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Abstract

We consider the problem of estimating the value of max cut in a graph in the streaming model of com-
putation. At one extreme, there is a trivial 2-approximation for this problem that uses only O(logn) space,
namely, count the number of edges and output half of this value as the estimate for max cut value. On the
other extreme, if one allows O(n) space, then a near-optimal solution to the max cut value can be obtained
by storing an O(n)-size sparsifier that essentially preserves the max cut. An intriguing question is if poly-
logarithmic space suffices to obtain a non-trivial approximation to the max-cut value (that is, beating the
factor 2). It was recently shown that the problem of estimating the size of a maximum matching in a graph
admits a non-trivial approximation in poly-logarithmic space.

Our main result is that any streaming algorithm that breaks the 2-approximation barrier requires Q(\/ﬁ)
space even if the edges of the input graph are presented in random order. Our result is obtained by exhibiting
a distribution over graphs which are either bipartite or %-far from being bipartite, and establishing that
Q(+/n) space is necessary to differentiate between these two cases. Thus as a direct corollary we obtain that
Q(\/ﬁ) space is also necessary to test if a graph is bipartite or %-far from being bipartite. We also show
that for any € > 0, any streaming algorithm that obtains a (1 + €)-approximation to the max cut value when
edges arrive in adversarial order requires 7' ~?(©) space, implying that Q(n) space is necessary to obtain an
arbitrarily good approximation to the max cut value.
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1 Introduction

In the MAX-CUT problem an undirected graph is given as input, and the goal is to find a bipartition of the
vertices of this graph (or, equivalently, a cut) that maximizes the number of edges that cross the bipartition.
It is easy to find a solution to MAX-CUT that achieves a 2-approximation: a uniformly random bipartition
achieves this goal. The Goemans-Williamson algorithm [15] approximates MAX-CUT to a factor of 1.1331]
using semidefinite programming. This is best possible assuming the Unique Games Conjecture [23]]. In [27]
Trevisan presented an algorithm that achieves approximation ratio of 1.884 using spectral techniques. A com-
binatorial algorithm that achieves approximation ratio strictly better than 2 was presented by [18]. It is known
that dense graphs are an easy case for this problem: polynomial time approximation schemes exist in graphs
with Q(n?) edges [12} [10, [7, 8] 25]].

All results mentioned above optimize the approximation ratio subject to polynomial (sometimes nearly
linear) time complexity. However, in many settings space complexity of algorithms is a crucial parameter to
optimize. For example, in applications to big data analysis one would like to design algorithms capable of
processing large amounts of data using only few (ideally, a single) pass over the input stream and using limited
(i.e. sublinear in input size) space. The streaming model of computation, formalized by Alon, Matias, and
Szegedy [9], precisely captures this setting. Recently, the problem of developing streaming algorithms for
fundamental graph problems has attracted a lot of attention in the literature (e.g. sparsifiers [2} 22} 6], spanning
trees [3], matchings [3} 4} 14,19} 116, [17], spanners [6} 20]). However, not much is known thus far on the space
complexity of solving the MAX-CUT problem.

The goal of this paper is to understand how much space is necessary to obtain a good approximation to
MAX-CUT value when the algorithm is given a single pass over a stream of edges of the input graph. The al-
gorithms for MAX-CUT described above have natural streaming counterparts. For example, the trivial factor 2
approximation algorithm that outputs a random bipartition leads to a simple factor 2 approximation in O(logn)
space: simply count the number of edges m in the input graph and output m /2. If the input graph is dense,
one can see that the techniques of [[12} 25]] yield (1 + ¢)-approximation (for any € > 0) in poly(log n) space in
the streaming model using sampling. Finally, known results on sparsification in the streaming model [2} 22} 6]
show that one can maintain a representation of the graph in O(n /€?) space that preserves all cuts, and hence
has sufficient information for obtaining a (1 + €)-approximate solution. This state-of-the-art, namely, a 2-
approximation in O(logn) space, and a (1 + ¢)-approximation in O(n/e?) space, highlight the following
natural question: Can one approximate the max-cut value to a factor strictly better than 2 in sub-polynomial
space (say, poly-logarithmic)? This is the precisely the question addressed in this work.

1.1 Our results

Our main result is that Q(\/ﬁ) space is necessary for a streaming algorithm to achieve strictly better than a
2-approximation.

Theorem 1.1 Let ¢ > 0 be a constant, and let G = (V,E),|V| = n,|E| = m be an unweighted (multi)
graph. Any algorithm that, given a single pass over a stream of edges of G presented in random order, outputs
a (2 — €)-approximation to the value of the maximum cut in G with probability at least 99/100 (over its internal
randomness) must use Q(y/n) space.

'The approximation ratio achieved by the Goemans-Williamson algorithm is usually stated as 0.878 - - - in the literature, but in this
paper, we use the convention that approximation ratios are larger than 1.



Since a 2-approximation can be obtained in O(logn) space by simply counting the edges, our result rules
out the possibility of any non-trivial approximation in sub-polynomial space, even for random streams. This
makes progress on an open problem posed at the Bertinoro workshop on sublinear and streaming algorithms in
2011 [[1]]. The same conclusion carries over when the stream contains i.i.d. samples of the edge set of G.

Theorem 1.2 Let € > 0 be a constant, and let G = (V, E), |V | = n, |E| = m be an unweighted simple graph.
Moreover, let £ be any positive integer less than logc n for some constant C > 0. Any algorithm that, given a
single pass over a stream of £ -n i.i.d. samples of G presented in random order, outputs a (2 — €)-approximation
to the value of the maximum cut in G with probability at least 99/100 (over its internal randomness) must use

Q(y/n) space.

Theorem [[.2] shows that it is hard to distinguish between random bipartite graphs and random non-bipartite
graphs (with average degree about 1/€?) presented as a stream of i.i.d. samples of the edge set using substan-
tially less than /n space. We note that this result is tight up to polylogarithmic factors for our input distribution.
A nearly matching algorithm is provided by the result of [21]] for testing bipartiteness in graphs whose min-
imum and maximum degrees are within a constant factor of the average (algorithm TEST-BIPARTITE-REG
in [211]). Their algorithm performs O(+/n) random walks of length L = poly(log n) starting from a uniformly
random node in V, and tests if the sets of vertices reached after an even number of steps intersects the set of
vertices reached after an odd number of steps. It is easy to see that this algorithm can be implemented in O(\/ﬁ)
space using a single pass over a stream of £ - n i.i.d. samples of the input graph as long as ¢ > C'Llogn for
a sufficiently large constant C’ > 0. Indeed, in order to run a randon walk it suffices to maintain the current
vertex that the walk is at and advance the walk one step as soon as an edge incident on the current node arrives
in the stream. It takes m/d = O(n) samples for the next edge incident on the current node to arrive, and hence
¢ > (' Llogn samples suffice to simulate a random walk of length L.

Finally, we also show that when the stream is adversarially ordered, any algorithm that can achieve an
arbitrarily good approximation to the maxcut value, essentially requires linear space.

Theorem 1.3 For any t > 2 obtaining a (1 + 1/(2t))-approximation to the value of maxcut in the single pass
adversarial streaming setting requires Q(nl_l/ t) space.

Recent related work. Independently and concurrently, the task of finding lower bounds on the space re-
quired by streaming algorithms for finding approximate max-cuts in graphs was also explored by Kogan and
Krauthgamer [24]. In particular, they also prove a theorem that is qualitatively similar to Theorem Our
proofs are also similar, though the exact gadget used in the reduction is somewhat different, leading to slightly
different constants. Theorems|[I.1]and[I.2]in our work however seem new even given their results.

1.2 Our techniques

Our starting point is the lower bound for the so-called Boolean Hidden Matching (BHM) problem due to
Gavinsky et al. [13] and its extension by Verbin and Yu [28]. BHM is a two party one-way communication
problem. Alice’s input in BHM is a boolean vector z € {0,1}" and Bob’s input is a matching M of size
r = ©(n) on the set of coordinates [n], as well as a vector w € {0,1}". In the YES case the vector w
satisfies w = Mz, where we identify the matching M with its r X n edge incidence matrix, and in the NO case
w = Mz@®1". In other words, in the YES case endpoints of every edge e = (u, v) € M satisfy x,, + T, = Wy
and in the NO case x,, + T, = Wy, + 1. Here arithmetic is modulo 2. It was shown in [13] that the randomized
one-way communication complexity of BHM is (y/n). The first use of BHM for streaming lower bounds



was due to [28]], who also defined and proved lower bounds for a more general problem called Boolean Hidden
Hypermatching and used to to prove lower bounds for the streaming complexity of cycle counting, sorting by
reversals and other problems.

Our Theorem is based on a simple reduction from the Boolean Hidden Hypermatching problem of
Verbin and Yu [28]]. It shows that (1 + €)-approximation to maxcut value requires at least n1=9(9) gpace when
the stream is presented in adversarial order (section[3). This reduction is similar in spirit to the reduction from
cycle counting presented in Verbin and Yu. The graph instances produced by the reduction contain about en
cycles of length about 1/¢, and the length of these cycles is even in the YES case and odd in the NO case.
While this rules out a (1 + €)-approximations in small space, the approach appears to not be sufficiently robust
for the proof of our main result in that (1) it heavily relies on the adversarial arrival order, and (2) it does not
seem to extend to the factor (2 — €)-approximation, where we would need to rule out algorithms that distinguish
between graphs that are essentially bipartite from graphs that are essentially as far from bipartite as possible.

