Absolutely Sound Testing of Lifted Codes

Elad Haramaty' *, Noga Ron-Zewi! **, and Madhu Sudan?

! Department of Computer Science, Technion, Haifa.
{eladh,nogaz}@cs.technion.ac.il
2 Microsoft Research New England, Cambridge, MA. madhu@nit .edu

Abstract. In this work we present a strong analysis of the testability
of a broad, and to date the most interesting known, class of “affine-
invariant” codes. Affine-invariant codes are codes whose coordinates are
associated with a vector space and are invariant under affine transforma-
tions of the coordinate space. Affine-invariant linear codes form a natu-
ral abstraction of algebraic properties such as linearity and low-degree,
which have been of significant interest in theoretical computer science
in the past. The study of affine-invariance is motivated in part by its
relationship to property testing: Affine-invariant linear codes tend to be
locally testable under fairly minimal and almost necessary conditions.
Recent works by Ben-Sasson et al. (CCC 2011) and Guo et al. (ITCS
2013) have introduced a new class of affine-invariant linear codes based
on an operation called “lifting”. Given a base code over a t-dimensional
space, its m-dimensional lift consists of all words whose restriction to
every t-dimensional affine subspace is a codeword of the base code. Lifting
not only captures the most familiar codes, which can be expressed as lifts
of low-degree polynomials, it also yields new codes when lifting “medium-
degree” polynomials whose rate is better than that of corresponding
polynomial codes, and all other combinatorial qualities are no worse.

In this work we show that codes derived from lifting are also testable
in an “absolutely sound” way. Specifically, we consider the natural test:
Pick a random affine subspace of base dimension and verify that a given
word is a codeword of the base code when restricted to the chosen sub-
space. We show that this test accepts codewords with probability one,
while rejecting words at constant distance from the code with constant
probability (depending only on the alphabet size). This work thus ex-
tends the results of Bhattacharyya et al. (FOCS 2010) and Haramaty
et al. (FOCS 2011), while giving concrete new codes of higher rate that
have absolutely sound testers. In particular we show that there exists
codes satisfying the requirements of Barak et al. (FOCS 2012) to con-
struct small set expanders with a large number of eigenvalues close to

* Research was conducted while the author was an intern at Microsoft Research New-
England, Cambridge, MA.

** Research was conducted in part while the author was visiting Microsoft Research
New-England, Cambridge, MA, and supported in part by a scholarship from the
Israel Ministry of Science and Technology. The research leading to these results has
received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 257575.



the maximal one, with rate slightly higher than the ones used in their
work.

1 Introduction

In this work we present results on the testability of “affine-invariant linear
codes”. We start with some basic terminology before describing our work in
greater detail.

Let F, denote the finite field of g elements and {F; — F,} denote the set
of functions mapping Fy to Fy. In this work a code (or a family) will be a
subset of functions F C {F; — F,}. We use 4(f,g) to denote the normalized
Hamming distance between f and g, i.e., the fraction of inputs x € Fy for which
f(x) # g(z). We use 6(F) to denote minyoy r e r{0(f,9)} and d=(f) to denote
minge 7{6(f,9)}. A code F is said to be a linear code if it is an Fy-subspace,
ie., for every a € F, and f,g € F, we have af +g € F. A function T : Fy' — Fy
is said to be an affine transformation if there exists a matrix B € Fp*" and
vector ¢ € Fy such that T'(x) = Bx + ¢. The code F C {F} — F,} is said to
be affine-invariant if for every affine transformation 7" and every f € F we have
foT e F (where (foT)(x) = f(T(z))).

Affine-invariant linear codes form a very natural abstraction of the class of
low-degree polynomials: The set of polynomials of degree at most d is a linear
subspace and is closed under affine transformations. Furthermore, as shown by
Kaufman and Sudan [16] affine-invariant linear codes retain some of the “local-
ity” properties of multivariate polynomial codes (or Reed-Muller codes), such
as local testability and local decodability, that have found many applications in
computational complexity. This has led to a sequence of works exploring these
codes, but most of the works led to codes of smaller rate than known ones, or
gave alternate understanding of known codes [9,10,6,5,4]. A recent work by
Guo et al. [11] however changes the picture significantly. They study a “lifting”
operator on codes and show that it leads to codes with, in some cases dramatic,
improvement in parameters compared to Reed-Muller codes. Our work comple-
ments theirs by showing that one family of “best-known” tests manages to work
abstractly for codes developed by lifting.

