offending coefficient”) is a nonzero
function. Then, one shows that these functions belong to a code with good distance, so for many
choices of parameterizing coefficients, the offending coefficient is nonzero.

Theorem 5.7 abstracts the above approach and shows that, in the case of Corollary 5.8, the
offending coefficient is a codeword of the degree lift (C⊗n)(t) of C⊗n, and in the case of Corollary 5.9,
the offending coefficient is a codeword of a lifted code. This necessitates the analysis of the distance
of degree lifted codes, hence the need for Section 5.1.

Recall the following characterization of degree sets of lifts.

Proposition 5.5. Let C ⊆ {Ft
q → Fq} be a linear affine-invariant code. Then d = (d1, . . . , dm) ∈

Deg(Ctրm) if and only if, for every m × (t + 1) matrix E ≤p d, with rows 1, . . . ,m and columns
0, 1, . . . , t, it holds that (‖E∗1‖mod∗ q, . . . , ‖E∗t‖mod∗ q) ∈ Deg(C).

Lemma 5.6. Let C ⊆ {Fm
q → Fq} be a linear code with a p-shadow-closed degree set. If f ∈ C, and

f



a10 +

t∑

j=1

a1jYj , . . . , am0 +

t∑

j=1

amjYj



 =
∑

e∈{0,1,...,q−1}t

fe(a) ·Y
e

where a = (aij)1≤i≤m;0≤j≤t ∈ F
m(t+1)
q , then, for every e ∈ {0, 1, . . . , q − 1}t,

fe(a) =
∑

d∈D
E≤pd

‖E∗j‖=ej ∀j

fd ·
m∏

i=1

(
di
Ei∗

)

aei0i0

t∏

j=1

a
eij
ij .

In particular,

1. fe ∈ C(t+ 1), the (t+ 1)-wise degree lift of C (see Definition 5.1);

2. if C = (C0)
1րm for some linear affine-invariant code C0 ⊆ {Fq → Fq}, then fe ∈ (C0)

1րm(t+1)
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Proof. Let D be the degree set of C. Write f(X) =
∑

d∈D fd ·X
d. Expanding, we get

f



a10 +
t∑

j=1

a1jYj, . . . , am0 +
t∑

j=1

amjYj



 =
∑

d∈D

fd ·
m∏

i=1



ai0 +
t∑

j=1

aijYj





di

=
∑

d∈D

fd ·
m∏

i=1




∑

ei≤pdi

(
di
ei

)

aei0i0 ·
t∏

j=1

a
eij
ij Y

eij
j





=
∑

d∈D

fd ·
∑

E≤pd





m∏

i=1

(
di
Ei∗

)

aei0i0

t∏

j=1

a
eij
ij



 ·
t∏

j=1

Y
‖E∗j‖
j

=
∑

e∈{0,1,...,q−1}t

Ye ·
∑

d∈D
E≤pd

‖E∗j‖mod∗ q=ej ∀j

fd ·
m∏

i=1

(
di
Ei∗

)

aei0i0

t∏

j=1

a
eij
ij

and therefore, for each e ∈ {0, 1, . . . , q − 1}t,

fe(a) =
∑

d∈D
E≤pd

‖E∗j‖mod∗ q=ej ∀j

fd ·
m∏

i=1

(
di
Ei∗

)

aei0i0

t∏

j=1

a
eij
ij .

View the variables a = (aij) in the order (a10, . . . , am0, . . . , a1t, . . . , amt), and interpret E as
(E∗0, . . . ,E∗t). If E ≤p d and d ∈ D = Deg(C), then E ∈ Deg(C(t+ 1)). Therefore, fe ∈ C(t+ 1).

Now suppose C = (C0)
1րm for some linear affine-invariant C0 ⊆ {Fq → Fq}. It suffices to show

that if d = (d1, . . . , dm) ∈ Deg(C) and E ≤p d with entries eij , i ∈ [m], 0 ≤ j ≤ t, then the

length m(t + 1) vector (E∗0,E∗1, . . . ,E∗t) ∈ Deg((C0)
1րm(t+1)). By Proposition 5.5, it suffices to

show that, if uij ≤p eij for every i ∈ [m] and 0 ≤ j ≤ t, then
∑

ij uij mod∗ q ∈ Deg(C0). Since

d ∈ Deg(C) = Deg((C0)
1րm), this implies that if e′i ≤p di for i ∈ [m], then

∑

i e
′
imod∗ q ∈ Deg(C0).

