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Abstract

We show that the Survey Propagation guided decimation algorithm fails to find satisfying as-
signments on random instances of the “Not-All-Equal-K-SAT” problem, well below the satisfiability
threshold. Our analysis applies to a broad class of algorithms that may be described as “sequential
local algorithms” — such algorithms iteratively set variables based on some local information and/or
local randomness, and then recurse on the reduced instance. Survey Propagation guided as well as
Belief Propagation guided decimation algorithms, studied widely in the past, fall under this category
of algorithms. Our main technical result shows that under fairly mild conditions sequential local
algorithms find satisfying assignments only when the solution space is nicely connected, despite the
earlier predictions by statistical physicists. Combined with the knowledge that the solution space
tends to cluster well before the satisfiability threshold, our main result follows immediately. This
approach of showing that local algorithms work only when the solution space is connected has been
applied before in the literature: the novelty of our work is our ability to extend the approach also to
sequential local algorithms.

1 Introduction

In this work we study the behavior of some “natural”, statistical-physics-motivated, algorithms for
constraint satisfaction problems on random instances. While these algorithms were widely studied
in the past and there are many empirical evidences of success of such algorithms [MPZ02], [MM09],
[BMZ05], [KMRT+07], [MMW07], [CO11], there are relatively few analytical proofs, except for [CO11].
In this work we consider a large class of such algorithms and analyze their behavior on random instances
of “Not-All-Equal-K-SAT (NAE-K-SAT)”. We show that most of them fail to find satisfying assignments
on instances with density (ratio of clauses to variables) well below the satisfiability threshold and, in
particular, are incapable of breaking the so-called clustering threshold, despite the fact that in particular,
the so-called Survey Propagation guided decimation algorithm was designed precisely to overcome the
clustering threshold [MPZ02], [BMZ05], [MM], [KMRT+07].

The precise class of algorithms we study are what we call “sequential local algorithms”. Roughly,
these algorithms work by assigning Boolean values to variables sequentially, with a chosen variable being
assigned its value by a potentially probabilistic choice which depends on on the local neighborhood of
the variable. The local neighborhood is defined to be balls of constant radius in the graph whose
vertices are variables and constraints, and a variable is adjacent to a constraint if the constraint is
affected by the variable. Once a variable is assigned a value, this simplifies the formula a bit (removing
some constraints, and restricting others), and this in turn may influence the local neighborhoods of
other variables. The algorithm updates the probabilities based on this setting and continues with its
iterations till all variables are set.
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Some well-studied, though mostly empirically, classes of such sequential local algorithms are al-
gorithms based on Belief Propagation (BP) and Survey Propagation (SP) message passing iterations.
These algorithms were thus dubbed BP-guided and SP-guided decimation algorithms, the word dec-
imation reflecting the sequential nature of these procedures. In BP-guide decimation algorithm, the
local rule picks a constant sized neighborhood and a variable is assigned 1 with probability equal to the
fraction of assignments where this variable is assigned the value 1 among all assignments that satisfy all
clauses in this local neighborhood. The size of the neighborhood is dictated by the number iterations BP
message passing iterations, which based on heuristic statistical physics considerations can be taken as
constant independent of the size of the instance. SP-guided decimation algorithm uses a more complex
rule for its assignments. It is based on lifting the boolean constraint satisfaction problem to a constraint
satisfaction problem based on three decisions, as opposed to two decisions, but otherwise follows the
same spirit.

Empirically these heuristics apparently have good performance, and often tend to find satisfying
assignments with high probability primarily for constraint satisfaction problems with small number of
variables per constraints, and for coloring problem with small number of colors. For some benchmark
instances these algorithms outperformed all previous algorithms [MPZ02]. Further more, on the posi-
tive side, Coja-Oghlan and Panagiotou [COP12], rely on insights gained from the Survey Propagation
iterations and use it to pin down the satisfiability threshold for the random “NAE-K-SAT” problem (a
central constraint satisfaction problem that is also the subject of this paper and will be defined shortly)
quite tightly. On the negative side, Coja-Oghlan [CO11] showed that BP-guided decimation algorithm
fails to find satisfying assignments for the random K-SAT problems at densities well below the satis-
fiability threshold, at the densities below which even trivial algorithms succeed in finding a satisfying
assignment with high probability. In this work we prove limits on an entire class of sequential local
algorithms, with mild restrictions on the algorithms, for the “NAE-K-SAT” problem.

Our main proof technique relies on the clustering property of NAE-K-SAT which was earlier es-
tablished for random K-SAT problem, and several other related problems, including the problem of
proper coloring of sparse random graphs. Roughly speaking, the property says that, above a certain
density, the Hamming distance between every pair of satisfying assignments, normalized by the number
of variables, is either smaller than a certain constant δ1 or larger than some constant δ2 > δ1. We
then show that if a sequential local algorithm was capable of finding a satisfying assignment, then by
running the algorithm twice and constructing a certain interpolation scheme, one obtains two satisfying
assignments with normalized Hamming distance in the interval (δ1, δ2), thus obtaining a contradiction.
It is precisely this clustering property that prompted the statistical physicists to design the SP-guided
decimation algorithm in the first place. Thus one of the key messages of this paper is that, unfortu-
nately, the Survey Propagation algorithm is not capable of overcoming the clustering threshold either,
and we attribute its empirical success to relatively small sizes of parameter K chosen in the experiments
and some clever implementation details, specifically size biasing, which we discuss briefly in the body
of the paper.

The link between the clustering property and the ensuing demise of local algorithm was recently
used by the authors [GS13] in a different context of optimization on random regular graphs. There
the argument was used that so-called i.i.d. factor based local algorithm, are incapable of finding nearly
optimal independent sets in random regular graphs, refuting an earlier conjecture by Hatami, Lovász and
Szegedy [HLS]. An important technical and conceptual difference between two works is that algorithms
considered in [HLS] and [GS13] are not sequential and, as a result, the analysis is much simpler. The
technical difficulties arising in the present context as well as our approach to overcome them is outlined
in the next next subsection. Both the present work and [GS13] establishing a fascinating link between
the clustering property and hardness for local algorithms.
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Random Not-All-Equal K-SAT: An instance Φ of the Not-All-Equal K-SAT (NAE-K-SAT) prob-
lem on n Boolean variables x1, . . . , xn is given by m “NAE” constraints C1, . . . , Cm where each constraint
is a set of K literals (a variable or its negation). The constraint is satisfied by a Boolean assignment if
not all literals in the clause take on the same value. Φ is satisfied if all constraints are satisfied.

In this work we will be interested in the behavior of sequential local algorithms on random instances
of NAE-K-SAT. A random instance is chosen by picking each clause independently and uniformly
among the set of all possible clauses on K literals. The ratio d = m/n, known as the density of the
problem, is a basic parameter. It is known [Fri99] that there is a sharp threshold dn such that as d
increases and passes through dn the probability of satisfiability drops from nearly one to nearly zero.
It is conjectured that dn converges to a limit dc, but this convergence remains a major open problem.
The best estimate on dn right now is from the work of Coja-Oghlan and Panagiotou [COP12], who
show that dn ≈ ds , 2K−1 ln 2 − ln 2/2 − 1/4 − oK(1), where oK(1) is a function converging to zero
as K → ∞. To be precise, denoting by ds,K,∗ the supremum of d such that random instance with
density d is satisfiable with probability approaching one, as n→∞, and denoting by d∗s,K the infimum
of d such that the random instance is not satisfiable for density d, it is the case that both ds,K,∗
and d∗s,K are 2K−1 ln 2− ln 2/2− 1/4− oK(1). We refer to ds as the satisfiability threshold, despite the
ambiguity involving term oK(1). The proof methods used in [COP12] and similar earlier bounds employ
existential arguments and thus the question is finding algorithms which find satisfying assignment in
random instances when d < ds.

Sequential Local Algorithms To describe our results, we first need to define our notion of sequential
local algorithms. We do informally here, and then formally in Section 2. A sequential local algorithm
starts with an input which is an instance of NAE-K-SAT and assigns variables iteratively to 0 or 1 based
on some local rule. Of course, once a variable is assigned a value 0 or 1, the resulting instance is no longer
an NAE-K-SAT instance. E.g., in the constraint NAE(x1, x2, x3) = (x1∨x2∨x3)∧ (¬x1∨¬x2∨¬x3) if
we set x3 = 1, we are left with the constraint (¬x1 ∨¬x2) which is a simple 2-CNF clause. So the class
of instances that a local algorithm needs to work with is called a reduced instances of NAE-K-SAT, and
includes three types of constraints: (1) (original/neutral) length K constraint on K literals requiring
them to be not-all-equal, (2) positive constraints on < K literals requiring at least one to be 1, and (3)
negative constraints on < K literals requiring at least one to be 0.

Given a reduced instance of NAE-K-SAT, and possibly some local randomness, the local rule τ(xi)
assigns to variable xi a real number between 0 and 1 which determines the probability with which xi
would be set to 1, if the local rule were to be activated now. But only one rule is activated at a time,
i.e., xi is set to 1 with probability τ(xi) for one choice of i, and then the instance reduced by the choice,
leading possibly to new probabilities from the local function τ . Locality of τ simply implies that τ(xi)
does not depend on constraints that are far away from xi in the constraint-variable adjacency graph.