We get around both complications by using the following approach. Our input graph instances are es-
sentially random Erd&s-Rényi graphs that are bipartite in the YES case and non-bipartite in the NO case. In
order to achieve a factor (2 — €)-factor gap in maxcut value we choose the expected degree of a node to be
O(1/€%) (section E]) The graphs are revealed to the algorithm in Q(1/€2) phases, essentially corresponding
to an Q(1/€?)-party one-way communication game. This allows us to ensure that graphs that arrive in each
phase are subcriticial Erdds-Rényi graph, meaning that they are mostly unions of O(logn/loglogn) size sub-
trees, and unlikely to contain cycles, and can thus convey only ‘local’ information. While this distribution
is natural, it is not immediately clear how to analyze it using techniques developed for the Boolean Hidden
(Hyper)matching problem. There are two issues here that we describe below.

First, the BHM problem is a two-party communication problem, while we are interested in a £(1/¢?)-
party communication game. However, we give a reduction from the BHM problem (rather, a variation which
we call the (Distributional) Boolean Hidden Partition problem, or D-BHP ; see below) to the MAX-CUT
problem on our instances. Roughly speaking, we show that any algorithm that solves MAX-CUT on our input
instances must solve our two-party communication problem in at least one of the phases (see section[6)). The
second issue is that we would like to prove lower bounds that hold even for the setting where the input stream
contains the edges of the graph in a uniformly random order, but it is very unlikely that contiguous segments of
a random stream of an edge set of a graph with average degree Q(1/¢2) form matchings. To remedy this, we
introduce what we call the Boolean Hidden Partition, or (D)-BHP problem (see section [5). In this problem
Alice still gets a binary string € {0,1}" but Bob gets a general graph G = (V, E),V = [n] together with
parity information w on the edges (thus, the special case when G is a matching gives the BHM problem of
[13]). We show that this problem has a Q(y/n) lower bound when G is a subcritical Erd6s-Rényi graph in
section |5} These two ingredients already give a Q(\/ﬁ) lower bound for streaming algorithms that achieve a
factor (2 — €)-approximation to MAX-CUT in the adversarial order setting. We then show that the arrival order
of edges in our distribution is in fact close to uniformly random in total variation distance (with proper setting
of parameters), yielding Theorem Finally, we note that our reduction from MAX-CUT on instances that
contain k = ©(1/€2) ‘phases’ turns out to be robust with respect to the number of phases k — the loss in terms
of parameter k is only polynomial. This allows us to also prove a lower bound for the setting where the input
stream contains a sequence of ¢ - n i.i.d. samples of the edge set of input graph for ¢ = poly(logn), yielding
Theorem [L.2



1.3 Organization

Section [2| introduces some relevant concepts and notation. Section [3| establishes Theorem The rest of the
paper is devoted to proving Theorem [I.1]and Theorem [I.2] We define a hard input distribution for max cut in
Section ] Then in Section [5| we define the communication problem (Boolean Hidden Partition, BHP), its
distributional version D-BHP , and establish a Q(\/ﬁ) lower bound for D-BHP . Section |§I gives the reduction
from D-BHP to MAX-CUT. Theorem|[I.1|and Theorem[I.2]are then proved in Section

2 Preliminaries

We will throughout follow the convention that n denotes the number of vertices in the input graph GG, and m
denotes the number of edges. We will use the notation [n] = {1,2,...,n}. Also, for z,y € {0, 1} we write
x + y or x @ y denotes the sum of x and y modulo 2.

Definition 2.1 (Maxcut problem) In the maxcut problem, we are given an unweighted graph G = (V, E),
and the goal is to output the value OPT := maxp g—v,pno=p |E N (P x Q)|, that is, the maximum, over all
bipartitions of V', of the number of edges of G that cross the bipartition.

Note that for any bipartite graph (&, the maxcut value is m, and in general, the maxcut value of a graph is
related to how far it is being from bipartite — a notion formalized below.

Definition 2.2 (5-far from bipartite) Forany g € [0,1/2], a graph G = (V, E) is said to be 3-far from being
bipartite if any bipartite subgraph G’ of G contains at most a (1 — 3)-fraction of edges in G.

If a graph G is B-far from being bipartite, then maxcut value of G is at most (1 — 3)m.

Definition 2.3 (y-approximation to maxcut) Ler G = (V, E) be a graph, and let OPT denote the maxcut
value of G. A randomized algorithm ALG is said to give a ~y-approximation to maxcut with failure probability
at most 6 € [0,1/2) if on any input graph G, ALG outputs a value in the interval [OPT /~, OPT] with
probability at least 1 — 4.

We will simply use the phrase y-approximation algorithm for maxcut to refer to a y-approximation algo-
rithm with failure probability at most § = 1/4.

Our focus will be on approximation algorithms for maxcut in the streaming model of computation where
the edges of the graph are revealed to the algorithm in some order and the algorithm is constrained to use at
most ¢ = ¢(n) space for some given space bound c. We will consider both the adversarial arrival model where
the edges of the graph arrive in an order chosen by an oblivious adversary (i.e. adversary does not know any
internal coin tosses of the algorithm) and the random arrival model where the edges of the graph arrive in
a randomly permuted order (where the permutation is chosen uniformly at random). All our results concern
single-pass streaming when the algorithm gets to see the edges of the graph exactly once.

Since the maxcut value is always bounded by m, and is always at least m /2 (take a uniformly random bi-
partition, for instance), there is a simple deterministic 2-approximation streaming algorithm that uses O(logn)
space: just count the number of edges m and output m,/2. On the other hand, for any e > 0, there is an O(n/€2)
space streaming algorithm that computes a cut-sparsifier for a graph even in the adversarial arrival order. We
can thus compute a (1 4 €)-approximation to max cut value in O(n/e2) space by first computing the sparsifier,
and then outputting the maximum cut value in the sparsifier.



It is easy to see that any algorithm that computes a y-approximation to maxcut value distinguishes between
bipartite graphs and graphs that are (1 — 1/+)-far from being bipartite. Thus in order to show that no streaming
algorithm using space ¢ can achieve a y-approximation with failure probability at most J, it suffices to show that
no streaming algorithm using space ¢ can distinguish between bipartite graphs and graphs that are (1 —1/~)-far
from being bipartite with probability at least 1 — 4.

We conclude this section by defining the notion of total variation distance between probability distributions.
For a random variable X taking values on a finite sample space 2 we let px (w),w € € denote the pdf of X.
For a subset A C €2 we use the notation px (A) := > 4 px(w). We will use the total variation distance
|| - ||tva between two distributions:

Definition 2.4 (Total variation distance) Ler X,Y be two random variables taking values on a finite domain
Q. We denote the pdfs of X and'Y by px and py respectively. The total variation distance between X and Y
is given by V(X,Y) = maxqco(px () —py () = 3 3 cq Ipx (w) — py (w)|. We will write || X — Y| |1pq
to denote the total variation distance between X and'Y .

3 Ann'"9 Lower Bound for (1 + ¢)-Approximation

As a warm-up to our main result, we show here that for any ¢ > 0, a (1 + €)-approximation randomized
streaming algorithm for max cut in the adversarial streaming model requires at least nl=0() space. We will
establish this result by a reduction from the Boolean Hidden Hypermatching problem (BHH) defined and
studied by [28]].

Definition 3.1 (BHH! , Boolean Hidden Hypermatching) The Boolean Hidden Hypermatching problem is a
communication complexity problem where Alice gets a boolean vector x € {0,1}" where n = 2kt for some
integer k, and Bob gets a perfect hypermatching M on n vertices where each edge contains t vertices and a
boolean vector w of lengthn/t. Let Mz denote the length n/t boolean vector (B <;<; Tty ;5 - - - D1<ict T, 0 1)
where {M11,..., My}, ..., {Mpsi1,- -, My i} are the edges of M. It is promised that either Mx & w =
1"t or Ma®w = 0™, The goal of the problem is for Bob to output YES when Mz ®w = 0™ and NO when
Mz & w=1"! ( @ stands for addition modulo 2).

The following lower bound on the one-way communication complexity of BHH!, was established in [28].

Theorem 3.2 [28] Any randomized one-way communication protocol for solving BHH', when n = 2kt for
some integer k > 1 that succeeds with probability at least 3 /4 requires Q(nlfl/ ) communication.

We now give a proof of Theorem [I.3] which we restate here for convenience of the reader. The proof is via
a reduction from BHHY,.

Theorem For any t > 2 obtaining a (1 + 1/(2t))-approximation to the value of maxcut in the single pass
adversarial streaming setting requires Q(nl_l/ t) space.
Proof:

Let ALG be a streaming algorithm that achieves a (1 + €)-approximation to the value of maxcut in the
adversarial streaming model using space c. We will show that ALG can be used to obtain a protocol for BHHY,
with one-way communication complexity of c. The space lower bound then follows from Theorem [3.2]

Let x € {0,1}",n = 2kt denote the vector that Alice receives. Alice creates her part of the graph that will
be given as input to ALG as follows. For each i € [n] create four vertices a;, b;, ¢;, d; and add the following
edges to the set F; (see Fig. . If z; = 0, add edges (a;, b;), (¢;, d;) and the edge (a;, d;). Otherwise add edges
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Figure 1: Reduction from Boolean Hidden Hypermatching to approximating max cut value

(ai, bi), (¢i,d;) and the edge (a;, ¢;). Alice then treats £ as the first half of the stream, runs ALG on E; and
sends the state of ALG to Bob.

Bob constructs a set of edges F» as follows. For each pair (M;, w;) that Bob receives he creates ¢ edges as
follows. Bob adds the following sets of edges for each hypermatching M;, i € [2k], depending on w; (denote
the vertices in M; by {j1,j2,...,ji},Js—1 < js forall s = 2,... k). If w; = 0, add edges (d;,_,,a;,) for
Jj =2,...,tand the edge (a;,,d;, ). Otherwise add edges (d;,_,,a;,) for j = 2,...,t¢ and the edge (b;,,d;,).