We start by describing the lifting operation: Roughly a lifting of a base code
leads to a code in more variables whose codewords are words of the base code on
every affine subspace of the base dimension. We define this formally next. For
f:Fy = Fgand S CFy, let fls denote the restriction of f to the set S. A set
A C Fy is said to be a t-dimensional affine subspace, if there exist ag, ..., € Fy
such that A = {0404'2::1 a; x|z, ...,z € Fg}. We use some arbitrary Fy-linear
isomorphism from A to F! to view f|4 as a function from {F, — F,}. Given
an affine-invariant linear base code B C {F! — F,} and integer n > t, the n-
dimensional lift of B, denoted Lift,,(B), is the set {f : Fy — F, | fla € B for
every t-dimensional affine subspace A C F7'}.

The lifting operation was introduced by Ben-Sasson et al. [5] as a way to
build new affine-invariant linear codes that were not locally testable. Their codes



were also of much lower rate than known affine-invariant linear codes of similar
distance. However in more recent work, Guo et al. [11], showed that lifting could
be used positively: They used it to build codes with very good locality properties
(especially decodability) with rate much better than known affine-invariant linear
ones, and matching qualitatively the performance of the best known codes. Our
work attempts to complement their work by showing that these codes, over
constant sized alphabets, can be “locally tested” as efficiently as polynomial
codes.

Testing and Absolutely Sound Testing A code F C {Fy — F,} is said to be a
(k,€,0)-locally testable code (LTC), if §(F) > ¢ and there exists a probabilistic
oracle algorithm that, on oracle access to f : Fy' — F,, makes at most k queries to
f and accepts f € F with probability one, while rejecting f ¢ F with probability
at least ed £ (f).

For an ensemble of codes {F,, C {Fy™ — F }},, for infinitely many m, with
Fm being a (k(m),e(m),d(m))-LTC, we say that the code has an absolutely
sound tester if there exists € > 0 such that e(m) > e for every m.

Any tester can be converted into an absolutely sound one by repeating the
test 1/e(m) times. However this comes with an increase in the query complexity
(the parameter k(m)) and so it makes sense to ask what is the minimum & one
can get for an absolutely sound test.

Previous works by Bhattacharyya et al. [7] and Haramaty et al. [13] raised this
question in the context of multivariate polynomial codes (Reed-Muller codes)
and showed that the “natural tester” for multivariate polynomial codes is abso-
lutely sound, without any repetitions! The natural test here is derived as follows
for prime fields:

To test if a function f is a polynomial of degree at most d, let ¢ be the
smallest integer such that there exist functions of degree greater than d
in t variables. Pick a random ¢-dimensional affine subspace A and verify
that f|4 is a degree d polynomial.

The natural test thus makes roughly ¢t = ¢(4+1/(¢=1 queries. This number turns
out to be optimal for prime fields in that every function looks like a degree d
polynomial if queried at at most ¢*~! points. Such optimal analyses of low-degree
tests turn out to have some uses in computational complexity: In particular one
of the many ingredients in the elegant constructions of Barak et al. [3] is the
absolutely sound analysis of the polynomial codes over Fs.

Returning to the natural test above, it ends being a little less natural, and
not quite optimal when dealing with non-prime fields. Turns out one needs to
use a larger value of ¢ than the one in the definition above (specifically, ¢ =
q\4t1/(a=a/P) where p is the characteristic of the field F,). While it is unclear
if sampling all the points in the larger dimensional space is really necessary for
absolutely sound testing the results so far seem to suggest working with prime
fields is a better option.



1.1 Owur work: motivation and results

The motivation for our work is two-fold: Our first motivation is to understand
“low-degree testing” better. Low-degree testing has played a fundamental role in
computational complexity and yet its proofs are barely understood. They tend to
involve a mix of probabilistic, algebraic, and geometric arguments, and the only
setting where the mix of these features seems applicable seems to be the setting of
low-degree polynomials. Affine-invariant codes naturally seperate the geometry
of subspaces in high-dimensional spaces, from the algebra of polynomials of low-
degree. Thus extending a proof or analysis method from the setting of low-degree
polynomials to the setting of generic geometric arguments has the nice feature
that it has the potential to separate the geometric arguments from the algebraic
ones.