Finally, one also needs to determine the order in which variables are selected to be set to 0 or 1. In
this work we consider the case where this ordering is random. We note that the literature does include
cases where the ordering is a function of the τ(·) values (more on this in Subsection 2.3), even though
there has been no justification provided for this choice. We are unable to analyze such a “non-local” rule
for selection of variable order. Thus for our purposes, the local rule τ uniquely specifies the sequential
local algorithm which we denote Aτ . By Aτ (Φ) we denote the assignment (which may be a random
variable) returned by Aτ on input Φ.

Our results. In order to describe our results we need one more notion, that of a balanced local rule.
For this notion, in turn we need the notion of a complementary instance. The complement C of a neutral
constraint C is C itself. The complement of a positive constraint (C,+) is the negative constraint (C,−)
and vice versa. The complement Φ of a reduced instance of NAE-K-SAT is the instance complementing
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every constraint in Φ. Note that the complementary constraint Φ is also a reduced instance of NAE-
K-SAT and assignment x satisfies Φ if and only if its complementary assignment 1− x satisfies Φ.

We say that a local rule is balanced if τ(xi,Φ) = 1− τ(xi,Φ) for every reduced instance Φ of NAE-
K-SAT. Note that in particular this implies that for unreduced instances Φ, τ(xi,Φ) = 1/2 for every i.
Our main theorem, stated formally in Section 2 (see Theorem 2.4), shows that balanced sequential local
algorithms fail to find satisfying assignments (with overwhelming probability) in instances of density
that is a constant factor smaller than the satisfiability threshold.

Techniques and comparison with recent results. Our proof follows a fairly simple outline which
we describe first. We exploit a “clustering” phenomenon that is by now well-understood for most
constraint satisfaction problems. This phenomenon studies the “geometry” of the solution space of
instances of NAE-K-SAT in the following sense: Given an instance Φ, let S ⊆ {0, 1}n be all satisfying
assignments of Φ and put an edge between x, y ∈ S if (informally), ρ(x, y), the Hamming distance
between x and y, is o(n). The clustering phenomenon asserts that as one increases the density of an
instance of the constraint satisfaction problem from say 0 to the satisfiability threshold ds, the solution
space goes from being one large connected component, to a collection of smaller clusters which slowly
diminish in size, till all (or almost all) the clusters become empty.

It has often been suggested that this clustering phenomenon is also a barrier to computational
complexity. Indeed in [CO11], one sees a coincidence of the thresholds at which belief propagation fails
to work, and where the clustering starts. Till recently though, there was no formal reduction shown
between the clustering phenomenon and the failure of common algorithms.

The first steps towards a formal connection was established by the authors [GS13] where it is
shown that clustering leads to a failure of local algorithms. Their work shows that one can run a local
algorithm twice, with coupled randomness to produce two different satisfying assignments that are at an
intermediate level of overlap, something that would contradict an appropriate phrasing of the clustering
phenomenon. While their work is suggestive that the failure may be evidence of a broader phenomenon,
their work did not cover natural algorithms like belief propagation or survey propagation. Specifically
their work covers local algorithms, but not sequential local algorithms.

Our work extends the previous work to establish a formal connection in these important cases. There
are two technical hurdles that needed to be overcome to make this extension possible. To show that
their “coupling argument” works, the previous work needed to ensure that if the local algorithm is run
twice, on independent randomness, then it will produce two solutions of very small overlap. Of course,
such an argument can be true only if the local algorithm is randomized, and for algorithms working on
d-regular graphs it is easy to argue that the algorithm better be randomized (since almost surely there
is no local distinctions). In our case, there is a lot of useful information in local neighborhoods and
this could potentially be used by algorithms to find satisfying assignments. We overcome this hurdle
by proper abstraction: We notice that the commonly employed local algorithms are randomized, and
indeed even balanced so a priori, the chance of assigning 1 to a variable is exactly 1/2. (Of course, this is
where the fact that we work with NAE-K-SAT helps us.) And for balanced local rules, we immediately
manage to find that solutions derived from independent randomness end up being reasonably far from
each other.

Having established that there are two random strings U and Ũ such that the assignments produced
by the algorithm on randomness U and Ũ , say x and x̃ have small overlap, previous works used a
continuity/hybrid argument to show that if the algorithm is run with the string Z that equals U on
any coordinate with probability p and Ũ with probability 1− p, then the assignment essentially varies
continuously with p leading eventually to some assignment z that has the forbidden amount of overlap
with x (as forbidden by the clustering phenomenon).

Much of this argument turns out to be too complex to repeat in our setting. First the continuity
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argument relied heavily on the fact that rules were completely local, i.e., determined by a constant
number of variables, and in the sequential case this is not true. Next it is hard to determine explicitly
how the assignment changes when some random variable is perturbed. We overcome these constraints
by first serving up an argument showing that even in the sequential setting the long chains of influence
are not too long (specifically have length O(lnn/ ln lnn)) — this argument uses a reasoning that has
been seen before in several other “local” contexts, that chains of length ` have probability roughly
1/`! of being relevant, while there are only singly exponentially many chains of length ` in any graph.
(See [GG10],[NO08], for use of this reasoning in different contexts.) In turn this tells us that any single
random variable only influences o(n) variables even in a sequential algorithm. Finally we end up using a
much simpler argument than the earlier continuity to show that this “o(n)-influence” feature is sufficient
to find assignments with a forbidden overlap.

We remark that while much of the argument is a simplification of previous arguments, this sim-
plification enables us to reach much more important classes of algorithms. In particular it reproduces
(at least in the case of NAE-K-SAT) the main theorem of Coja-Oghlan [CO11] with a much simpler
proof. More importantly it is the first rigorous result on the performance of the SP-guided decimation
algorithm for random constraint satisfaction problems.

While the present work is only devoted to random NAE-K-SAT, it appears that our approach
is applicable to other models with appropriate symmetry, such as the problem of proper coloring of
random graphs. Establishing limits of sequential local algorithms for this model is an ongoing work.
The random K-SAT model, however, does present some difficulties since there is obvious symmetry in
the problem leading to a ”minimum amount of randomness” of the underlying local algorithm. One
potential approach is to employ the randomness implied by the details of the Survey Propagation
iteration. This would be an interesting future research.

Finally we conclude by stressing that while our algorithm captures the cleaner versions of these
natural algorithms (where the variable ordering is determined by clean rules), more sophisticated im-
plementations are common and it would be interesting to see if these other implementations suffer from
the same limitations, or if they provide the key to overcome the limitations. Thus far the literature has
not stressed the impacts of these “lesser” choices, and at the very least our work could divert attention
towards these.

Organization. The remainder of the paper is organized as follows. The NAE-K-SAT model, the
formal description of a sequential local algorithm, the statement of the main result and applications
to the BP-guided and SP-guided decimation algorithms are the subject of the next section. Some
preliminary technical results are established in Section 3. In particular, we establish bounds on the
influence range of variables. The proof of the main result is in Section 5. The proofs of some of the
technical results are delayed till the Appendix section.

2 Formal statement of main result

In this section we formally present our main result. Before doing so we first introduce the mathematical
notation and preliminaries needed to state our result.

2.1 Not-All-Equal-K-Satisfiability (NAE-K-SAT) problem

At the expense of being redundant, let us recall the NAE-K-SAT problem. An instance Φ, of NAE-K-
SAT problem is described as a collection of n binary variables x1, . . . , xn taking values 0 and 1 and a
collection of m constraints C1, . . . , Cm where each constraint is given by a subset of K literals. Each
literal is a variable x in x1, . . . , xn or negation x̄ of a variable. We will often use the phrase “clause” as a
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synonym for constraint. An assignment is a function σ : {x1, . . . , xn} → {0, 1}. σ satisfies Φ if in every
clause, we have one literal valued 1 and one literal valued 0. For every assignment σ = (σ(xi), 1 ≤ i ≤ n),
let σ̄ = 1 − σ be the assignment given by σ̄(xi) = 1 − σ(xi), 1 ≤ i ≤ n. Given a formula Φ, denote by
SAT(Φ) ⊂ {0, 1}n the (possibly empty) set of satisfying assignments σ. The following “complementation
closure” and resulting “balance” property of NAE-K-SAT are immediate (and do not hold for the K-
SAT problem)

Observation 2.1. For every instance Φ of the NAE-K-SAT problem and assignment σ, we have that
σ satisfies Φ if and only if σ̄ satisfies Φ. Consequently, suppose SAT(Φ) 6= ∅. Then if σ is drawn
uniformly from SAT(Φ), then for every 1 ≤ i ≤ n we have

P(σ(xi) = 0) = P(σ(xi) = 1) = 1/2.