Bob treats E» as the second half of the stream, and completes the execution of ALG on the stream, starting
from the state of ALG that was communicated by Alice. Let m = |E; U Es| = (n/t) - (4t) = 4n. If
ALG reports that max-cut is strictly larger than (1 — 1/(4t))m, Bob outputs YES , otherwise NO .

We now prove correctness. First note that the graph E; U E» contains exactly n/t cycles. These cycles can
be indexed by hyperedges M; that Bob received, and they are edge disjoint. Note that the number of edges on
the cycle corresponding to hyperedge M; is equal to 2t + w; + Zizl xj,, where M; = {j1,j2,...,j¢}. Thus,
the length of the cycle is even iff 22:1 x;, = w;. Thus, if the BHH}, instance is a YES instance, the graph
E1 U Ej is bipartite, and the graph E; U E5 contains n/t edge disjoint cycles otherwise. In the former case
the maxcut value is m. In the latter case any bipartition will be avoided by at least one edge out of the n/t odd
cycles. Thus, the maxcut value is at most m — n/t < (1 — 1/(4t))m. Since # < 14 1/(2t) for all

: . 1—1/(dt)m
t > 2, this completes the proof of correctness of the reduction. [ |

4 Hard Input Distribution

The essence of the hard instances of the previous section were (hidden) odd cycles. The YES instances were
roughly unions of cycles of length 2t while NO instances were unions of cycles of length 2¢ + 1. The gap
between the maxcut value in the two cases is a factor of roughly 14 1/(2¢t+1) and n'~®(/%) space is necessary
and sufficient for distinguishing these cases. To go further and establish a factor of 2—e hardness, we need a new
class of YES and NO instances (and distributions supported on these) with the following features. The maxcut
value between the two classes should be separated by a factor of 2 — €. At the same time the NO instances
should not contain small odd cycles (since these can potentially be detected with sublinear space. The class of
distributions we consider are (minor variants of) random graphs with linear edge density for the NO instances,
and random bipartite graphs with the same edge density for the YES instances. It is clear that these two
distributions satisfy the properties we seek. Proving streaming lower bounds however is not immediate and in



this section we give variants of the above distributions for which we are (in later sections) able to prove Q(\/ﬁ)
lower bounds on the space complexity of streaming algorithms that distinguish the two.

The basic hard distribution that we will work with is defined in section#.2]and denoted by D. This distribu-
tion is a uniform mixture of two distributions: DY (the YES case distribution) is supported on bipartite random
graphs with ©(n/e?) edges, and DV (the NO case distribution) is supported on random non-bipartite graphs
of the same density. (For technical reasons we allow our graphs to be multigraphs, i.e., with multiple edges
between two vertices.) The density of our input graphs is crucial for obtaining a 2 — ¢ gap. Our input instances
are natually viewed as consisting of k phases with & = Q(1/€2), where during each phase a sparse (or, more
precisely, subcritical) random graph is presented to the algorithm. Since the graph is sparse, the algorithm only
obtains local information about its structure in each phase. In particular, the graph presented in each round is
very likely to be a union of trees of size O( log)lgo gn) In order to ensure that graphs that appear in individual
phases do not contain cycles (i.e. global information), we introduce a parameter « that controls the expected
number of edges arriving in each phase. Thus, ©(an) edges of G arrive in each phase in expectation, and
we have k = O(1/(e2a)) phases. The number of phases k is chosen as ©(1/(ae?)), where a > 0 satisifies
a > n-1/10

In what follows we first define the Erd6s-Rényi family of random graphs and then define the distribution D.

4.1 Erdoés-Rényi graphs

Our input distribution will use Erdés-Rényi graphs, which we will denote by G,, ,. Sampling a graph G =
(V, E) from the distribution G,, , amounts to including every potential edge {i,j} € (‘2/) into E independently
with probability p. Our input distribution will be naturally viewed as consisting of ©(1/(«e?)) phases. During
each phase the graph arriving in the stream will (essentially) be drawn from G,, , /,,. Here v < 1 is a parameter
that we will set later. Since o < 1, our graphs are subcritical. In particular, they are composed of small
connected components (of size O(logn/loglogn)) with high probability. We will need several structural
properties of graphs sampled from G,, , /,, which we now describe.

Definition 4.1 (Complex and unicyclic connected component) Ler G = (V, E) be a graph, and let C C V
be a connected component of G. The component C' is called complex if the number of edges induced by C' is
strictly larger than |C|, i.e. |[E N (C x C)| > |C|. The component C'is called unicyclic if it induces exactly |C/|
edges, i.e. when the induced subgraph is connected and has exactly one cycle.

We will use the fact that complex components are rare in graphs drawn from G,, /5,

Lemma 4.2 (Lemma 2.6.1 in [11]) The probability that G = (V, E) sampled from G,, , /nJor a <1 contains
a complex connected component is bounded by O(%oz2 log* n).

Unicyclic components are more frequent than complex components, but still quite rare, as the following
lemma shows. We will need to choose the parameter a: appropriately to avoid unicyclic components, i.e. that
the graphs presented to the algorithm in each phase do not contain cycles.

Lemma 4.3 Let G = (V, E) be sampled from G, ., y, for some o € (n=Y19 1). Then the probability that G
contains a cycle is bounded by O(a?).

Proof: The number of unicyclic graphs on k vertices is bounded by [[11]] (page 54, above eq. (2.6.6))
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Thus, the expected number of unicyclic components of size & is bounded by [11]] (page 54, eq. (2.6.7))
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Summing this expression over all k£ and using (I, we get
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where we used the fact that £ > 3 to go from second to last line to the last line.
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whenever « is smaller than an appropriate constant. [ |

4.2 Input distribution

We now define a distribution over input instances. The distribution, which we denote by D, is a uniform mixture
of two distributions: the YES case distribution DY and the NO case distribution DV. Thus, D = %DY + %DN .
Graphs drawn DY will be bipartite, while graphs drawn from D will be almost %-far from bipartite. In other
words, graphs drawn from DY have maxcut value m, while graphs drawn from DV have maxcut value at
most (1/2 + €)m. Thus, showing that no o(,/n) space algorithm can distinguish between D and DV will be
sufficient to rule out (2 — O(e))-approximation to maxcut value in o(y/n) space.

In order to ensure a factor 2 — ¢ gap between maxcut values in DY and DV, we make our input graph
G' = (V,E’) a union of k = @(ﬁ) sparse Erd6s-Rényi graphs that we now define. Let R = (P, Q) be a
bipartition of V' generated by choosing a string = € {0, 1}" uniformly at random and assigning every vertex
uw € V with x,, = 0 to P and every vertex u with x,, = 1 to ). The distribution of YES -instances and

NO -instances is created as follows. First foreach i = 1,..., k sample G; = (V, E;) ~ G,, 4/, Then

YES Generate R = (P, Q) uniformly at random. Let G} = (V, E) be the graph obtained by including those
edges in E; that cross the bipartition R (i.e. Ef C P x Q). Let E' := E] UE, U ... U E}.

NO Let G} = (V, E!) be the graph obtained by including each edge in E; independently with probability 1/2.
Let ' := E{UFEyU...UE,.

We denote the input distribution defined above by DY (YES case) and DV (NO case) respectively. Let

D = %DY + %DN . We note that the graphs generated by our distribution D are in general multigraphs. The

expected number of repeated edges is only O(1/€2), however.
We show that in the YES case the value of maxcut is equal to all edges of the graph, and in the NO case the

maxcut is close to m /2:



Lemmad.4 Let G = (V,E),|V| = n,|E| = m be generated according to the process above, where k =
C/(ae?) for a sufficiently large constant C > 0. Then in the YES case the maxcut is m, and in the NO case
the maxcut is at most (1 + €)m/2 whp.

The proof uses the following version of Chernoff bounds.

Theorem 4.5 ([26], Theorems 2.1 and 2.8) Ler X = E?:l X, where X; are independent Bernoulli 0/1 ran-
dom variables with expectation p;. Let p = " | p;. Then for all A > 0

2

and

A2
Pr[X < pu— A] <exp <—> .
2p
Proof of Lemma[d.4; In the YES case, all edges in £ go across the bipartition R, so the maxcut has size m. A
straightforward application of Chernoff bounds shows that the with high probability, the value of m is at least
(1 — O(y/log n/n)) 24" with high probability.

We now consider the NO case. Fix a cut (S, 5) where S C V and |S| < n/2. Let r := |S|. The expected
number of edges (counting multiplicities) that cross the cut S is given by r - (r — |S])(ka)/(2n), which is
maximized when r = n/2. The maximum is equal to (ak)n/8. The probability that the actual value of the cut
exceeds (1 + €)m/2 > (1 + ¢/2)(ak)n/8 is bounded as

_ t— )2
Pr[[ENS x S| >t <exp (—(2:)> ,
where welett = p+A = (14+¢/2)(ak)n/8and p = r-(r—|S|)k(a)/(2n). The right hand side is minimized
when g is maximized, which corresponds to » = n/2. Thus, the maximum expected cut size over all cuts
equals (ak)n/8, and hence we let i := (ak)n/8, t = (1 4 €/2)u and conclude that for any cut S

2 2

Now using the assumption that k = C/(ae?), we get
Pr[ENS x S| > (1+€e)m/2] <Pr[|[ENS x S| > (1+¢/2)(ak)n/8]

*(ak)n/8
< exp <—6(048)n/> < exp (—Cn/64) < 272
as long as C' > 0 is larger than an absolute constant. A union bound over at most 2" cuts completes the proof.
|

Note that each graph G; considered in the distributions DY and DV is a simple graph. Thus we also
have that each G is a simple graph. However, the graph G’ being the union of simple graphs need not be
simple. Indeed G’ will contain multiple edges with rather high probability. In later sections we will argue that
a streaming algorithm with limited space will not be able to distinguish DY from DY, given access to edges
of E} in random order, and then edges of E in random order and so on. We will then claim that this also
applies to streaming algorithms that are given edges of G’ in a random order. We note here that these two input



orderings are not the same: In particular, a random ordering of edges of G’ might include two copies of a multi-
edge within the first an edges, while E} does not contain two such edges. In what follows (in Lernma we
show that despite this difference between the random ordering and the “canonical random ordering” (alluded to
above, and to be defined next), the two orderings are close in total variation distance and allowing us to reason
about the latter to make conclusions about the former.