Within the theme of low-degree testing, the previous works have revealed
interesting analyses. And several of these variations in the resulting theorems
have played a role in construction of efficient PCPs or more recently in other
searches for explicit objects. In particular the literature includes tests such as
those originally given by Blum, Luby and Rubinfeld [8] for testing linearity and
followed by [20, 1,15, 14] for testing higher degree polynomials. The aspects of
this family of tests are well abstracted in Kaufman and Sudan [16]. But the
literature contains other very interesting theorems, such as those of Raz and
Safra [18] and Arora and Sudan [2] which tend to work in the “list-decoding”
regime. The analysis of the former in particular seems especially amenable to
a “generic proof” in the affine-invariant setting and yet such a proof is not yet
available. Our work explores a third such paradigm in the analysis of low-degree
tests, which was introduced in the above-mentioned “absolutely-sound testers”
of Bhattacharyya et al. and Haramaty et al.

Our work starts by noticing that the natural tests above are really “lifting
tests”: Namely, the test could be applied to any code that is defined as the lift of
a base code with the test checking if a given function is a codeword of the base
code when restricted to a random small dimensional affine subspace of the base
dimension. Indeed this is the natural way of interpreting almost all the previous
results in low-degree testing (with the exception of that of [19]). If so, it is natural
to ask if the analysis can be carried out to show the absolute soundness of such
tests.

The second, more concrete, motivation for our work is the work of Guo et
al. [11]. Over prime fields, it was well-known that lifts of low-degree polynomials
lead only to polynomials of the same degree (in more variables). Guo et al. show
that lifting over non-prime fields leads to better codes than over prime fields!
(Prior to their work, it seemed that working with non-prime fields was worse
than working with prime fields.) The improved rate gives motivation to study
lifted codes in general, and in particular one class of results that would have
been nice to extend was the absolutely-sound tester of [13].

In this work we show that the natural test of lifted codes is indeed absolutely
sound. The following theorem spells this statement out precisely.



Theorem 1 (Main). For every prime power q, there exists ¢, > 0 such that
the following holds: Let t < n be positive integers and let B C {FZ — F,} be any
affine-invariant linear code. Then F = Lift,,(B) is (¢', €q,q~")-locally testable.

We stress that the importance of the above is in the absolute soundness, i.e.,
the fact that ¢, does not depend on ¢t or B. If one is willing to let ¢, depend on
t and B then such a result follows from the main theorem of [16].

Our result also sets into proper light the previous work of Haramaty et al. [13]
who show that the “natural test” for degree d polynomials over the field F, of
characteristic p makes ¢(#t1)/(a=4/P) queries and is absolutely sound. Our result
does not mention any dependence on p, the characteristic of the field. It turns
out that such a dependence comes due to the following proposition.

Let RM(n, d, q) denote the set of polynomials over F, of degree at most d in
n variables.

Proposition 1. For positive integers d and q where q is a power of a prime p,

lett=1tqq = (q‘f;}p] Then for every n > t, the Reed-Muller code RM(n,d, q)

equals the code Lift,,(RM(t, d, q)).

Applying Theorem 1 to RM(n,d, q) we immediately obtain the main results
of [7] and [13]. And the somewhat cumbersome dependence on the characteristic
of g can be blamed on the proposition above, rather than any weakness of the
testing analysis. Furthermore, as is exploited by Guo et al. [11] if one interprets
the proposition above correctly, then one should use lifts of Reed-Muller codes
over non-prime fields with dimension being smaller than ¢4 ,. These will yield
codes of higher rate while our main theorem guarantees that testability does not
suffer.

One concrete consequence of our result is in the use of Reed-Muller codes
in the work of Barak et al. [3]. They show how to construct small-set expander
graphs with many large eigenvalues and one of the ingredients in their result is
a tester of Reed-Muller codes over Fy (codes obtained by lifting an appropriate
family of base codes over Fs). Till this work, the binary Reed-Muller code seemed
to be the only code with performance good enough to derive their result. Our
work shows that using codes over Fy or Fg (or any constant power of two) would
serve their purpose at least as well, and even give slight (though really negligible)
improvements. We elaborate on these codes and their exact parameters in Section
3. (In particular, see Theorem 3.)

Finally, unlike the works of Bhattacharyya et al., and Haramaty et al., we
can not claim that our testers are “optimal”. This is not because of a weakness
in our analysis, rather it is due to the generality of our theorem. For some codes,
including the codes considered in the previous works, our theorem is obviously
optimal (being the same test and more or less same analysis as previously). Other
codes however may possess special properties making them testable much better.
In such cases we can not rule out better tests, though we hope our techniques
will still be of some use in analyzing tests for such codes.