Reduced Instances. We now introduce some notations for reduced instances of NAE-K-SAT. A
clause of a reduced instance C is given by a set of at most K literals, along with a sign sign(C) ∈
{+,−, 0}. Furthermore, C has exactly K literals if and only if sign(C) = 0. (Sometimes we refer to
these signs as decorations.) An assignment σ satisfies a reduced clause C if one of the following occurs:
sign(C) = + and some literal in C is assigned 0 by σ, OR sign(C) = − and some literal in C is assigned
1 by σ, OR sign(C) = 0 and there is at least one 0 literal and one 1 literal in C under the assignment
σ. A reduced NAE-K-SAT instance Φ consists of one or more reduced clauses, and σ satisfies Φ if it
satisfies all clauses in Φ.

Note that Observation 2.1 does not necessarily hold for the reduced instances of NAE-K-SAT prob-
lem. Instances in which every clause has sign 0 will be called non-reduced instances.

Complements Given a clause C in a reduced instance of NAE-K-SAT, its complement, denoted
C̄, is the clause with the same set of literals, and its sign being flipped — so if sign(C) = + then
sign(C̄) = −, if sign(C) = − then sign(C̄) = +, and if sign(C) = 0 then sign(C̄) = 0. Given a reduced
instance Φ of NAE-K-SAT, its complement Φ̄ is the instance with the complements of clauses of Φ.

We now make the following observation, whose proof is immediate.

Observation 2.2. Given reduced instances Φ on variables x1, . . . , xn and Ψ on variables x1, . . . , xn+t

suppose Φ is the instance derived by reducing Ψ with the assignment σ : {xn+1, . . . , xn+t}. Then Φ̄ is
the reduced instance obtained by reducing Ψ̄ with the assignment σ̄, where σ̄(xi) = 1− σ(xi).

Namely, whenever a reduced formula Φ is obtained from a non-reduced formula Φ̃ by setting some
variables of Ψ, setting the same variables to opposite values generates the complement of Ψ.

Random NAE-K-SAT problem We denote by Φ(n, dn) a random (non-reduced) instance of NAE-
K-SAT problem on variables x1, . . . , xn and bdnc clauses C1, . . . , Cm generated as follows. The variables
in each clause Cj are chosen from x1, . . . , xn uniformly at random without replacement, independently
for all j = 1, 2, . . . ,m. Furthermore, each x variable is negated (namely appears as x̄) with probability
1/2 independently for all variables in the clause and for all clauses. We are interested in the regime
when n→∞ and d is constant, which we refer to as density of clauses to variables.

Graphs associated with NAE-K-SAT instances. Two graphs related to an instance Φ of the
NAE-K-SAT problem are important to us. The first is the so-called factor graph, denoted F(Φ), which
is a bipartite graphs with left nodes corresponding to the variables and right nodes to the clauses and a
clause node has edges to all variables in its set. The edges are labelled positive or negative to indicate
the polarity of the literal in the clause. In case of reduced NAE-K-SAT instances, clause vertices are
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also labelled with the sign of the clause. Thus the factor graph may be viewed as a representation of
the NAE-K-SAT instance.

The second graph we associate with Φ is the variable-to-variable graph of Φ, denoted G(Φ), which
has nodes corresponding to the variables and two nodes are adjacent if they appear in some clause
together. Note that in contrast to the factor graph, the variable-to-variable graph loses information
about the NAE-K-SAT instance Φ.

Local neighborhoods Given a (possibly reduced) instance Φ of a NAE-K-SAT problem, a variable x
in this instance, and an even integer r ≥ 1, we denote by BΦ(x, r) the corresponding depth-r neighbor-
hood of x in F(Φ), the factor graph of Φ. When the underlying formula Φ is unambiguous, we simply
write B(x, r). We restrict r to be even so that for every clause appearing in B(x, r) all of its associated
variables also appear in B(x, r). Abusing notation slightly we also use B(x, r) to denote the reduced
instance of NAE-K-SAT induced by the clauses in B(x, r). Since r is even we have that the factor graph
of this induced instance is B(x, r). In light of this, observe that B(x, r) is also a reduced instance of a
NAE-K-SAT problem.

2.2 Sequential local algorithms for NAE-K-SAT problem and the main result

We now define the notion of sequential local algorithms formally and describe our main result.
Fix a positive even integer r ≥ 0. Denote by SAT r the set of all NAE-K-SAT reduced and non-

reduced instances Φ with a designated (root) variable x such that the distance from x to any other
variable in Φ is at most r in F(Φ).

Given any function τ : SAT r → [0, 1] which takes as an argument an arbitrary member (H,x) ∈
SAT r and outputs a value (probability) in [0, 1], we describe below a sequential local algorithm, which we
refer to as the τ -decimation algorithm, for solving NAE-K-SAT problem. Given a positive even integer
r, the depth-r neighborhood B(xi, r) = BΦ(n,dn)(xi, r) of any fixed variable xi ∈ [n] in the formula
Φ(n, dn) is a valid argument of the function τ , when the root of the instance B(xi, r) is assigned to
be xi. This remains the case when some of the variables x1, . . . , xn are set to particular values and
all of the satisfied and violated clauses are removed. In this case B(xi, r) is a reduced instance. In
either case, the value τ(B(xi, r)) is well defined for every variable xi which is not set yet. The value
τ(B(xi, r)) is intended to represent the probability with which the variable xi is set to take value 1
when its neighborhood is a reduced or non-reduced instance B(xi, r), according to the local algorithm.
Specifically, we now describe how the function τ is used as a basis of a local algorithm to generate an
assignment σ : {x1, . . . , xn} → {0, 1}.

τ-decimation algorithm

INPUT:
an instance Φ of a NAE-K-SAT formula on binary variables x1, . . . , xn,
a positive even integer r,
function τ .

Set Φ0 = Φ.
FOR i = 1 : n
Set σ(xi) = 1 with probability τ(BΦi−1(xi, r))
Set σ(xi) = 0 with the remaining probability 1− τ(BΦi−1(xi, r)).
Set Φi to be the reduced instance obtained from Φi−1 by fixing the value of xi as above, removing
satisfied and violated clauses and decorating newly generated partially satisfied constraints with + and
− appropriately.
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OUTPUT σ(x1), . . . , σ(xn).

In particular, even if at some point a contradiction is reached and one of the clauses is violated, the
algorithm does not stop but proceeds after the removing violated clauses from the formula. This is
assumed for convenience so that the output σ(xi) is well defined for all variables xi, 1 ≤ i ≤ n even if
the assignment turns out to be not satisfying. We denote by σΦ,τ the (random) output σ(x1), . . . , σ(xn)
produced by the τ -decimation algorithm above. We say that τ -decimation algorithm solves instance Φ
if the output σΦ,τ is a satisfying assignment, namely σΦ,τ ∈ SAT(Φ).

We now formally define the following important symmetry condition.

Definition 2.3. We say that a local rule τ : SAT r → [0, 1] is balanced if for every instance Φ ∈ SAT r,
we have τ(Φ) = 1− τ(Φ̄).

The balance condition above basically says that the τ -decimation algorithm does not have a prior bias
in setting variables to 1 vs 0. In particular, when the instance is non-reduced, τ -decimation algorithm
sets variable values equi-probably, consistently with Observation 2.1. This condition will allow us to
take advantage of Observation 2.2 when applying the rule τ to reduced instances.

We now state the main result of the paper.

Theorem 2.4. There exists K0 such that for every K ≥ K0, d > 2K−2 ln 2, r > 0 and every balanced
local rule τ : SAT r → [0, 1] the following holds:

lim
n→∞

P(σΦ(n,dn),τ ∈ SAT(Φ(n, dn))) = 0.

Namely, with overwhelming probability, τ -decimation algorithm fails to find a satisfying assignment.
As we have mentioned above, the threshold for satisfiability is 2K−1 ln 2 − ln 2/2 − 1/4 − oK(1). Thus
our theorem implies that sequential local algorithms fail to find a satisfying assignment at densities
approximately half of the satisfiability threshold.

2.3 BP-guided and SP-guided decimation algorithms as local sequential algorithms

We now show that the decimation versions of Belief Propagation (BP) and its extended version Survey
Propagation (SP) algorithm, considered in many prior papers are in fact special cases of τ -decimation
algorithms as described in the previous section. As a consequence we have that the negative result
described in Theorem 2.4 applies to these algorithms as well.

The BP and SP algorithms are designed to compute certain marginal values associated with a NAE-
K-SAT instance Φ and reduced instances obtained after some of the variables are set. The natural
interpretation of these marginals is that variables may be set according to these marginals sequentially,
while refining the marginals as decisions are made. It is common to call such algorithms BP-guided
decimation algorithm and SP-guided decimation algorithms. We now describe these algorithms in detail,
starting from the BP and BP-guided decimation algorithms.

Belief Propagation. The BP algorithm is a particular message-passing type algorithm based on
variables and clauses exchanging messages on the bi-partite factor graph F(Φ(n, dn)). After several
rounds of such exchange of messages, the messages are combined in a specific way to compute marginal
probabilities.