The edges appear in the stream in the order E{, E, ..., E;, and order of arrival in each group E/,i =
1, ..., k is uniformly random. We refer to this ordering as the canonical random ordering:

Definition 4.6 Let G' = (V, E'), E' = E} U...U Ej_denote the set of edges generated by the process above.
We refer to the ordering of the edges E' given by E{, E, ..., E,, where edges inside each E| are ordered
uniformly at random as the canonical random ordering associated with D.

Lemma 4.7 Let ¢ > 0 be a constant, and o € (n~'/10,1) a parameter. Let k = ©(1/(ce?)) and let
El, ..., E} denote the edges sets of graphs G, ..., G drawn from distribution D, and let G' be the union
of these graphs. Then the canonical random ordering of edges of G' is O(alog(1/a))-close to uniformly
random in total variation with probability at least 1 — o(«) over the choice of randomness used to sample G'.

Proof: Let E’ be the set of edges of G’ sampled from the distribution D, and let IT denote the canonical random
ordering (see Definition 4.6} note that II is a random variable).

Consider an ordering 7 of the edge set E’ (recall that in general E’ is a multiset). Suppose that there
exists an edge e € E’ that is included in E’ at least twice (let two copies of e be denoted by e! and e?)
such that |7(e!) — 7(e?)| < 4an, ie. e' and e? arrive at distance at most 4an in the permutation . Then
we refer to 7 as a collision inducing permutation. In what follows we show that (1a) the canonical random
ordering II produces every non-collision-inducing permutation with equal probability, and (1a) produces any
other permutation with only smaller probability. We then show that (2) collision inducing permutations are
quite unlikely in the uniformly random ordering, which gives the result.

Consider the process of sampling from the distribution D that generated the set E’, and let B/ = E{ U
E5 U ... U Ej denote the sets that each of the k phases of our generation process produced. Define the event
E={|El] <anforalli=1,...,kA|E'| > n},ie. the event that none of the individual sets E/ are too much
larger than their expected size (which is about an/4), and that the set E’ itself is not too much smaller than its
expected size. Since E[|E}|] < an/4 in both YES and NO cases, and that E[|E’|] > 2n for sufficiently small
constant € > 0, we have Pr[£] > 1 — e~ We condition on £ in what follows.

We now give a proof of (1). Consider two permutations 7, 77’ that are not collision inducing, so that no two
copies of an edge are at distance at most 4an under 7, 7’. Note that by conditioning on £ this means that both 7
and 7’ are generated by II conditional on £ with nonzero probability, since none of E'NEY,i = 1,..., k would
need to contain duplicate edges. We now show that in fact = and 7’ are generated with equal probability by II.
Note that both in the YES and NO cases the distributions that the graphs G, are drawn from are symmetric in
the sense that the probability of a graph G, generated only depends on the number of edges in the graph as long
as the graph does not have repeated edges, and is zero otherwise. The latter case is excluded by the assumption
that 7 and 7’ are not collision inducing, and hence

Pr(ll = 7| E', €] = Epr—pru. om [Prll = 7|EY, ..., By, €]
= EE’:E{U...UE,’c [PI‘[H = 7T/|E£> s ’Ellm 5]]
= Pr[ll = ©'|E', &].

This establishes (1a).
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The same reasoning shows that if 7 is collision inducing and 7’ is not, then Pr[II = 7|E’,E] < Pr[Il =
m'|E’, E]. Indeed, for any E} U...E; = E' we have Pr[Il = 7|E{,..., E;,E] < Pr[Il = 7'|E}, ..., E} £
This is because if neither 7 not 7’ map two copies of some edge to a single set £/ then the two terms are equal.
If 7 maps two copies of an edge to the same set E, then the left term is zero. Thus, we have

Pr(ll = 7|E", €] = Epr—pyy.up [Pr(ll = 7|Ey,. .. By, €]
S IEE’:E&U...UE,’c [PI‘[H = 7T/|Ei7 s 7El/475]]
= Pr[ll = 7'|E, &),

establishing (1b).

We now bound the number of collision inducing permutations for a typical set E’. First let £* denote the
event that E’ contains no edges of multiplicity more than 2 and O(log(1/«)) edges of multiplicity 2. We now
prove that Pr[£*] = 1 — o(«).

We start by bounding the expected number of edges of multiplicity 3 or above. The set E’ is a union of
k = ©(1/(ae?)) Erd6s-Rényi graphs, so a union bound over all (%) potential edges and (£) potential phases
that 3 copies of the edge should appear in shows that the expected number of edges with multiplicity 3 and
above is bounded by

"Ya/m?(£) < o0/ = 0(1/m) @
2 3

since € is a constant. Thus, there are no such edges with probability at least 1 — o(«) (using the assumption that
o < n=1/10,

We now bound the number of edges of multiplicity 2. The number of such edges is a sum of (72‘) Bernoulli
random variables with expectations bounded by (g)(a/n)2 = O(ﬁ) (a/n)? = O(1/(€*n)?). Thus, the

ae?
expected number of duplicate edges is O(1/¢*) = O(1) by the assumption that € is an absolute constant, and
this number is bounded by O (log(1/«)) with probability at least 1 —o(«) by standard concentration inequalities.

Putting this together with (2)), we get that
Pri£*] > 1—-0(1/(an)) —o(a) =1 — o(a),

where we used the fact that o > n /10 by assumption.

We now bound the number of collision inducing permutations 7 conditional on £*. The probabilty that
a uniformly random 7 maps two copies of an edge within distance 4an is bounded by 4an/|E'| = O(«).
By a union bound over O(log(1/«)) edges of multiplicity 2 the fraction of collision inducing permutations is
O(alog(1/a)) as required.

We have shown that permutations that are not collision inducing are equiprobable, and at least as probable
collision inducing permutations, which amount to an O(«alog(1/a)) fraction of all permutations conditional
on an event £* A £ that occurs with probability at least 1 — o(«). Thus, the total variation distance between
the uniformly random ordering and the canonical random ordering is O(« log(1/«)) with probability at least
1 — o(«) over the randomness used to sample G'. [ |

5 The Boolean Hidden Partition Problem

We analyze the following 2-player one-way communication problem.
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Boolean Hidden Partition Problem (BHP). Alice gets a vector zz € {0, 1}". Bob gets a the edges of a graph
G=(V,E),V =[n|,E C ([g]), and a vector w € {0,1}", where r denotes the number of edges in G. Note
that we associate edges of G with [r]. Let M € {0,1}"*" denote the edge incidence matrix of G, i.e. for each
e € Fandv € V M., = 1iff v is an endpoint of e. Then (1) in the YES case the vector w satisfies Max = w
(arithmetic is over GF(2)); and (2) in the NO case w is uniformly random in {0, 1}" independent of x Alice
sends a message m to Bob, who must distinguish between the two cases above.

Distributional Boolean Hidden Partition Problem (D-BHP). We will evaluate protocols for this problem
on the distribution where (1) Alice’s input z is uniformly random in {0,1}"; (2) Bob’s graph is sampled
from the distribution G,, o/, and (3) the answer is YES with probability 1/2 and NO with probability 1/2,
independent of Alice’s input. We will say that an algorithm achieves advantage § over random guessing for the
D-BHP problem if it succeeds with probability at least 1/2 + § over the randomness of the input distribution.
We will be interested in the one-way communication complexity of protocols that achieve advantage § for
the D-BHP problem as a function of the parameters n,a and J. For technical reasons instead of using the
parameters n, «, d it will be more convenient to introduce an auxliary parameter «v. We will prove that any
protocol that achieves advantage v + /2 > 0 over random guessing for D-BHP requires at least Q(vy,/n)
communication (the parameter « appears in the expression for the advantage that the protocol is assumed to get
due to the possible presence of cycles in Bob’s graph G).
The rest of the section is devoted to proving

Lemma 5.1 Ler v € (n~ Y 1) and a € (n~Y/19,1/16) be parameters. Consider an instance of the D-
BHP problem where Alice receives a uniformly random string x € {0,1}", and Bob receives a graph G €
Gn,a/n> together with the corresponding vector w. No protocol for the D-BHP problem that uses at most v/
communication can get more than O(vy + o’/ 2) advantage over random guessing when inputs are drawn from
this distribution.

The proof of Lemma[5.1]is the main result of this section. The proof follows the outline of [13|28]]. One crucial
difference is that we are working with Erd6s-Rényi graphs as opposed to matchings. This requires replacing
some components in the proof. For example, we need to prove a new bound on the expected contribution
of Fourier coefficients of a typical message to the distribution of Mx as a function of the weight of these
coefficients (Lemmas [5.3]and [5.4). We also need to take into account the fact that cycles, which are unlikely
in sufficiently sparse random graphs, can still arise. This leads to an extra term of /2 in the statement of
Lemma [5.1] and requires a careful choice of the parameter « in the proof of Theorems [I.T] and [1.2] We first
give definitions and an outline of the argument, and then proceed to the technical details.