Future research directions As noted earlier, the field of low-degree testing has
seen several different themes in the analyses. Combined with the work of Kauf-
man and Sudan [17] our work points to the possibility that much of that study
can be explained in terms of the geometry of affine-invariance, and the role of al-
gebra can be encapsulated away nicely. One family of low-degree tests that would
be very nice to include in this general view would be that of Raz and Safra [18].
Their work presents a very general proof technique that uses really little algebra;
and seems ideally amenable to extend to the affine-invariant setting. We hope
that future work will address this.

We also hope that future work improve the dependence of €¢; on ¢ in The-
orem 1 (which is unfortunately outrageous). Indeed it is not clear why there
should be any dependence at all and it would be nice to eliminate it if possible.

Organization We give an overview of the proof of Theorem 1 in Section 2, where
we also introduce the main technical theorem of this paper (Theorem 2). We
also describe our technical contributions in this section, contrasting the current
proof with those of [7,13], which we modify. In Section 3 we give examples of
family of lifted codes for which our main theorem applies. Some of the details
are omitted from this version due to space considerations. A full version of this
paper is available as [12].

2 Overview of Proof

2.1 Some natural tests

Our proof of Theorem 1 follows the paradigm used in [7] and [13]. Both works
consider a natural family of tests (and not just the “most” natural test), and
analyze their performance by studying the behavior of functions when restricted
to “hyperplanes”. We introduce the family of tests first.

From now onwards all codes we consider will be linear and affine-invariant
unless we explicitly say otherwise. Given a base code B C {F, — F,} and
n > { >t welet L, = Lifty(B), with F = L,,. The {-dimensional test for
membership in F works as follows: Pick a random ¢-dimensional affine subspace
A'in F} and accept f if and only if f[4 € L.

Let Rej,(f) denote the probability with which the ¢-dimensional test rejects.
Our main theorem aims to show that Rej,(f) = 2(5#(f)) when £ = t. As in
previous works, our analysis will first lower bound Rej,(f) for £ =t + O(1) and
then relate the performance of this test to the performance of the ¢-dimensional
test.

2.2 Overview of proof of Main Theorem 1

The analysis of the performance of the /-dimensional tests is by induction on the
number of variables n and based on the behaviour of functions when restricted
to “hyperplanes”. A hyperplane in Fy is an affine subspace of dimension n — 1.



In many future calculations it will be useful to know the number of hyperplanes
in F7. We note that this number is ¢" + ¢" ' +--- + 1= ¢"(1 + o(1)).

The inductive strategy to analyzing Rej,(f) is based on the observation that
Rej,(f) = En[Rej,(f|m)] where H is a uniform hyperplane. If we know that
on most hyperplanes 0., _,(f|m) is large, then we can prove the right hand
side above is large by induction. Thus the inductive strategy relies crucially on
showing that if f is far from F, then f|g can not be too close to £,_1 on
too many hyperplanes. We state this technical result in the contrapositive form
below.

Theorem 2 (Main technical). For every q there exists T < oo such that the
following holds: Let B C {Fg — F,} be an affine-invariant linear code and for
0>t let Ly = Lifty(B). Forn >t, let f:Fy — Fy be a function and Hy, ..., H
be hyperplanes in F? such that oz, (f|m,) < 6 for everyi € [k] for§ < g~ (1.
Then, if k > ¢'*7, we have é., (f) <20 +4(q — 1) /k.

The theorem thus states that if f is sufficiently close to a lift of B on a
sufficiently large number of hyperplanes, yet a very small number (independent
of n) of hyperplanes, then f is close to a lift of B. The dependence of the number
of hyperplanes on ¢ and ¢ is actually important to our (and previous) analysis.
The fact that it is some fixed multiple of ¢*, where the multiple depends only on
q and not on t, is crucial to the resulting performance.

Going from Theorem 2 above to Theorem 1 is relatively straightforward. In
particular using Theorem 2 we can get a lower bound on Rej;, . (f) without any
changes to the proof of [13]. However going from such an analysis to a lower
bound on Rej,(f) involves some extra work, with complications similar to (but
simpler than), those in the proof of Theorem 2 so we omit a discussion here.

The main contribution of this paper is the proof of Theorem 2. Here, the
previous proofs, both in [7] and [13] crucially relied on properties of polynomials
and in particular the first step in both proofs, when testing degree d polynomials,
is to consider the case of f being a degree d+1 (or a degree d+¢) polynomial. In
our case there is no obvious candidate for the notion of a degree d+ 1 polynomial
and it is abstracting such properties that forms the bulk of our work. In what
follows we give an overview of some of the issues arising in such steps and how
we deal with them.