However, the relevant part for us is the fact that if the messages are passed only a constant r number
of rounds, then for every variable xi such that the neighborhood B(xi, r) is a tree in the original factor
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graph, the computed marginals µ(xi) are precisely the ratio of the number of assignments satisfying
NAE-K-SAT formula B(xi, r) which set xi to one to the number of such assignments which set this
variable to zero. In fact for the majority of variables indeed B(xi, r) is a tree indeed - a well-known
fact for the random formula Φ(n, dn). Thus most of the times BP iterations compute marginal values
corresponding to the ratio described above. These marginals are then used to design the BP-guided
decimation algorithm as follows. Variable x1 is selected and BP algorithm is used to compute its
marginal µ(x1) with respect to the neighborhood tree B(x1, r). Then the decision σ(x1) for this variable
is set to σ(x1) = 1 with probability µ(x1)/(µ(x1) + 1) and σ(x1) = 0 with probability 1/(µ(x1) + 1).
Namely, the variable is set probabilistically proportionally to the ratio of solutions setting it to zero vs
setting it to one. Then for the reduced formula on variables x2, . . . , xn, the variable x2 is selected. The
marginal µ(x2) with respect to the neighborhood B(x2, r) for this reduced formula is computed and
the value σ(x2) is determined based on µ(x2) similarly, and so on. The procedure is called BP-guided
decimation algorithm. It is thus parametrized by the computation depth r.

It is now clear the such a BP-guided decimation algorithm is precisely the τ -decimation algorithm
where τ(B(xi, r)) = µ(xi)/(µ(xi) + 1) - the marginal probability of the variable corresponding to the
reduced formula B(xi, r). Furthermore, such τ rule satisfies the balance condition described in Def-
inition 2.3. Thus, as an implication of our main result, Theorem 2.4, we conclude that BP-guided
decimation algorithm fails to find a satisfying assignment for Φ(n, dn) in the regime where our result
on τ -decimation algorithms applies:

Corollary 2.5. There exists K0 such that for every K ≥ K0, d > 2K−2 ln 2 and r > 0

lim
n→∞

P(BP-guided decimation algorithm solves Φ(n, dn)) = 0.

Our result parallels a similar result by Coja-Oghlan [CO11] for random K-SAT problem, although
his result is achieved using a much more sophisticated technique and, unlike our result, does not rely
directly on the clustering property underlying Theorem 4.1. On the other hand, his result applies
to densities d > ρ(2K/K) for some constant ρ independent from K, which is well below the density
2K−1 ln 2 - the appropriate analogue of our threshold 2K−2 ln 2 for the NAE-K-SAT version.

We should also note, that in the experimental results reported in the literature, the BP-guided
decimation algorithm is in fact conducted in a size-biased way in the following sense. Instead of fixing
variables in order x1, . . . , xn, at each step the algorithm first sorts all the remaining variables according
to their marginals µ and sets the assignment σ(xk) corresponding to the variable with the highest bias
of the marginal. Namely it finds xk = arg maxi(µ(xi), µ

−1(xi)), and sets σ(xk) to one with proba-
bility µ(xk)/(µ(xk) + 1) and zero with the remaining probability, where the range of i is the set of
remaining variables. However, it appears that there is no reasoning based on the statistical physics
theory which claims that presorting the variables according to the marginals is a crucial step for the
BP-guided decimation to succeed. Size biasing rather appears to be a sensible implementation detail
of the algorithm. Another difference between our description of BP-guided decimation algorithm and
the way it was implemented in experimental result is that BP iterations are run till the convergence
(up to a certain tolerance) is reached, as opposed to running the iterations for a certain fixed number
of steps r, as is suggested above. However, the reasoning based on statistical physics suggest that the
convergence should take place in fact exponentially fast in r and thus BP computations based on a fixed
number of rounds should work as well. Notably, as in our case, the analysis by Coja-Oghlan applies
only the case of BP algorithm running for constantly many rounds (bounded depth), and decimation
conducted in non-size-biased way. Thus our result indeed extends the result by Coja-Oghlan to the
case of NAE-K-SAT problem. While it would be interesting to extend our result to the case when
the decimation is done in a size-biased way, it is not clear how to pose appropriately the question of
extending our result to the case when BP computations are done till convergence, since one first has to
establish that such a convergence takes place.

9



In Appendix A we describe Survey Propagation in similar detail. The algorithm is signficantly more
complex to describe, but we show once again that its decimation version is a τ -decimation algorithm
and that τ is a balanced rule. As a consquence we conclude that SP-guided decimation algorithm also
fails to find satisfying assignments for instances with density larger than (1/2)ds:

Corollary 2.6. There exists K0 such that for every K ≥ K0, d > 2K−2 ln 2 and r > 0

lim
n→∞

P(SP-guided decimation algorithm solves Φ(n, dn)) = 0.

3 Local algorithms and long-range independence

In this section we obtain some preliminary results needed for the proof of our main result, Theorem 2.4.
Specifically we prove two structural results about the τ -decimation algorithm for a local rule τ .

The first is simple to state - we show that balanced local rules lead to unbiased decisions, for every
un-reduced NAE-K-SAT instance: specifically the marginal probability that a variable is set to 1 is
1/2. More generally we show that the probability that a variable is set to 1 in any instance Φ equals the
probability that the same variable is set to 0 in the complementary instance Φ̄. (See Lemma 3.1.) This
lemma later allows us to find satisfying assignments with small overlap in random instances Φ(n, dn).

Next, we consider the “influence” of a decision σ(xi) ∈ {0, 1} and ask how many other variables are
affected by this decision. In particular, we show that the decisions σ assigned to a pair of fixed variables
xi and xj are asymptotically independent as n → ∞. Namely, the decisions exhibit a long-range
independence. Such a long-range independence is not a priori obvious, since setting a value of a variable
xi can have a downstream implications for setting variables xj , j ≥ i. We will show, however, that
the chain of implications, appropriately defined is typically short. Definition 3.2 and Proposition 3.4
formalize these claims.

In what follows, we first introduce some notation that makes the decisions of the randomized algo-
rithm more formal and precise. We then prove the two main claims above in the following subsections.

3.1 Formalizing random choices of a τ-decimation algorithm

The τ -decimation algorithm described in the previous section is based on the ordering of the variables
xi, since the values σ(xi) are set in the order i = 1, 2, . . . , n. In the case of the random NAE-K-SAT
formula Φ(n, dn), due to symmetry we may assume, without the loss of generality, that the ordering
is achieved by assigning random i.i.d. labels chosen uniformly from [0, 1] and using order statistics for
ordering of variables. (This is equivalent to renaming the variables at random and this renaming will
be convenient for us.) Specifically, let Z = (Zi, 1 ≤ i ≤ n) be the i.i.d. sequence of random variables
with uniform in [0, 1] distribution. Let π : [n] → [n] be the permutation given by the order statistics
of Z. Namely Zπ(1) > Zπ(2) > · · · > Zπ(n). Then we assume that when the τ -decimation algorithm is
performed, the first variable selected is xπ(1) (as opposed to x1), the second variable selected is xπ(2)

(as opposed to x2), etc. From now on we assume that τ -decimation algorithm performed on a random
instance of the NAE-K-SAT problem Φ(n, dn) is done according to this ordering.

To facilitate the randomization involved in selecting randomized decisions based on the τ rule,
consider another i.i.d. sequence U = (Ui, 1 ≤ i ≤ n) of random variables with the uniform in [0, 1]
distribution, which is independent from the randomness of the instance Φ and sequence Z. The purpose
of the sequence is to serve as random seeds for the decision σ(xi) based on τ . Specifically, when the
value σ(xi) associated with variable xi is determined, it is done so according to the rule σ(xi) = 1 if
Ui < τ(B(xi, r)) and σ(xi) = 0 otherwise, where B(xi, r) = BΦi−1(xi, r) is the reduced NAE-K-SAT
instance rooted at xi, observed at a time when the decision for xi needs to be made. Namely, the
τ -algorithm is faithfully executed. Conditioned on Z,U and Φ, the output σ : [n]→ {0, 1} is uniquely
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determined. We denote by σΦ,z,u(xi), 1 ≤ i ≤ n the output of the τ -algorithm conditioned on the
realizations Φ, z,u of the random instance Φ(n, dn), vector Z and vector U, respectively. Similarly,
we denote by BΦ,z,u(xi, r), 1 ≤ i ≤ n the (possibly) reduced NAE-K-SAT instance corresponding to
the r-depth neighborhood of variable xi at the time when the value of xi is determined by the τ -
decimation algorithm. In particular, σΦ,z,u(xi) = 1 if ui ∈ [0, τ(BΦ,z,u(xi, r))] and σΦ,z,u(xi) = 0 if
ui ∈ (τ(BΦ,z,u(xi, r)), 1].

3.2 Implications of balance

We now establish the following implication of the the Definition 2.3 of balanced local rules. Madhu’s
Note: There should a reference to this lemma in Section 5 when we say that expected overlap between
σ1 and σ2 is n/2.