Alice’s messages induce a partition Ay, Ag, ..., Age of {0,1}", where c is the bit length of Alice’s message.
First, a simple argument shows that most strings = € {0, 1}" get mapped to ‘large’ sets in the partition induced
by Alice’s messages. We then show (see Lemma [5.5)) that if = is uniformly random in such a typical set
A; C€{0,1}", the distribution of Mz is close to uniform over {0, 1}", again for a ‘typical’ graph G received by
Bob (and hence a typical edge incidence matrix /). We then note that the BHP problem can be viewed as Bob
receiving a sample from one of two distributions: either Mz (YES case) or UNIF({0,1}") (NO case). Since
we showed that the distribution of M x as xis uniform in A; is close to uniform, implying that it is impossible to
distinguish between the two cases from one sample with sufficient certainty. Our main contribution here is the
extension of the techniques of [13, 28] to handle the case when Bob’s input is a subcritical Erd6s-Rényi graph

“Note that this is somewhat different from the setting of [I3,[28]. In their setting the promise was that w = Mz in the YES case
and w = Mz & 1" in the NO case.
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as opposed to a matching. This requires replacing some components in the proof. For example, we need to
prove a new bound on the expected contribution of Fourier coefficients of a typical message to the distribution
of Mz as a function of the weight of these coefficients (Lemmas[5.3|and[5.4)). We also need to take into account
the fact that cycles, which are unlikely in sufficiently sparse random graphs, can still arise. This leads to an
extra term of /2 in the statement of Lemma , and requires a careful choice of the parameter « in the proof
of Theorems and[[.2] We now proceed to give the technical details.

As mentioned above, Alice’s messages induce a partition Ay, As, ..., Agc of {0,1}", where c is the bit
length of Alice’s message. Since there are 2¢ such sets, at least a 1 — /2 fraction of {0, 1}" is contained in sets
A; whose size is at least (y/2)2" €. Since our protocol achieves advantage at least v over random guessing on
the input distribution, it must achieve advantage at least 1/2 + ~/3 conditional on Alice’s vector x belonging
to one of such large sets. Fix such a set A C {0,1}", and let ¢ = ¢ + log(2/7), so that |A] > 2"~¢ Let
f:{0,1}" — {0, 1} be the indicator of A.

Our analysis relies on the properties of the Fourier transform of the function f, similarly to [13]. We use
the following normalization of the Fourier transform:

N 1 )
flo) =5, > @)=
z€{0,1}"
We will use the following bounds on the Fourier mass of f contributed by coefficients of various weight:

Lemma 5.2 (Lemma 6 in [13]) Ler A C {0,1}" of size at least 2", Then for every { € {1,2,... 4¢'}

22n . 4\/56, ¢
WZf(U)2S< 7 )

v:lv|=~

As before, we denote the graph that Bob receives as input by G, and the number of edges in G by r. Let
the edge incidence matrix of G be denoted by M, i.e. M, = 1iff u € [n] is an endpoint of e € ( [g]). We are
interested in the distribution of Mz, where x is uniformly random in A. For z € {0,1}" let

 HreA: Mz =z}
Pl =T

Note that pas(z) is a function of the message A. We will supress this dependence in what follows to simplify
notation. This will not cause any ambiguity since A is fixed as a typical large set arising from Alice’s partition.
We would like to prove that pys(z) is close to uniform. We will do that by bounding the Fourier mass in positive
weight coefficients of pys(z). By the same calculation as in [13] (Lemma 10), we have

i) = o Y pulE)(-1)

ze{0,1}7

_’Al‘QT(HHUGAf(Ma:)-s—O}\—{xeA:(Ma;).S_l}D

B !A1\2’” (Hre Ao (MTs) =0}~ [{zr € Aza- (MTs) =1}|)
) |A1|2T xe{zo;l}n fl@) - (=)=

— ),
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and
lpar = Upllfog < 2"l lpas — Urll3

_ 22r Z Z/)\M (8)2
s€{0,1}7 540 3)
22n

= 1A]2 Z f(MTS)Q-

s€{0,1}",s#0

Here the first transition is by Cauchy-Schwartz, the second is Parseval’s equality, and U, is the uniform distri-
bution over {0, 1}", which we also denote by UNITF({0,1}").
It is convenient to write

o = Unllfa < > F(MTs)?
se{0,1}7, s;éOT

= > J@? {se{0,1}",s#0,0=M"s}] @)

ve{0,1}n

= > F@)?-|{s € {0,1}", s #£ 0,0 = MTs}]

>0 ve{0,1}",wt(v)=¢L

We note that the vector s € {0, 1}" assigns numbers in {0, 1} to edges of Bob’s graph G (the interpretation
of s as a vector in {0, 1}" requires an implicit numbering of edges; this numbering is implicitly defined by the
incidence matrix M € {0,1}"*"). The analysis to follow will bound the expectation of the summation on the
lhs of (@) with respect to the edge incidence matrix M of an Erdds-Rényi graph. In order to achieve this, we will
bound the expecation of the rhs of (). crucially using the interplay between two bounds. First, we will prove
that the expected (over the random graph G, and hence its edge incidence matrix M) number of representations
of a vector v € {0,1}" as MT's for s € {0,1}" decays with the weight of v. On the other hand, the amount
of /5 mass on the Fourier coefficients f(v) of given weight ¢ does not grow too fast as a function of the weight
class by Lemma|[5.2] Before proceeding to the proof, we summarize relevant notation.

Notation The set of Alice’s inputs that correspond to a typical message is denoted by A C {0,1}", its
indicator function is denoted by f : {0,1}" — {0,1}. Bob’s graph, which is sampled from the distribution
Gn,a/m» is denoted by G, its edge incidence matrix is denoted by M € {0,1}"*". By (@), in order to bound
the distance from p); to uniformity, it is sufficient to bound the ¢5 norm of the nonzero weight part of the
Fourier spectrum of f. For each Fourier coefficient f(v) we need to bound the number of ways of representing
v € {0,1}" as MTs,s € {0,1}". We will bound this quantity in terms of the weight of v. In order to prove
such a bound, we start by showing a structural property of vectors s € {0, 1}" that satisfy v = M s for a given
ve{0,1}"

Lemma 5.3 Fixv € {0,1}". Let s € {0,1}", and let F = (V, Ef) contain those edges of G that belong to
the support of s. Then s € {0,1}", s # 0" satisfies v = M" s if and only if F is an edge-disjoint union of paths
connecting pairs of nonzero elements of v and cycles. In particular, v must have even weight. If G contains no
cycles, the weight of v must be positive.

Proof: Note that M7 s is the sum of incidence vectors of edges whose values in s are nonzero. Since M”'s = v,
it must be that all vertices ¢ € V such that v; = 0 have even degrees in the subgraph F', and all vertices 7 with
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v; = 1 have odd degrees. Thus implies that the edge set if F' can be decomposed into a union of edge-disjoint
paths that connect nonzeros in v and a disjoint union of cycles, as required. In particular, v must have even
weight, strictly positive if G contains no cycles. |

We now fix v € {0,1}" of even weight ¢ and bound the quantity Eys [|{s € {0,1}",v = MTs}|]. More
precisely, in Lemma [5.4] below we only bound a related quantity, in which we exclude s that contains cycles
from consideration. The case of cycles is handled directly in the proof of our main lemma that bounds the
distance of py to uniformity (Lemma[5.5).

Lemma 5.4 Letv € {0,1}" have even weight (. Let G be a random graph sampled according to G,, /n» and
let M € {0,1}"*" be its edge incidence matrix. Then

Ey [[{s €{0,1}",s £0",v = M7Ts, s is a union of edge-disjoint paths}|] < 2L(/2)(Car/m)t?

Proof:
By Lemma if v = M7s, it must be that s is a union of edge-disjoint paths and cycles, where the
endpoints of the paths are nonzeros of v. Thus, we are interested in unions of paths P;,i = 1,...,¢/2,

connecting nonzeros of v.

We now fix a pairing of nonzeros of v. For notational simplicty, assume that path P; connects the (2i — 1)-st
nonzero of v to the 2i-th fori = 1, ..., ¢/2. For one such path P; one has Pr[P; C G| = («/n)?, where ¢ is the
length of P;. By a union bound over all path lengths ¢ > 1 and all paths of length ¢ connecting the (2i — 1)-st
nonzero to the 2¢-th nonzero we have

PriP, C G] < anfl (a/n)? < Ca/n

g1
for a constant C' > 0. Since the paths are edge disjoint, we have

0/2
Pr[P, C Gforalli=1,...,0/2] < HPI‘[Pi C G] < (Ca/n)'/2. (5)
i=1

It remains to note that there are no more than 2¢(¢/2)! ways of pairing up the nonzeros of v. Putting this
together with (9) yields
En [|{s € {0,1}",5s £ 0", v =M"s, sisaunion of edge-disjoint paths}|]
<2e/2)t- > Pr[R CGforalli=1,...,£/2] <2(¢/2)!- (Ca/n)"/?

P1,P3,....Py o

as required.
|
Equipped with Lemma|[5.4] we can now prove that py is close to uniform:

Lemma 5.5 Let A C {0,1}" of size at least 2", and let f : {0,1}" — {0, 1} be the indicator of A. Let G be
a random graph sampled according to G,, ./, where o € (n_l/ 101/16) is smaller than an absolute constant.

Suppose that ¢ < vy\/n + 1og(2/7) for some v € (n~1/10 1) smaller than an absolute constant. Then

Exlllpa — Url[fal = O(4* + o®).
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Proof: Let £ denote the event that the graph GG contains no cycles and the number of edges r in G is at most
2an. By Lernrna Lemma 4.2| and Chernoff bounds we have Pr[£] > 1 — O(a?) — e~ > 1 — O(a?)
as long as a > n~1/10, We have

Exlllpar = Urlliual < Enlllpar — Urllfal€1Pr(€] + Pr[€] < En[llpar — Url[7,alEIPTIE] + O(0?)

since |[par — Url|ltwa < 1 always. We now concentrate on bounding the first term, i.e. we are bounding the
expectation of ||pas — Uy||%,,; conditional on G having no cycles.