2.3 Overview of proof of Theorem 2

To understand our proof of Theorem 2 we need to give some background, specifi-
cally to the proofs from the previous work of [13]. Recall the analogous statement
in [13] attempted to show that if f was far from being a polynomial of degree d,
then the number of hyperplanes where f turns out to be close to being a degree
d polynomial is at most O(q*) (where t ~ d/q, the exact number will not be
important to us). [13] reasoned about this in a sequence of steps: (1) They first
showed that any function of degree greater than d, stays of degree greater than
d on at least 1/q fraction of all hyperplanes (provided n > t). (2) Next they rea-
soned about functions of degree d + 1 and showed that such a function reduces



its degree on at most O(q') hyperplanes. (3) In the third step they consider a
general function f that is far from being of degree d and show that the num-
ber of hyperplanes on which f becomes a degree d polynomial exactly is O(q").
(This is the step where the big-Oh becomes a really big-Oh.) (4) Finally, they
show that for functions of the type considered in the previous step the number
of hyperplanes where they even get close to being of degree d is at most O(q?),
thus yielding the analog of Theorem 2.

In implementing the program above (which is what we will end up doing)
in our more general /abstract setting, our first bottleneck is that, for instance in
Step (2) above, we don’t have a notion of degree d+1 or some notion of functions
that are “just outside our good set F”. Natural notions of things outside our set
do exist, but they don’t necessarily satisfy our needs. To understand this issue
better, let us see why polynomials of degree d + O(1) appear in the analysis
of a theorem such as Theorem 2. Consider a simple case where Hy,..., H, are
parallel hyperplanes completely covering Fy and ¢ = 0 so f is known to be a good
function (member of F, or degree d) when restricted to these hyperplanes. So,
in the setting of testing polynomials of degree at most d, the hypothesis asserts
that f restricted to these hyperplanes is a polynomial of degree at most d. For
notational simplicity we assume that H; is the hyperplane given by 1 = n;
where Fy = {n1,...,nq}. Then f|y, = P;(z2,...,x,) for some polynomial P; of
degree d. By polynomial interpolation, it follows that f can be described as a
degree d+ g — 1 polynomial in x4, ..., z,. The bulk of the analysis in [7, 13] now
attempts to use the remaining K — ¢ hyperplanes on which f reduces to degree
at most d, in conjunction with the fact that f is a polynomial of degree at most
d+ g — 1 to argue that f is of degree at most d.

For us, the main challenge is that in the generic setting of the lift of some
code B, we don’t have a ready notion of a degree d + ¢ — 1 polynomial and
so we have to define one. Thus the first step in this work is to define such a
code. For our current discussion it suffices to say that there is an affine-invariant
linear code, which we denote FT, which contains all “interpolating functions”
of elements of F (so F+ contains every function f for which there exist some ¢
parallel hyperplanes Hq,..., H, such that f|g, is a function in £,,_; for all i).
Of course such a set is not useful if it does not have some nice structure. The
key property of our definition of F7 is that it is the lift of a non-trivial code on
at most ¢+ ¢ — 1 dimensions. This definition of 7+ and its analysis rely centrally
on some of the structural understanding of affine-invariant linear codes derived
in previous works [16, 9,10, 6,5, 4]. Our analysis shows that F T is almost as nice
as F, roughly analogous to the way the set of degree d + ¢ — 1 polynomials is
almost as nice as the set of degree d polynomials.

The notion of F* turns out to be easy enough to use to be able to carry out
the steps (3) and (4) in the program above by directly mimicking the proofs of
[13], assuming Steps (1) and (2) hold. But Steps (1) and (2) turn out to be more
tricky. So we turn to these, and in particular Step (2) next.

Our next barrier in extending the proofs of [13] is a notion of “canonical
monomials” which play a crucial role in Step (2) of [13]. For a function of degree



d + 1, the canonical monomial is a monomial of degree d + 1 supported on very
few variables. The fact that the number of variables in the support is small,
while the monomial remains a “forbidden one” turns out to be central to their
analysis and allows them to convert questions of the form: “Does f become a
polynomial of smaller degree on the hyperplane H?”(which are typically not
well-understood) to questions of the form “Does g become the zero polynomial
when restricted to H?” (which is a very well-studied question).

In our case, we need to work with some function f in F* which is not a
function of F. The fact that F7 is a lift of “few-dimensional” code, in principle
ought to help us find a monomial supported on few variables that is not in
F. But isolating the “right one” to work with for f turns out to be a subtle
issue and we work hard, and come up with a definition that is very specific to
each function f € F* \ F. (In contrast the canonical monomials of [13] were
of similar structure for every function f.) Armed with this definition and some
careful analysis we are able to simulate Step (2) in the program above. We give
a few more details into this step below. Full details may be found in the full
version of this paper.