Lemma 3.1. For every formula Φ, and vectors z,u, the following identities hold for every variable
xi, 1 ≤ i ≤ n:

BΦ,z,ū(xi, r) = B̄Φ,z,u(xi, r), (1)

σΦ,z,u(xi) = 1− σΦ,z,ū(xi), (2)

where ū is defined by ūi = 1− ui, 1 ≤ i ≤ n. As a result, when U is a vector of i.i.d. random variables
chosen uniformly from [0, 1], for Φ and z, the following holds for all i = 1, 2, . . . , n:

P(σΦ,z,U(xi) = 0) = 1/2. (3)

Note, that the randomness in the probability above is with respect to U only and the claim holds
for every formula Φ and every vector z.

Proof. We prove the claim by induction on xπ(1), xπ(2), . . . , xπ(n), where π is the permutation generated
by z, that is zπ(1) > zπ(2) > · · · > zπ(n). Specifically, we will show by induction that for every
i = 0, 1, 2, . . . , n, just before the value of variable xπ(i) is determined, the identity (2) holds for all
variables xπ(j), j ≤ i−1 (namely for variables for which the value is already determined at time i), and the
identity (1) in fact holds for all neighborhoods BΦ,z,u(xπ(k), r), i ≤ k ≤ n and BΦ,z,ū(xπ(k), r), i ≤ k ≤ n,
and not just for BΦ,z,u(xπ(i), r) and BΦ,z,ū(xπ(i), r).

For the base of the induction corresponding to i = 1, no variables are set yet and all the neigh-
borhoods BΦ,z,u(xk, r), BΦ,z,ū(xk, r), 1 ≤ k ≤ n correspond to non-reduced instances, for which by our
convention, its symmetric complement is the instance itself. Namely BΦ,z,ū(xk, r) = B̄Φ,z,ū(xk, r) =
BΦ,z,u(xk, r), and thus (1) is verified.

Fix i ≥ 1 and assume now the inductive hypothesis holds for j ≤ i. In particular, the values σ(xπ(j))
are determined for j = 1, . . . , i− 1 under u and ū. Now consider the step of assigning the value of xπ(i).
We have σΦ,z,u(xπ(i)) = 1 iff uπ(i) ≤ τ(BΦ,z,u(xπ(i), r)) and σΦ,z,ū(xπ(i)) = 1 iff ūπ(i) ≤ τ(BΦ,z,ū(xπ(i), r)).
By the inductive assumption we have that BΦ,z,ū(xπ(i), r) = B̄Φ,z,u(xπ(i), r). By Observation 2.2 we
have τ(B̄Φ,z,u(xπ(i), r)) = 1− τ(BΦ,z,u(xπ(i), r)). Since ū = 1− u, we conclude that σΦ,z,u(xπ(i)) = 1 iff
σΦ,z,ū(xπ(i)) = 0 and vice verse. Namely, σΦ,z,u(xπ(i)) = 1− σΦ,z,ū(xπ(i)) and identity (2) is verified.

It remains to show that identity (1) still holds for all variables after the value σ(xπ(i)) is determined.
All neighborhoods B(xk, r) which do not contain xπ(i) are not affected by fixing the value of xπ(i) and
thus the identity holds by the inductive assumption. Suppose B(xk, r) contains xπ(i). This means this
neighborhood contains one or several clauses which contains xπ(i). Fix any such clause C. If this clause
was unsigned under u, then by the inductive assumption it was also unsigned under ū (as the instances
under u and ū are complements of each other). The clause then becomes signed after fixing the value
of xπ(i), and, furthermore, the signs will be opposite under u and ū, since (2) holds for xπ(i) as we have
just established.
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Now suppose the clause was signed + under u. Then again by the inductive assumption it was
signed − under ū. In this case if the assignment σΦ,z,u(xπ(i)) satisfies C, then the clause remains signed
+ after setting the value of xπ(i). At the same time this means that σΦ,z,ū(xπ(i)) = 1 − σΦ,z,u(xπ(i))
does not satisfy C and the clause remains signed − after setting the value of xπ(i). In both cases the
variable xπ(i) is deleted and the identity (1) still holds. On the other hand if σΦ,z,u(xπ(i)) does not
satisfy C when u is used, then (since it was signed +) the clause C is now satisfied and disappears from
the formula. But at the same time this means σΦ,z,ū(xπ(i)) satisfies C, since it was signed − under ū,
and therefore C is satisfied again and disappears from the formula. The variable xπ(i) is deleted in both
cases and again (1) is verified.

The case when clause C is signed − under u and signed + under ū is considered similarly. Finally,
suppose σΦ,z,u(xπ(i)) violates a clause C containing xπ(i). This means that C contains only this variable
when setting this variable to σΦ,z,u(xπ(i)). By inductive assumption we see that the same is true under
ū. In both cases both the variable and clause are removed from the formula. This completes the proof
of the inductive step.

Finally, since the distribution of U and Ū is identical for i.i.d. sequences chosen uniformly at random
from [0, 1], we obtain (3).

3.3 Influence ranges

We now define the notion of influence (which depends on the formula Φ(n, dn) and ordering Z, but
not on further random choices of the τ -decimation algorithm). We introduce the following relationship
between the variables x1, . . . , xn of our formula.

Definition 3.2. Given a random formula Φ(n, dn) and random sequence Z we say that xi influences
xj if either xj = xi or in the underlying node-to-node graph G = G(Φ(n, dn)) there exists a sequence of
nodes y0, y1, . . . , yt ∈ {x1, . . . , xn} with the following properties:

(i) y0 = xi and yt = xj.

(ii) yl and yl+1 are connected by a path of length at most r in graph G for all l = 0, 1, . . . , t− 1.

(iii) Zyl−1
> Zyl for l = 0, 1, . . . , t. In particular, Zxi > Zxj .

In this case we write xi  xj. We denote by IRxi the set of variables xj influenced by xi and call it
influence range of xi.

Note that indeed the randomness underlying the sets IRxi , 1 ≤ i ≤ n as well as the relationship  
is the function of the randomness of the formula Φ(n, dn) and vector Z, but is independent from the
random vector U.

While the definition above is sound for every constant r > 0, we will apply it in the case where r is
the parameter appearing in the context of τ -decimation algorithm. Namely, the τ function is applied
to the set of rooted instances SAT r defined above. In this case the notion of influence range is justified
by the following observation.

Proposition 3.3. Given realizations Φ and z of the random formula Φ(n, dn) and random ordering Z,
suppose u = (ui, 1 ≤ i ≤ n) and u′ = (u′i, 1 ≤ i ≤ n) are such that ui0 = u′i0 and ui = u′i for all i 6= i0.
Then σΦ,z,u(x) = σΦ,z,u′(x) for every x /∈ IRi0. That is, changing the values of u at i0 may impact the
decisions associated with only variables x in IRxi0
Proof. Given a variable xi, i 6= i0, in order for its decision σΦ,z,·(xi) to be affected by switching from u
to u′, there must exist a variable xi1 with distance at most r (with respect to the node-to-node graph
G = G(Φ)) from xi such that zxi1 > zxi and such that the decision for xi1 is affected by the switch. In

12



its turn such a variable exist if either i1 = i0, zi1 > zi0 and xi0 ∈ B(xi, r), and in particular xi0  xi,
or if there exists xi2 ∈ B(xi1 , r) such that zi2 > zi1 and xi2 is affected by the switch. In this case again
xi2  xi. Continuing, we see that in order for xi to be affected by the switch, it must be the case that
xi0  xi.

We now obtain a probabilistic bound on the size of a largest in cardinality of the influence range
classes IRxi , 1 ≤ i ≤ n.

Proposition 3.4. The following holds

lim
n→∞

P( max
1≤i≤n

|IRxi | ≥ n
1
3 ) = 0.

We defer the proof of this proposition to the appendix — see Section B. The choice of exponent 1/3
is somewhat arbitrary here. In fact the bound holds for any exponent in (0, 1), and for our purposes,
as we are about to see in Section 5, any constant in the range (0, 1/2) suffices.

4 The clustering property of random NAE-K-SAT problem

In this section we establish the clustering property of random NAE-K-SAT problem when d is large
enough (in terms of K). Recall that the random NAE-K-SAT formula Φ(n, dn) is satisfiable with
probability approaching unity as n → ∞, when d ≤ ds, where ds = 2K−1 ln 2 − ln 2/2 − 1/4 − f(K)
for some function f(K) satisfying limK→∞ f(K) = 0. Recalling our notation for the set of satisfying
assignment SAT(Φ) of a formula Φ, we have P(SAT(Φ(n, dn)) 6= ∅)→ 1 as n→∞ for every d < ds.

Let ρ(σ1, σ2) denote the Hamming distance between two assignments σ1 and σ2. Namely, ρ(σ1, σ2)
is the number of variables xi with different assignments according to σ1 and σ2.

We now state the main result of this section.

Theorem 4.1. For al sufficiently large K and for all d > (1/2)ds there exists 0 < δ1(d) < δ2(d) < 1/2
such that

lim
n→∞

P
(
∀ σ1, σ2 ∈ SAT(Φ(n, dn)), ρ(σ1, σ2) /∈ [δ1(d)n, δ2(d)n]

)
= 1.

In fact δ1(d) and δ2(d) can be chosen so that δ1(d)→ 0 and δ2(d)→ 1/2 as d→ ds.