By (@) we have
2 22n N T \2
Eun(l[par — Urllual €] < WEM > FTs?lE
s€{0,1}"
22n YRV T T
= AP e{;l}nf(v) -Er [[{s € {0,1}",v = M" s}[|€]
22n (6)

=ap 2 S Jw)?-En s € {0.1)7, v = MTs}€]

even £>0ve{0,1}" of weight £
92n 4an

“oE X > T Eu[ise 01y, 0= MTs}e

even £>0 ve{0,1}" of weight £

Here the first three lines are by taking conditional expectations in (4), and the restriction in the summation in
last line follows by conditioning in £: since the number of edges in G conditional on £ is at most 2an, the
weight of M7's is bounded by 4an for all s € {0,1}".

We further break this summation into two parts £ € [0 : 4¢/) and ¢ € [4¢’ : 4an]. We first consider

¢ € [0 : 4c). First, by Lemma|[5.3|and conditioning on & (i.e. that G does not contain cycles), it is sufficient to
consider ¢ > 0. Further, we have

on 4 —2

Y Y Fr Bl 0.0y 0= s}e]

even £=2 v€{0,1}" of weight £

92n 4c' -2 R
= TP Z Z f()? Ey [{s €{0,1}", 0= M™s, s a union of edge-disjoint paths}||€]
even £=2 v€{0,1}" of weight £

1 92n 422 o . . L

< Pric] [AP Z Z f(v)?-Ear [[{s € {0,1}",v = M" s, s a union of edge-disjoint paths}|| ,

even £=2 ve{0,1}" of weight £
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where the first transition follows by Lemma [5.3|using the fact that G' contains no cycles conditional on £. We
are now in the setting of Lemma|[5.4] Using Lemma[5.4]and Lemma[5.2] we get

4c'—2
Z Z ]?(v)2 ‘En [[{s € {0,1},v = M5, s a union of edge-disjoint paths}|]
even £=2 v€{0,1}™ of weight £

Lo
Pr(] AP

4c'—2
1 92n N
< 3 22 (Ca/n) P > fw)?
Pr(€] |A] .
even (=2 v€{0,1}" of weight ¢
r_ L
<t %if (L/2(Ca)? (43¢
- Pl‘[g even /=2 nt/? t
o ‘%‘:2 4Cca)? (a3’
- Pr[g] even {=2 (n/f)f/Q ¢
1 4’ -2 02
g Cl 2 n Z/Q C/ e
B 2 (@) (€
=0(7")

(N

whenever ¢ < vy/n + log(2/7) and v > n~1/10 (which is satisfied by the assumptions of the lemma). Here
the second line is by Lemma [5.4] the third line is by Lemma [5.2] and the fourth and fifth lines are by algebraic
manipulation. Note that we used the fact that ﬁ[g] =1/(1-0(a?)) =0(1).

We now consider the range £ € [4¢’ : 4an]. Note that the function 2¢(¢/2)! (%)U ? is decreasing in ¢ for
¢ <n/4
2L(0/2)!(Ca )2 Jnt/? _ " oy
20+2((£ +2)/2)/(Ca)(E+D/2 /n(E+2)/2 — 4(0 + 1) ~

since Cav < 1. Since ¢ < 4an < n/4, we have

92n 4an .
Ap_ 2 > TP Ea (s € {0.1) 0 = MTs)fe]
even £=4c’ v€{0,1}™ of weight £ 3
L acr g0 ac' /2 nac ac' /2 1 N2/ \Ac /2 2
< C ! C < C C — C —
< a2 (/DUC /) < (1) (Cafn)**F? = 5o (Cat6( )/ = 0(?)
since ¢ > 1. Putting (6)) together with (7)) and (8)) completes the proof. [ |

We will also need the following simple lemma, whose proof is given in Appendix

Lemma 5.6 Let (X,Y1),(X,Y?) be random variables taking values on finite sample space ) = Q1 x Q.
Forany x € Q4 let Y}, i = 1,2 denote the conditional distribution of Y given the event { X = x}. Then

(X, YY) — (X, Y?)||rwa = Ex[|[Y% — YZ||t0d]-

We can now prove the main result of this section, namely that no algorithm that uses o(y/n) can get substantial
advantage over random guessing for D-BHP :
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Proof of Lemma 5.1k

Let P(z) denote the function Alice applies to her input x to compute the message to send to Bob. Let
Q(M,i,w) be the Boolean function computed by Bob on his inputs M, w and message i from Alice. (Without
loss of generality, since we are proving hardness against a fixed distribution, P and @) are deterministic; also,
we write use the edge incidence matrix M instead of graph G to denote Bob’s input). Let D' be the distribution
of (M, P(z),w) on YES instances and D? be the distribution of (M, P(x),w) on NO instances. We now show
that || D* — D?||;,q = O(y 4 ®/?), which by definition of total variation distance implies that the protocol has
advantage at most O(y + o’/ 2) on D-BHP .

Alice’s function P(x) induces a partition Ay, Ag, ..., A of {0,1}", where ¢ is the bit length of Alice’s
message. Since there are 2¢ such sets, at least a 1 — ~/2 fraction of {0, 1}" is contained in sets A; whose size
is at least (/2)2"¢. We call a message i such that | 4;| < (7/2)2" ¢ typical. Say that x is bad if P(x) is not
typical and say that i = P(x) is typical if z is typical. We have that i = P(x) is not typical with probability
at most /2. Note that distribution D' = (M, i, pps;), where pyy; is the distribution of Mx conditional on the
message i, and D? = (M, 4, U,). For any M, i let D(IMJ.) = pum,; and D(2M,i) = U, denote the distribution of w
given message ¢ and the matrix M.

We have, using Lemma@ twice,

1D = D?lwa = Ei [Ear |1D{srz) = Diaglloa |
< Prli is typical] + Ej; U Dt — UTHtvd} (i’ any typical message) €))
<~/2+Epy U |parir — Uerd] (i’ any typical message).

Suppose that the protocol uses ¢ < v+/n bits of communication. Let 7’ be a typical message. Then we have
by definition of a typical set above |Ay| > 2"~ for ¢ < yy/n + log(2/7). Thus, by Lemma applied to
A; we have

Eu [|[pasi — Urllfg] = O(%* + %), (10)

and hence by Jensen’s inequality

Enr [lIpass — Urlliwd] < \/Ent [[Ioasg — Urlg] = Oy +0%2). (1
Putting this together with (9), we get
ID" = D?[|1wa = O( + /) (12)

as required. [ |

6 Reduction from D-BHP to MAX-CUT

This section is devoted to proving the following reduction from D-BHP problem to max-cut problem.

Lemma 6.1 Suppose there is a (single-pass) streaming algorithm ALG that can distinguish between the YES and
the NO instances from the distribution D using space c when edges appear in the canonical random order, with
failure probability bounded by 1/10. Then there exists a protocol for the D-BHP problem that uses at most ¢
bits of communication and succeeds with probability at least 1/2 + Q(1/k), where k is the number of phases
in the distribution D.
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We start by outlining the connection between D-BHP and our hard distribution for MAX-CUT, and then
proceed to give the formal reduction. The connection between D-BHP and the hard distribution D for approxi-
mating maxcut that we defined in section is as follows. Suppose that Alice gets a random string z € {0,1}",
and Bob gets a graph GG sampled from the distribution G,, , /., as well as the corresponding vector w. Then Bob
can use his input to generate a graph G’ by including edges e of G that satisfy w, = 1. In the YES case of
the communication problem we have w = Mz, so if we interpret = as encoding a bipartition of V/, an edge e
satisfies we = 1 iff it crosses the bipartition R. Thus, G’ has exactly the distribution of a graph G/, defined in
DY, i.e. the YES case distribution on maxcut instances. Similarly, in the NO case the graph G’ generated by
Bob using G and w has exactly the distribution of G} defined in D. The only difference between the com-
munication complexity setting and the distribution D is that D naturally consists of several phases, while the
communication problem asks for a single-round one-way communication protocol. Nevertheless, in this section
we show how any algorithm for max cut that succeeds on D can be converted into a protocol for D-BHP .

In what follows we assume existence of an algorithm ALG that yields a (2 — ¢)-approximation to maxcut
value in a graph on n nodes using space c and a single pass over a stream of the edges of the graph given in a
random order, and failure probability bounded by 1/10. We show how ALG can be used to obtain a protocol
for D-BHP that uses at most ¢ bits of communication and gives advantage at least £2(¢?/ log ). In what follows
we will only evaluate the performance of ALG on the distribution D. By Yao’s minimax principle [29]], there
exists a deterministic algorithm ALG’ that errs with probability at most 1/10 on inputs drawn from D. We will
work with deterministic algorithms in what follows. To simplify notation, we will simply assume that ALG is
a deterministic algorithm from now on that distinguishes between the YES and NO instances generated by D
with probability at least 9/10.

In order to describe the reduction from D-BHP to MAX-CUT, we first recall how the distribution D over
MAX-CUT instances was defined. To sample a graph from D, one first samples a uniformly random partition
R = (P, Q) of the vertex set V = [n] (see section[4.2). Then graphs G1 = (V, E1),G2 = (V, Es),..., Gy =
(V, Ey) are sampled from the distribution G,, ,/,,- These graphs are auxiliary, and only their carefully defined
subgraphs G, appear in the stream. The subgraphs G’ are defined differently in the YES and NO cases. In
the YES case G; = (V, E;) contains all edges of G that cross the bipartition, i.e. those edges that satisfy
(Mz), = 1. In the NO case, G’; contains each edge of GG; independently with probability 1/2.