Set e′i ,
∑t

j=0 uij . Observe that, since (ei0, ei1, . . . , eit) ≤p di, this implies that e′i ≤p di. Therefore,∑

ij uij mod∗ q =
∑

i e
′
imod∗ q ∈ Deg(C0), as desired.

Theorem 5.7. Let 1 ≤ t < m. Let C1 ⊆ {F
t
q → Fq} be a linear affine-invariant code, and let

C2 ⊆ {F
m
q → Fq} have a p-shadow-closed degree set. Suppose f ∈ C2 \ C1

tրm. Then the following
hold:

1. if C2 = (C0)
⊗n for some linear affine-invariant code C0 ⊆ {F

t
q → Fq}, where m = nt, then

there exists a point b ∈ Fm
q such that for at least δ(C0)

n− (n+1)q−t fraction of t-dimensional
affine subspaces A ⊆ Fm

q passing through b, the restriction f |A /∈ C1;

2. if C2 = (C0)
1րm for some linear affine-invariant code C0 ⊆ {Fq → Fq}, then for at least

δ(C0)− q−1 fraction of t-dimensional affine subspaces A ⊆ Fm
q , the restriction f |A /∈ C1.

Proof. Let p be the characteristic of Fq. Let A be parameterized by Xi = ai0 +
∑t

j=1 aijYj, where

the matrix {aij}
m,t
i=1,j=1 ∈ Fm×t

q has full rank. Write

f |A(Y) =
∑

e∈{0,1,...,q−1}t

fe(a) ·Y
e.
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Since f /∈ Cm1 , there exists e /∈ Deg(C1) such that fe 6= 0.

1. By Corollary 2.13, C2 has a p-shadow-closed degree set. By Lemma 5.6 (1), fe ∈ C2(t + 1).
For each b = (b1, . . . , bm) ∈ Fm

q , let fe,b denote the polynomial fe with the variable ai0 fixed
to value bi for each i ∈ [m] (i.e. insisting that A passes through b). Observe that each fe,b ∈
C2(t). Since fe 6= 0, there exists b ∈ Fm

q such that fe,b 6= 0. By Proposition 5.4, for at least
δ(C2(t)) ≥ δ(C0)

n −nq−t fraction of matrices {aij}i∈[m];j∈[t], we have fe,b({aij}i∈[m];j∈[t]) 6= 0.
Since, by Lemma 2.17, at least 1 − qt−m fraction of such matrices have full rank, we get
that for at least δ(C0)

n − nq−t − qt−m ≥ δ(C0)
n − (n+ 1)q−t of the full rank matrices satisfy

fe,b

(

{aij}
m,t
i=1,j=1

)

6= 0 , and therefore f |A(Y) /∈ C1.

2. By Proposition 2.4 it has a p-shadow-closed degree set. By Lemma 5.6 (2), fe ∈ (C0)
1րm(t+1),

so fe(a) 6= 0 for at least δ((C0)
1րm(t+1)) ≥ δ(C0)−q

−1 fraction of choices a (including such that
the corresponding matrix does not have full rank), and therefore, by Lemma 2.17, f |A(Y) /∈ C1
for at least δ(C0)− q−1 − qt−m ≥ δ(C0)− 2q−1.

Corollary 5.8. Let t, n ≥ 1 and let m = nt. Let C ⊆ {Ft
q → Fq} be a linear affine-invariant

code. If f ∈ C⊗n \ Ctրm, then there is a point b ∈ Fm
q such that for δ(C)n − (n+ 1)q−t fraction of

t-dimensional subspaces u through b, the restriction f |u /∈ C.

Proof. Follows immediately from Theorem 5.7 (1) with C0 = C1 = C, and C2 = C
⊗n.

Corollary 5.9. Let 1 ≤ t ≤ m. Let C0 ⊆ {Fq → Fq} be a linear affine-invariant code. Let C1 (

(C0)
1րt be a linear affine-invariant code that is a strict subcode of (C0)

1րt. If f ∈ (C0)
1րm\(C1)

tրm,
then for at least δ(C0)− 2q−1 fraction of t-dimensional subspaces A ⊆ Fm

q , the restriction f |A /∈ C1.

Proof. Follows immediately from Theorem 5.7 (2) with C2 = (C0)
1րm.
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