Namely, for all sufficiently large K and all d > (1/2)ds, every two satisfying assignment either agree
on at least 1− δ1(d) fraction of variables or on at most 1− δ2(d) fraction of variables.

Proof. The proof follows by a simple counting argument.
Fix α ∈ (δ1(d), δ2(d)) so that αn is an integer, and let σ1, σ2 ∈ {0, 1}n be at Hamming distance

αn. We estimate the probability that Φ(n, dn) is satisfied by both σ1 and σ2. Denoting by SAT(C) the
set of assignments which satisfy clause C, for a random clause of length K, the probability that C is
satisfied by both σ1 and σ2 equals

1− 2P(σ1 6∈ SAT(C)) + P(σ1, σ
2 6∈ SAT(C))

= 1− 2−(K−2) + 2−(K−1)(αK + (1− α)K).

It follows that

P
(
σ1, σ2 ∈ SAT(Φ(n, dn))

)
=
(

1− 2−(K−2) + 2−(K−1)(αK + (1− α)K)
)dn
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and so

P
(
∃σ1, σ2 ∈ SAT(Φ(n, dn)) s.t. ρ(σ1, σ2) = αn

)
≤ 2n2H(α)n

(
1− 2−(K−2) + 2−(K−1)(αK + (1− α)K)

)dn
,

where H(α) is the usual entropy binary function −α lnα − (1 − α) ln(1 − α). The lemma now follows
from simplifying the above expression. We note that for 0 < α < 1, as K → ∞ the expression
1 − 2−(K−2) + 2−(K−1)(αK + (1 − α)K) ≈ 1 − 2−(K−2) ≈ e−2−(K−2)

. The value of ds is such that

e−ds2
−(K−1) ≈ 1

2 . Writing d as βds, we have e−d2−(K−2) ≤ 4−β for all sufficiently large K. We conclude
that

2(1+H(α))n
(

1− 2−(K−2) + 2−(K−1)(αK + (1− α)K)
)dn
≤ (21+H(α)−2β)n = exp(−Ω(n)),

provided H(α) ≤ 2β − 1 or α < H−1(2β − 1). Such non-trivial α exist provided β > 1/2 as assumed.
The theorem thus holds for some 0 < δ1(d) < δ2(d) < H−1(2β − 1). We note that as the ratio of
d/ds → 1, we can let δ2(d)→ 1

2 , as asserted.

5 Proof of Theorem 2.4

The main lemma of this section states that if a τ -decimation algorithm works well on random instances
of NAE-K-SAT, then it can be run twice to produce two solutions of arbitrary amount of overlap, in
particular in amounts forbidden by Theorem 4.1. We state our lemma below and show how Theorem 2.4
follows immediately. The rest of this section is devoted to the proof of the lemma.

We first recall some notation from Section 3. Given a local rule τ : SAT r → [0, 1], let σΦ,Z,U denote
the assignment produced by the τ -decimation algorithm on input Φ and ordering given by Z and using
U to determine the rounding of the probabilities given by τ . Recall that SAT(Φ) denotes the set of
satisfying assignments of Φ. Recall that ρ(σ1, σ2) denotes the Hamming distance between assigments
σ1 and σ2. Let αn denote the probability that τ -decimation algorithm finds a satisfying assignment in
a random formula Φ(n, dn). Namely, αn = P(σΦ(n,dn),Z,U ∈ SAT(Φ(n, dn))).

Lemma 5.1. Fix r <∞ and let τ : SAT r → [0, 1] be a local rule and let 0 < δ1 < δ2 < 1/2 be arbitrary.
Suppose lim supn αn > 0. Then there exists β > 0 such that for every sufficiently large n:

lim inf
n

PΦ(n,dn),Z

(
∃u,v s.t. ρ(σΦ(n,dn),Z,u, σΦ(n,dn),Z,v) ∈ [δ1n, δ2n])

and σΦ(n,dn),Z,u, σΦ(n,dn),Z,v ∈ SAT(Φ(n, dn))

)
≥ β.

We defer the proof of Lemma 5.1 to the rest of this section. First we show how Theorem 2.4 follows
immediately.

Proof of Theorem 2.4. We prove the result by contradiction. Our goal is to show that αn → 0 as n→∞.
Assume otherwise. Then the assumption of the lemma holds. Let δ1, δ2 be as given by Theorem 4.1.
Then, by Lemma 5.1 we have with probability at least β − o(1), Φ(n, dn) is such that that there exist
σ1 = σΦ(n,dn),Z,u and σ2 = σΦ(n,dn),Z,u such that σ1, σ2 ∈ SAT(Φ(n, dn)) and ρ(σ1, σ2) ∈ [δ1n, δ2n].
This immediately contradicts Theorem 4.1.

5.1 Proof of Lemma 5.1

We remark that the proof below would be straightforward if we could assume αn = 1 i.e, the τ -decimation
algorithm always produces satisfying assigments. In this case we would pick two independent random
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sequences U1 and U2 and consider the assignments σi = σΦ(n,dn),Z,Ui for i ∈ {1, 2}. We easily have

that ρ(σ1, σ2) ≈ n/2. On the other hand we can change U1 to U2 one coordinate at a time, and the
absence of long range effects (Proposition 3.4) implies each step produces a satisfying assigment with
the Hamming distance changing only by o(n) in each step. We conclude that somewhere along the way
the overlap with the initial assigment σ1 must be in the forbidden regime.

When αn 6= 1, the argument gets a bit more entangled, since we don’t have that at each step the
assignments produced are satisfying assignments. However we are able to show that the overlap at any
particular stage is concentrated and while the probability that we find satisfying assigments remains
positive. Details below.

Proof of Lemma 5.1. Given a random formula Φ(n, dn) and a random sequence Z generating the order
of setting the variables, let us consider two independent vectors U1,U2 which can be used to generate
assignments. By definition we have

P(σΦ(n,dn),Z,U1 ∈ SAT(Φ(n, dn))) = P(σΦ(n,dn),Z,U2 ∈ SAT(Φ(n, dn))) = αn.

We now consider a sequence of vectors Vt, t = 0, 1, . . . , n which interpolate between U1 and U2. Specif-
ically, let Vt = (V t

1 , . . . , V
t
n) where V t

i = U2
i , i ≤ t and V t

i = U1
i , t < i ≤ n. Note that for every

t = 0, 1, . . . , n, V is a vector of i.i.d. random variables with the uniform in [0, 1] distribution. Further-
more, V0 = U1 and Vn = U2. Recall the notation IRxt for the influence region of variable xt, i.e., all
variables whose decision is potentially influenced by be assigment of xt by the τ -decimation algorithm.
Observe that given realizations u1 and u2 and the resulting realizations vt of Vt we have

ρ(σΦ,z,vt+1 , σΦ,z,vt) ≤ |IRxt+1 |, 0 ≤ t ≤ n− 1, (4)

since, by Proposition 3.3 changing the value of ut+1 impacts only the decisions for variables in IRxt+1 .
We now consider a realization Φ of a formula Φ(n, dn) and realization z of the order Z and the corre-
sponding sequence of sets IRxi , 1 ≤ i ≤ n, which are uniquely determined by Φ and z. Let En denote
the event (the set of Φ and z) that max1≤i≤n |IRxi | ≤ n1/3. In particular, by Proposition 3.4 we have

lim
n→∞

P(En) = 1. (5)

Fix arbitrary 0 < δ1 < δ2 < 1/2 as in Theorem 4.1. Let n be large enough so that n1/3 < (δ2 − δ1)n.
We have by Lemma 3.1 that for every Φ and z,

E[ρ(σΦ,z,U1 , σΦ,z,U2)] = n/2.

Then if Φ and z are realizations such that the event En takes place, then we can find t0 = t0(Φ, z) such
that

E[ρ(σΦ,z,U1 , σΦ,z,Vt0 )] ∈
[
δ1 + δ2

2
n− n1/3,

δ1 + δ2

2
n+ n1/3

]
,

since by (4) the expected increments E[ρ(σΦ,z,vt+1 , σΦ,z,vt)] are bounded by n1/3. We now argue that
in fact ρ(σΦ,z,U1 , σΦ,z,Vt0 ) is concentrated around its mean as n → ∞. The distance is a function of
n+ t0 i.i.d. random variables U1

1 , . . . , U
1
n, U

2
1 , . . . , U

2
t0 . Further, changing any one of these n+ t0 random

variables changes the distance ρ by at most n1/3 again by Proposition 3.3. Applying Azuma’s inequality

P
(∣∣∣ρ(σΦ,z,U1 , σΦ,z,Vt0 )− δ1 + δ2

2
n
∣∣∣ ≥ δ2 − δ1

4
n

)
≤ 2 exp

(
−

( δ2−δ14 n− n
1
3 )2

2(n+ t0)n
2
3

)
= exp(−δ3n

1/3),
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for appropriately small δ3 > 0, and the concentration is established. The event∣∣∣ρ(σΦ,z,U1 , σΦ,z,Vt0 )− δ1 + δ2

2
n
∣∣∣ < δ2 − δ1

4
n

implies the event

ρ(σΦ,z,U1 , σΦ,z,Vt0 ) ∈ [δ1n, δ2n].