We now define random variables that describe the execution of ALG on D. These random variables will be
crucially used in our reduction. Let the state of the memory of the algorithm after receiving the subset of edges
E!i=1,...,kbe denoted by S} and S} in the YES and NO case respectively. Thus, S}, SN € {0, 1} for
all i. We assume wlog that S;” = SV = 0, since the algorithm ALG starts in some fixed initial configuration.

Note that the main challenge that we need to overcome in order to reduce D-BHP to MAX-CUT on our
distribution D is that while D-BHP is a two-party one-way communication problem, the distribution D inher-
ently consists of k£ ‘phases’. Intuitively, we overcome this difficulty by showing that a successful algorithm
for solving maxcut on D must solve D-BHP in at least one of the k phases. Our main tool in formalizing this
intuition is the notion of an informative index:

Definition 6.2 (Informative index) We say that an index j € {1,...,k} in the execution of the algorithm
ALG is A-informative for A > 0if |[S),; — SNy lltwa > [|1S] — SN [lwa + A.

The next lemma shows that for any ALG that distinguishes between the YES and NO cases with probability
at least 9/10 over inputs from D, there exists an 2(1/k)-informative index. The proof is based on a standard
hybrid argument and is given below.

Lemma 6.3 For any algorithm ALG that succeeds with probability at least 9/10 on inputs drawn from D,
there exists a Q)(1/k)-informative index.
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Proof: The proof is essentially the standard hybrid argument. First note that since the algorithm starts in some
fixed state, we have ||Sy" — S{¥||sa = 0. On the other hand, since ALG distinguishes between the YES and
NO cases with probability at least 9/10 on inputs drawn from D, we must have |[S} — SN||;q > C for a
constant C' > 0. Let j be the smallest integer such that ||SJY+1 — SﬁlHtvd > C(j + 1)/k. By this choice of j
we have HS;/ - SJJ»VHtvd < Cj/k. Thus, HS]YJrl — Sﬁled - ||SJY - S]]-Vde >C(+1)/k—Cj/k>CJ/k
as required. [ |

We now fix a A-informative index j* € [1 : k — 1]. We will show below that Alice and Bob can get
A advantage over random guessing for the D-BHP problem using ALG , thus completing the reduction from
D-BHP to MAX-CUT.

Recall that in D-BHP , Alice gets a uniformly random = € {0,1}" as input, Bob gets a graph G =
(V,E),V = [n],E C (}),|E| = r sampled from Gn,a/n and a vector w € {0,1}". in the YES case of D-
BHP the vector w satisfies w = Mz and in the NO case w is uniformly randomin {0, 1}". Here M € {0, 1}"*"
is the edge incidence matrix of G, i.e. M., = 1if v € V = [n] is an endpoint of e € E and M., = 0 otherwise.
The YES case occurs independently with probability 1/2, and the NO case occurs with remaining prabability.

In order to reduce to MAX-CUT, we view z as encoding a partition R = (P, Q) of the vertex set V' = [n].
With this interpretation, the vector w that Bob gets assigns numbers w, € {0, 1} to edges of G. In the YES case
these numbers encode whether or not the edge e crosses the bipartition R encoded by x, and in the NO case
these numbers are uniformly random and independent. This connection lets Alice and Bob draw an input
instance for MAX-CUT from distribution D or D, depending on the answer to their D-BHP problem from
their inputs x and (G, w) as follows:

Step 1. Alice samples a state s of ALG from the distribution SJY She can do that since she knows z. In-
deed, first Alice generates random graphs G; = (V, E;),i = 1,...,j* from the distribution G,, ,, /,, as
specified in the definition of DY and computes w; = M;z € {0,1}" for the edge incidence matrix
M; € {0,1}"*" of G; (r; denotes the number of edges in G;). She then lets G; = (V, E!) contain the
set of edges e € E; of G; that satisfy (w;). = 1 (i.e. cross the bipartition encoded by z). Alice then runs
ALG on the stream of edges EY, ..., E}*, where edges inside each E! are presented to the algorithm in
a uniformly random order. She then sends the state s of ALG to Bob.

Step 2. Bob first creates a graph G’ by including those edges e of his input graph G that satisfy w, = 1 (recall
that Bob’s input is the pair (G, w)). He then creates the random variable § by running ALG for one more
step starting from s on G'. We let G;-* 41 = G’ for convenience. Denote the distribution of 5 in the

YES case by SY and the distribution of 5 in the NO case by SN,

Step 3. Bob outputs YES if pgy (5) > pgn (5) and NO otherwise.

Note that the distribution SY is identical to S}i +1- The distribution SN is in general different from both

SjY; 41 and SJ].\I 1, however. We first show that the protocol above is feasible:

Claim 6.4 Steps 1-3 above give a valid protocol for the D-BHP communication problem.

Proof: Steps 1 and 2 are feasible, as shown above. The distribution SN that we constructed can be generated
as follows: pick a random z € {0, 1}", run the algorithm on that = assuming it is the YES case for j* steps,
then take one NO step (the j* + 1-st). Bob can compute the pdf of this distribution. Similarly for SY . Thus,
Alice and Bob can execute the protocol. [ |

We now prove Lemma [6.1 which is the main result of this section. For that, we will need the following
auxiliary claim, whose proof is given in Appendix
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Claim 6.5 Let X, Y be two random variables. Let W be independent of (X,Y). Then for any function f one
has || f(X, W) = f(Y, W)llwa < [|X = Y|twa-

We will also need the following lemma, which says that if one receives a sample from one of two distribu-
tions X and Y on a finite probability space €2, a simple test distinguishes between the two distributions with
advantage at least || X — Y'||¢yq/2 over random guessing.

Lemma 6.6 Let XY be distributions on a finite probability space ). Suppose that with probability 1/2 one is
given a sample w from X (YES case) and with probability 1/2 a sample from'Y (NO case). Then outputting
YES if px (w) > py(w) and NO otherwise distinguishes between the two cases with advantage over random
guessing at least || X — Y||tpq/2.

The proof is given in Appendix [A]
Proof of Lemma As before, we assume that ALG is deteministic. Let j* be an informative index for
ALG , which exists by Lemma[6.3]

Let f : {0,1}¢ x {0, 1}(;) — {0, 1}¢ denote the function that maps the state of ALG at step j* and the
edges received at step j* + 1 to the state of ALG at step j* + 1. Let G;-* 1 denote the set of edges e of G« 11
that satisfy (w;11)e = 1. By Step 2 of our reduction we have § = f(s, G. ), and hence S = f(S}i Gl i1)-

Suppose that we are in the NO case. Then Bob’s input G;* 41 is a random graph sampled independently
from G, o /(2n)- Note that SJ]-\IH is distributed as f(sz\,f, G’ 41), so by Claim

15N =S¥ illtwa = 1F(S)e, Ge 1) = FISY, Ghei)llwa < 115 =S¥ |lwa- (13)

Now suppose that we are in the YES case. Denote the distribution of s in this case by SY. Then SY =
f(S}i,G;*H) = S}iﬂ. Thus,

18Y = S 41 lltva = 11S}11 = S¥.s1lla- (14

Putting and together and using triangle inequality and the assumption that j* is Q(ae?)-informative
we get

GY _ &N GY _ oN N GN Y N N _ gN
15" = 5% wa = 15" = Siiallewa = 11541 = 5™ ltwa = 1S53 = Sjeyallwa — 155+ = Sjllwa = QUL/E).

Thus, we are getting one sample from one of two distributions whose total variation distance is at least
Q(ae?). With probability 1/2 we are getting a sample 3 from S¥ and with probability 1/2 a sample § from
SN. By Lemma the simple algorithm that Bob uses, namely outputting YES if pgy (5) > pgn(5) and
NO otherwise yields advantage at least ||SY — SV||;,q/2 > Q(1/k) over random guessing, as required. [ |

7 Q(y/n) lower bound for (2 — ¢)-approximation

In this section we prove Theorem and Theorem We restate Theorem here for convenience of the
reader.

Theorem (1.1| Let € > 0 be a constant. Let G = (V, E),|V| = n,|E| = m be an unweighted (multi)graph.
Any algorithm that, given a single pass over a stream of edges of G presented in random order, outputs a
(2 — €)-approximation to the value of the maximum cut in G with probability at least 99/100 over its internal
randomness must use (/1) space.
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Proof: Consider running ALG on the edges of the graph sampled from D that are presented in the canonical
random ordering. By Lemma[4.7|the total variation distance between the input graph in uniformly random order
and the canonical random ordering is O(alog(1/a)), so ALG succeeds on D with probability at least 9/10.
By Yao’s minmax principle there exists a deteministic algorithm ALG’ with at most the space complexity of
ALG that succeeds on D with probability at least 9/10.

By Lemma ALG’ can be used to construct a protocol for the D-BHP problem that gives advantage
Q(ae?) over random guessing, where o < 1 is a parameter that remains to be set.

By Lemma any protocol that uses at most /7 communication can not get advantage over random
guessing larger than O(y + o/ 2). We choose @ = 1/ log n, which satisfies the preconditions of Lemma
Substituting the value of v, we get that one necessarily has v 4 (logn)~3/2 = Q(e?/logn), and hence v >
Ce2/logn —log™/?n > (C/2))e2 /log n for some constant C' > 0 for sufficiently large n. This implies that
~v = (1/logn) for any constant ¢ > 0, completing the proof.

|

The rest of this section is devoted to proving Theorem [I.2] We need one more ingredient for that. In
particular, we now show that as long as the parameter « is sufficiently small, our distribution D is generating
a sequence of edges of G that is very close to a sequence of i.i.d. samples in distribution. Intuitively, this is
because while each of the k phases of our input is distributed as G,, ,/, as opposed to i.i.d., these distributions
are quite close in total variation distance. We make this claim precise below, obtaining a proof of Theorem[1.2]

We will use the following lemmas, which state that the distribution of the stream of edges produced by
our distributions DY and DY is close in total variation to a stream of i.i.d. samples of edges of the complete
bipartite graph and the complete graph respectively.