We conclude that for every Φ and z such that the event En takes place, we have

lim
n

P
(
ρ(σΦ,z,U1 , σΦ,z,Vt0 ) ∈ [δ1n, δ2n]

)
= 1. (6)

For completion, let us set t0 = 0 when Φ and z are such that the event En does not take place.
Letting T = t0(Φ(n, dn),Z) to be thus defined random variable, observe that σΦ(n,dn),Z,VT has the
same distribution as σΦ(n,dn),Z,U1 since the random variable T only affects the indices i for which we are
using variables U1

i vs U2
i , and since vectors U1,U2 are independent from Φ(n, dn) and Z. Therefore,

P(σΦ(n,dn),Z,VT ∈ SAT(Φ(n, dn))) = αn. Furthermore, for every Φ, z such that the event En takes place

and the corresponding t0, since U1
i , i ≤ t and U2

i , i ≤ t are independent, then

PU1,U2(σΦ,z,U1 , σΦ,z,Vt0 ∈ SAT(Φ))

= EU1,U2 [1(σΦ,z,U1 , σΦ,z,Vt0 ∈ SAT(Φ))]

= EU1
t0+1,...,U

1
n
[EU1

1 ,...,U
1
t0
,U2

1 ,...,U
2
t0

[1(σΦ,z,U1 , σΦ,z,Vt0 ∈ SAT(Φ))
∣∣ U1

t0+1, . . . , U
1
n]]

= EU1
t0+1,...,U

1
n
[E2
U1
1 ,...,U

1
t0

[1(σΦ,z,U1 ∈ SAT(Φ))
∣∣ U1

t0+1, . . . , U
1
n]]

≥ E2
U1
t0+1,...,U

1
n
[EU1

1 ,...,U
1
t0

[1(σΦ,z,U1 ∈ SAT(Φ))
∣∣ U1

t0+1, . . . , U
1
n]]

= E2
U1 [1(σΦ,z,U1 ∈ SAT(Φ))

]
= P2

U1(σΦ,z,U1 ∈ SAT(Φ)).

On the other hand, if Φ and z are such that the event En does not take place then σΦ(n,dn),Z,VT =
σΦ(n,dn),Z,U1 . Thus

P(σΦ(n,dn),Z,U1 , σΦ(n,dn),Z,VT ∈ SAT(Φ(n, dn))) ≥ α2
n.

We finally put together our observations together as follows:

α2
n ≤ P(σΦ(n,dn),Z,U1 , σΦ(n,dn),Z,VT ∈ SAT(Φ(n, dn)))

≤ P(σΦ(n,dn),Z,U1 , σΦ(n,dn),Z,VT ∈ SAT(Φ(n, dn)), En, ρ(σΦ,z,U1 , σΦ,z,VT ) ∈ [δ1n, δ2n])

+P(En, ρ(σΦ,z,U1 , σΦ,z,VT ) /∈ [δ1n, δ2n])

+P(Ecn)

≤ P(σΦ(n,dn),Z,U1 , σΦ(n,dn),Z,VT ∈ SAT(Φ(n, dn)), ρ(σΦ,z,U1 , σΦ,z,VT ) ∈ [δ1n, δ2n])

+P(En, ρ(σΦ,z,U1 , σΦ,z,VT ) /∈ [δ1n, δ2n])

+P(Ecn)

Now by (6) we have that the second probability converges to zero as well. Finally, we have (5). We
obtain the lemma for any 0 < β < lim supn α

2 and U = U1 and V = VT .
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A Survey Propagation for random NAE-K-SAT

We now turn to the Survey Propagation algorithm and SP-guided decimation algorithm. The setup
is similar to the one for BP. In particular in steps i = 1, 2, . . . , n certain marginal value is computed
and the decision for xi is again based on this marginal value, except now the marginal values do not
correspond to the ratio of the number of assignments, but rather correspond to ratios when the problem
is lifted to a new certain constraint satisfaction problem with decision variables 0, 1, ∗. We do not
describe here the rationale for this lifting procedure, as this has been documented in many papers,
including [BMZ05],[MMW07],[MPZ02],[MM09]. Instead we present the SP algorithm and SP-guided
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decimation algorithm formally, following closely [MM09] with the appropriate adjustment from the
K-SAT problem to the NAE-K-SAT problem, and then convince ourselves that SP-guided decimation
algorithm is again the special case of a τ -decimation algorithm.

We will then be able to conclude that SP-guided decimation algorithm fails to find a satisfying
assignment with probability approaching unity, in the regime outlined in our main result, Theorem 2.4.

The SP algorithm is an iterative scheme described as follows. The details and notations are very
similar to the ones described in [MM09]. Specifically iterations (7)-(11) correspond to iterations (20.17)-
(20.20) in this book. Consider an arbitrary reduced or non-reduced NAE-K-SAT formula Φ on variables
x1, . . . , xN . For each iteration t = 0, 1, . . ., each variable/clause pair (x,C) such that x appears in C
(namely there is an edge between x and C in the bi-partite factor graph representation) is associated
with five random variables Qtx,C,U , Q

t
x,C,S , Q

t
x,C,∗, Q̂

t
C,x,S and Q̂tC,x,U . Here is the interpretation of these

variables. Each of them is a message send from variable to a clause containing this variable or a message
from a clause to a variable which belongs to this clause. Specifically, Qtx,C,U (Qtx,C,S) is interpreted as the
probability computed at iteration t that the variable x is forced by clauses D other than C to take value
which does not (does) satisfy U . Qtx,C,∗ is interpreted that none of these forcing takes place. Q̂tC,x,S is
interpreted as probability computed at iteration t that all variables y ∈ C other than x do not satisfy
C, and thus the only hope of satisfying C is for x to do so. Similarly, Q̂tC,x,S is the probability that
all variables y in C other than x do satisfy C and thus the only hope of satisfying clause C is for x to
violate it. The latter case is an artifact of the NAE variant of the problem and need not be introduced
in the SP iterations for the K-SAT problem.

The variables Qt and Q̂t are then computed as follows. At time t = 0 the variables are generated
uniformly at random from [0, 1] independently for all five variables. Then they are normalized so that
Q0
x,C,U+Q0

x,C,S+Q0
x,C,∗ = 1, which is achieved by dividing each term by the sum Q0

x,C,U+Q0
x,C,S+Q0

x,C,∗.

The variables Q̂0
C,x,S and Q̂0

C,x,U do not need to be normalized.
Now we describe the iteration procedures at times t ≥ 0. For each such pair x,C, let Sx,C be the set

of clauses containing x other than C, in which x appears in the same way as in C. Namely if x appears
in C without negation, it appears without negation in clauses in Sx,C as well. Similarly, if x appears
as x̄ in C, the same is true for clauses in Sx,C . Let Ux,C be the remaining set of clauses containing
x, namely clauses, where x appears opposite to the way it appears in C. Now for each t = 0, 1, 2, . . .
assume Qtx,C,U , Q

t
x,C,S , Q

t
x,C,∗, Q̂

t
C,x,S and Q̂tC,x,U are defined. Define the random variable Q̂t+1

x,C,S and

Q̂t+1
x,C,U as follows. Suppose C is unsigned in Φ. Then

Q̂t+1
C,x,S =

∏
y∈C\x

Qty,C,U , (7)

and

Q̂t+1
C,x,U =

∏
y∈C\x

Qtx,C,S . (8)

Here C \ x is the set of variables in clause C other than x. The interpretation for this identities is as
follows. When C is not signed, the clause C forces its variable x to satisfy it if all other variables y
in C where forced not to satisfy C at previous iteration due to other clauses. The first identity is the
probability of this event assuming the events ”y is forced not to satisfy C” are independent. The second
identity is interpreted similarly, though it is only relevant only for NAE-K-SAT problem and does not
appear for the corresponding iterations for the K-SAT problem.

If the clause C is signed +, then we set Q̂t+1
C,x,S = 0 and

Q̂t+1
C,x,U =

∏
y∈C\x

Qtx,C,S . (9)
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The interpretation is that if C is signed +, then one of the variables was already set to satisfy it. Thus
the only way the clause C can force x not to satisfy it is if all other variables y are forced to satisfy C.
Again this is only relevant for the NAE-K-SAT problem. Similarly, if C is signed −, then Q̂t+1

C,x,U = 0
and

Q̂t+1
C,x,S =

∏
y∈C\x

Qtx,C,U . (10)

Next we define variables Rt+1
x,C,S , R

t+1
x,C,U and Rt+1

x,C,∗ which stand for Qt+1
x,C,S , Q

t+1
x,C,U and Qt+1

x,C,∗ before the
normalization. These random variables are computed using the following rules:

Rt+1
x,C,S =

∏
D∈Ux,C

(1− Q̂tD,x,S)

1−
∏

D∈Sx,C

(1− Q̂tD,x,S)

 (11)

+
∏

D∈Sx,C

(1− Q̂tD,x,U )

1−
∏

D∈Ux,C

(1− Q̂tD,x,U )

 , (12)

which is interpreted as follows. Variable x is forced to satisfy clause C at iteration t+ 1, if at iteration
t, either at least one of the clauses D containing x in the same way as C (namely one of the clauses in
Sx,C) forces x to take value which satisfies C, and none of the clauses in Ux,C force x to take value which
violates C (as otherwise a contradiction would be reached), or alternatively, if at iteration t, at least
one of the clauses D containing x in the way opposite to C (namely one of the clauses in Ux,C) forces
x to take value which satisfies C, and none of the clauses in Sx,C force x take value which violates C
(since otherwise again the contradiction would be reached). Variable Rt+1

x,C,S represents the probability
of this forcing which is expressed in probabilities of the corresponding forcing events at time t, again
assuming independence.

Similarly, define

Rt+1
x,C,U =

∏
D∈Sx,C

(1− Q̂tD,x,S)

1−
∏

D∈Ux,C

(1− Q̂tD,x,S)


+

∏
D∈Ux,C

(1− Q̂tD,x,U )

1−
∏

D∈Sx,C

(1− Q̂tD,x,U )

 .

The interpretation for Rt+1
x,C,U is similar. Next, define

Rt+1
x,C,∗ =

∏
D∈Sx,C∪Ux,C

(1− Q̂tD,x,S)(1− Q̂tD,x,U ).

Rt+1
x,C,∗ is interpreted as the probability that x is not forced in either way by constraints other than

C. Finally, we let U t+1
x,C,S , U

t+1
x,C,U and U t+1

x,C,∗ to be quantities Rt+1
x,C,S , R

t+1
x,C,U and Rt+1

x,C,∗, respectively,

normalized by their sum Rt+1
x,C,S + Rt+1

x,C,U + Rt+1
x,C,∗, so that the three variables sum up to one. The

iterations (7)-(11) are conducted for some number of steps t = 0, 1, . . . , r. Next variables Wx(1) and
Wx(0) and Wx(∗) are computed for all variables x as follows. Let Sx be the set of clauses where x
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appears without negation and let Ux be the set of clauses where x appears with negation. Then set

Wx(1) =
∏
D∈Ux

(1− Q̂rD,x,S)

(
1−

∏
D∈Sx

(1− Q̂rD,x,S)

)

+
∏
D∈Sx

(1− Q̂rD,x,U )

(
1−

∏
D∈Ux

(1− Q̂rD,x,U )

)
,

Wx(1) is interpreted as probability (after normalization) that variable x is forced to take value 1, but
is not forced to take value zero by all of the constraints containing x. Similarly, we have

Wx(0) =
∏
D∈Sx

(1− Q̂rD,x,S)

(
1−

∏
D∈Ux

(1− Q̂rD,x,S)

)

+
∏
D∈Ux

(1− Q̂rD,x,U )

(
1−

∏
D∈Sx

(1− Q̂rD,x,U )

)
,

with a similar interpretation. Then set

Wx(∗) =
∏
D∈Sx

(1− Q̂rD,x,S − Q̂rD,x,U )
∏
D∈Ux

(1− Q̂rD,x,S − Q̂rD,x,U ),

which is interpreted as the probability (after normalization) that x is not take forced to be either 0 or
1. Finally, the values Wx(0),Wx(1),Wx(∗) are normalized to sum up to one. For simplicity we use the
same notation for these quantities after normalization.

The random variables Wx(0),Wx(1),Wx(∗) are used to guide the decimation algorithm as follows.
Given a random formula Φ(n, dn), variable x1 is selected. The random quantities Wx1(0),Wx1(1) and
Wx1(∗) are computed and x1 is set to 1 if Wx1(1) > Wx1(0) and set it to zero otherwise. The formula
is now reduced and contains variables x2, x3, . . . , xn. Variable x2 is then selected and the random
quantities Wx2(0),Wx2(1) are computed with respect to the reduced formula. Then Wx2(∗) and x2 is
set to 1 if Wx2(1) > Wx2(0), and set it to zero otherwise. The procedure is repeated until all variables
are set. This defines the SP-guided decimation algorithm.

It is clear again that the SP-guided decimation algorithm is the special case of τ -decimation algo-
rithm, where τ function corresponds to the probability of the event Wx(1) > Wx(0), when it applies to
a reduced instance B(x, r) with x as its root. The depth r of the instance corresponds to the number
of iterations of the SP procedure. It is also clear that there is no inherent bias in the SP to set variable
to 0 vs 1, the rule τ is balanced and thus Theorem 2.4 becomes applicable and Corollary 2.6 holds.

We note that, as for the BP case, the experiments based on the SP-guided decimation algorithm,
instead choose variables with a largest bias |Wx(1) −Wx(0)|, among all of the remaining variables, as
opposed to simply the next variable in the original order x1, . . . , xn. But again no explanation was put
forward saying that this biased version of the SP-guided decimation is critical for its success. Based on
the statistical physics predictions, the non-size-biased version, namely the one presented above should
also succeed in finding a satisfying assignment. Similarly, the number of iterations r was not fixed in
the experiments. Instead the iterations were carried out until approximate convergence was achieved.
Again, as in the case of BP-guided decimation algorithm, it appears that this was just a sensible
implementation choice rather than a rule based on the statistical physics theory per se.

B Proof sketch of Proposition 3.4

Fix a variable x in Φ(n, dn). We first establish an upper bound on the number of variables in a
neighborhood B(x, t) of x in the node-to-node graph G(Φ(n, dn)) when t is moderately growing.
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Lemma B.1. There exists δ > 0 and ε = ε(δ) < 1/3 such that for all sufficiently large n

P(|B(x, t)| ≥ nε) ≤ 1

n2
,

when t ≤ δ lnn.

Proof. It is well known that for small enough δ > 0 and t = δ lnn, the B(x, t) is distributed approx-
imately as a Poisson branching process with the off-spring distribution being Poisson with parameter
β , dK. Furthermore, by increasing the number of clauses by o(n) the Poisson branching process
stochastically dominates the distribution of B(x, t). Thus we obtain instead an upper bound on the
number of off-springs in the t generations of a Poisson branching process with parameter β. Letting Wl

denote the size of the l-th generation, our goal is then to obtain a bound on
∑

l≤tWl. We claim that for
some ε = ε(δ) satisfying ε(δ)→ 0 as δ → 0, the following upper bound holds for each Wl, l ≤ t = δ lnn:

P(Wl > nε/2) ≤ exp(−nε/4), (13)

from which the claim of the lemma follows by a union bound. To establish this bound we rely on the
following known representation of the probability generating function of Wl. That is, let G(θ) = E[θW1 ]
for θ > 0, where W1 has Poisson mean β distribution. Then G(θ) = exp(βθ − β) and E[θWl ] = G(l)(θ)
- the l-th iterate of function G(θ). Now we let θ = 1 + 1

(eβ)t . Define γl = 1/(eβ)l. We now obtain an

upper bound on G(l)(θ). We have

G(1)(θ) = exp(βθ − β) = exp(βγt) ≤ 1 + γt−1,

where we have used βγt < 1 and inequality ez ≤ 1 + ez for z ≤ 1. Then

G(2)(θ) = exp(βG(1)(θ)− β) ≤ exp(βγt−1) ≤ 1 + γt−2,

since βγt−1 < 1. Continuing, we obtain G(l)(θ) ≤ 1 + γt−l, 1 ≤ l ≤ t. Applying this bound

P(Zl ≥ nε/2) = P(θZl ≥ θnε/2)

≤ θ−nε/2E[θZl ]

≤ θ−nε/2(1 + γt−l)

≤ 2θ−n
ε/2
.

Now

θ−n
ε/2

= exp(−nε/2 ln(θ))

= exp(−nε/2(γt + o(γt)).

Now since t = δn, then γt = (eβ)t = n− ln(eβ)δ, implying the upper bound exp(−nε/4) for large enough
n when ε(δ) > 2 ln(eβ)δ. This completes the proof of the bound (13) and of lemma.

Now we complete the proof of the Proposition. Applying union bound we have that that for every
ε > 0, |B(xi, t)| ≤ nε) for all i = 1, . . . , n with probability approaching unity as n → ∞. Given two
variables xi and xj if xi  xj and the distance in G(Φ(n, dn)) between xi and xj is at least t, then there
must exist xk ∈ B(xi, t) \ B(xi, t − 1) such that xi  xk. Given a sequence y0 = xi, y1, . . . , yt = xk,
with xk ∈ B(xi, t) \B(xi, t− 1), the probability of an event Zyl > Zyl+1

, 0 ≤ l ≤ t− 1 is 1/(t+ 1)!. The
total number of paths between xi and variables in B(xi, t) \ B(xi, t − 1) is trivially at most B(xi, t),
since B(xi, t) is tree. Thus, conditioned on B(xi, t), the expected number of variables in B(xi, t) is at
most B(xi, t)r

t/(t+ 1)!, where the extra factor rt is due to choices of points y1, . . . , yt on a given path.
When t = ε ln, the expected number is B(xi, t)n

−Ω(ln lnn). Applying the bound Lemma B.1 and a union
bound over xi we obtain the result.
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