We first prove some auxiliary statements. For the YES case we start by establishing the following claim.

Claim 7.1 Let G = (P, Q, E) be a complete bipartite graph, where P U Q) is a uniformly random partition of
[n]. Let A = (Ay, Aa, ..., Ay) denote a sequence of T i.i.d. samples of edges of G, where T = T1+To+. . .+ T
is a sum of k independent random variables distributed as Binomial(|P|-|Q|, a/n) and |A;| = T;,i = 1,... k.
Let B = (B, Ba, ..., By) denote a sequence of T samples of edges of G, where for eachi = 1,...,k
each e € E belongs to B; independently with probability o /n.
Then
1A = Blpwa = O(ko?).

Claim 7.2 Let P,QQ C V be a uniformly random bipartition of V. = [n]. Then for any 6 > 0 one has
Pr(||P||Q| — (n/2)?] > én] < e,

Proof: Let A = |P| — n/2. Then |P||Q| = (n/2 + A)(n/2 — A) = (n/2)? — A2, so

Pr(||PI[Q] — (n/2)? > 6n] = Pr{|A] > Von] < e~

by Chernoff bounds. [ |
Proof of Claim We first show that none of sets A;,i = 1, ...,k contains repeated edges with probability
1—-0(a).

Pr[A; contains a duplicate edge| < Z Pr[e appears more than once in A;]
e€PXQ (15)
S|P QI (L—e = Ae™),
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where A = T;/m is the rate of arrival of an edge in 7; samples in the i.i.d. setting. By Claim one has
Pr[||P||Q| — (n/2)?| > O(log1/a)n] < a3. Since T; is distributed as Binomial(| P| - |Q|, a/n), we have T; <
(a/n)(n?/4) + O(log(1/a)a) with probability 1 — a®. Thus, we have A = T;/m < 2(an/4)/(n?/4) < 2a/n
with probability at least 1 — O(a?). Using this in (T3], we get

Pr[A; contains a duplicate edge] < |P|-|Q]- (1 — e — Xe™?)
<|P[-1QI- (1 —e ™t =2e™) = P |Q] - O(N*) = O(a?)

as required. By a union bound over all i = 1,...,k we have that no A; contains a duplicate edge with

probability at least 1 — O(ka?). Conditional on not containing duplicate edges, A;’s are uniformly random

sets of edges of G = (P, @, E) of size T;. Thus, A has the same distribution as B conditional on an event of

probability at most O(ka?), and hence ||A — B||sq = O(ka?) as required. [ |
A similar claim holds for the NO case:

Claim 7.3 Let G = (V, E) be a complete graph, and foreachi = 1, ...k let E! C E be obtained by including
everyedgee € E = (‘2/) independently with probability 1/2. Let A = (A1, A, ..., Ay) denote a sequence of
T i.id. samples of edges of G and T =Ty + 15 + . .. + T} is a sum of k independent random variables, where
T; is distributed as Binomial(|E]|,o/n) and |A;| = T;,i = 1,... k.

Let B = (B, Ba, ..., By) denote a sequence of T samples of edges of G, where for eachi = 1,...,k
each e € E' belongs to B; independently with probability o /n.

Then

|4 = Blltwa = O(ka?).

The proof of Claim[7.3]is essentially the same and is hence omitted.
We can now give
Proof of Theorem Suppose that ALG yields a (2 — €)-approximation to maxcut with success probability
at least 99/100 on any fixed input if the stream contains ¢ - n i.i.d. samples of the edges of the graph. We prove
that ALG must use Q( \/n) space in two steps. First, we set up the parameters of the input distribution D so
that ALG must succeed with probability at least 9/10 on D. We then use Lemma similarly to the proof of
Theorem [L1]
We choose the number of phases in our input as k¥ = C¢/(ce?) for a constant C' > 8, and let o =

(note that this satisfies the condition v € (n~/10,1)). We will use the fact that

1
Blogn

l
ko = 0(— -a?) = O(L- a) = o(1). 16
0? = O(— -a®) = Ot a) = o(1) (16)
We now show that with this setting of parameters the input stream contains a sequence of at least £ - n
samples of either a complete bipartite graph (YES case) or a complete graph (NO case), and the distribution
of these samples is o(1)-close to i.i.d. in total variation distance (this claim will crucially rely our setting of
parameters to ensure (16)). EI We consider the YES and NO cases separately.

YES case. Let P U Q = V denote the uniformly random bipartition used in the definition of DY . Since
||P| — n/2| < O(y/nlogn) with probability 1 — 1/n3, say, by standard concentration inequalities, we
have that each graph G for i = 1,...,k contains at least an/8 edges with probability at least 1 — 1/n

3We note that it is sufficient to prove a lower bound in the setting where the stream contains at least £ - n i.i.d. samples, since the
algorithm can simply count the number of edges received and output the answer as soon as £ - n have been received. This only increases
the space complexity by an additive O(logn) term.
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(we took a union bound over alli = 1,...,k = O(n/a) = O(n*!)). Thus, the union of k = C¢/(cr/€?)
graphs generated by DY contains at least £ - n edges with probability at least 1 — 1/n.

LetTY = TY +T) +...+TY be asum of k independent random variables distributed as Binomial(| P|-
Qf, a/n).

By Claimthe total variation distance between the stream of 7Y i.i.d. samples of the complete bipartite
graph G = (P, Q, E) for the randomly chosen bipartition P, Q and the stream of edges generated by DY
is O(ka?). Thus, an algorithm ALG that succeeds with probability at least 99/100 on every input as

long as the input stream contains at least £ - n i.i.d. samples of the input graph must succeed at on DY
with probability at least 99/100 — O(ka?) > 9/10 by (T6).

NO case. We have that each graph G for i = 1,...,k contains at least an/8 edges with probability at least
1 — 1/n (we took a union bound over all i = 1,...,k < O(n'!)). Thus, the union of k = C¢/(a/e?)
graphs generated by DY contains at least £ - n edges with probability at least 1 — 1/n.

Let TV = TN+T) +.. +TY be a sum of k independent random variables, where 7Y ~ Binomial(|E!|, a/n)
for a parameter o < 1.

By Claim 7.3|the total variation distance between the stream of 7V i.i.d. samples of the complete graph
G = (V, E) and the stream of edges generated by DY is O(ka?). Thus, an algorithm ALG that succeeds
with probability at least 99/100 on every input as long as the input stream contains at least ¢ - n i.i.d.
samples of the input graph must succeed at on DV with probability at least 99/100 — O(ka?) > 9/10

by (16).

Thus, we have that ALG must succeed with probability at least 9/10 when input is drawn from distribution
D. By Yao’s minmax principle there exists a deterministic algorithm ALG’ with space complexity bounded by
that of ALG that succeeds with probability at least 9/10 on D. Now by Lemma there exists a protocol for
the D-BHP problem that gives advantage (1/k) = Q(;ae€?®) over random guessing.

However, for any v > n~ /10 by Lemma any protocol that uses at most /7 communication can not
get advantage over random guessing larger than

Oy + a®?). (17)
Substituting the value of «vinto (7)), we get that one necessarily has

€2

v+ (Blogn) ™ = 0 ),

*logn

and hence
2

72 Oy, — ¢/ logm)*?

for some constant C' > 0. This implies that v = Q(ﬁ) for any constant € > 0, completing the proof. W
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A Omitted Proofs

In this section we give the proofs of Claim[6.5]and Lemma [6.6]

Claim Let X,Y be two random variables. Let W be independent of (X,Y'). Then for any function f one
has || (X, W) = £, W) wa < IX = V1 1ua

Proof: First, one has |[(X, W) — (Y, W)||twa = ||X — Y||wa since W is independent of X and of Y. The
claim now follows since || f(A) — f(B)||tva < ||A — B||twq for any A, B, we demonstrated by the following
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calculation. Suppose that f : Q — €. Then

1FA)  FB) = 5 3 Ipalf ™ (@) — (7))

weN

1
IS Y mer-me
w' e |we:f(w)=w’
1
<3 ) Ipalw) —paw)|
w' e we: f(w)=w’
1
<52 Ipa) —ppW)l,
we
where we used the fact that |a + b| < |a| + |b| for any a,b € R to go from line 2 to line 3. [ |

LemmaLet X, Y be distributions on a finite probability space ). Suppose that with probability 1/2 one is
given a sample w from X (YES case) and with probability 1/2 a sample from'Y (NO case). Then outputting
YES if px (w) > py(w) and NO otherwise distinguishes between the two cases with advantage over random
guessing at least || X — Y'||pq/2.

Proof: Recall that

X~ ¥llea = max(px (V) — py () = 3 3 [px(@) ~ pr(@)]
- wefd

Let ©2* be the set that achieves the optimum, i.e.
N ={we Q:px(w) >py(w)}.

The probability of error equals

Pr[answer is YES | Z py (w) + Pr[ answer is NO ] Z px(w)

weN* WEN\Q*
1 1
=3 D (px (W) — (px(w) — py(w))) + 3 > px(w)
weN* wEN\Q*
1 1
= 5 - §\|X - YHtvd
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Proof of Lemma 5.6

1
(X YY) = (X, V) = 3 Z Ip(xv1) — Pex,y?)l
x€Q,y€Q2
1
D) Z |p(X,Y1) - p(X,Y2)|
x€Q1,y€02
1
=5 X Ipx@py ()~ px(@)pyz ()]
z€Q1,yes
1
=5 2 px(@) Y pva () —pr2 ()]
e yeQy
= 3 px @)Y} — Y2luwa
rEQ

= Ex[||Yx — YZ||twd]
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