Let t+ =t+¢—1, and let B* be a family on ¢t* variables such that 7T is a
lift of BT. Let f € F*\ F. We first show that for every such f there exists an
invertible affine transformation 7" and monomial M ¢ F supported on the first
t* variables such that foT is supported on M. We further assume that 7" is such
that the degree of M is maximal. Without loss of generality we may assume 7 is
just the identity transformation and so f is supported on M. Next we partition
the space of all possible hyperplanes into qthrl sets (based on their coefficients
on the first ¢* variables). Our goal is to show that in each set in the partition
there are at most some constant (depending on ¢) number of hyperplanes such
that f restricted to that hyperplane becomes a member of F. To do so we extract
from f a non-zero low-degree function g. (this function g depends on M and the
set in the partition under consideration). We show that for the correct definition
of g, it is the case that f|y € F only if g|g = 0. This brings us to the final task:
to bound the number of hyperplanes on which g|z can be identically zero. For
this part we show a simple lemma (see Lemma 4.8 in the full version) that shows
that a low-degree function can only be zero on a small number of hyperplanes
(bounded by a function of ¢ and the degree, but independent of n). Putting the
above ingredients together gives us a bound (of desired quality) on the number
of hyperplanes H for which f|g € F.

Finally, Step (1) is also dealt with similarly, using some of the same style of
ideas as in the proof of Step (2).

3 New testable codes

In this section, we give some examples of codes with “nice” parameters that are

testable with absolute soundness based on our main theorem (Theorem 1).
The need for such codes is motivated by the work of Barak et al. [3]. Their

work used appropriate Reed-Muller codes over Fs. Our work gives the second



family of codes that is known to satisfy their requirements. We point out that
Guo et al. [11] also give codes motivated by the work of [3], but their codes
are not, thus far, known to be testable with absolute soundness and so fail to
meet all the requirements of [3]. Our codes fall within the class of “lifted” codes
studied by [11], but were not analyzed there. Here we use analysis similar to
their to analyze the rate and distance of our codes, while the testing follows
from our main theorem.

The code. Our codes are defined by three parameters: a real number ¢ > 0 and
two integers s and n. The code F = F ;. is obtained as follows: Let ¢ = 2,
and let £ = [1logl/e]. Let B = {f : Fi~* — Fo| 3 pepn-e f(x) = 0}. Let
F = Lift,,(B).

Basic parameters:

Proposition 2. For every €, s and n the code F = F¢ s, has block length N =
25" (absolute, non-normalized) distance at least 1/e and dimension at least 2°™ —

() + it ().

Proof. The size of the block length can be easily verified and the distance follows
from the general properties of lifting (see full version for details. Lemmas 3.11.
and 3.12. in Guo et. al. [11] analyzed the dimension of the code Fe s, for the
case in which s = log(1/¢) (so £ = 1). More specifically, given a degree pattern
a = (a1,...,a,) with {a;};_, C Zg, let agj) denote the j-th bit of the binary
expansion of a;. Let M (a) denote the n x s matrix with entries M (a); ; = az(]).
Guo et. al. show that in the special case in which ¢ =1 the code F ; , contains
in its support all monomials with degree pattern a = (aq, ..., a,) such that there
exists a column in M (a) with at least two zeroes. This readily implies a bound
of 2°™ — (n + 1)¢ on the dimension of their code.

A similar analysis shows that our code F. s, contains all monomials with
degree pattern a = (ay, ..., a,) where the matrix M (a) has at least s{+1 zeroes,
or the matrix has s zeroes and there exists a column in M (a) with at least £+1
zeros. The lower bound on the dimension follows.

Testability. The following is an immediate application of Theorem 1.

Proposition 3. For every s there exists a constant 7 > 0 such that for every e
and n the code F = F. s is testable by a test that makes eN queries, accepts
codewords with probability one, while rejecting all functions f : Fy — Fo with
probability at least - 6(f,F).

We remark that the dimension of our codes, for any choice of N and e is
strictly better than that of the codes used in [3] which have dimension 2°" —
Z?io (") ~ 28 — \/ﬁ(en/@se. An important parameter for them is the “co-
dimension” of their code (block length minus the dimension, or the dimension of

the dual code), which thus turns out to be roughly \/Q;W(en /£)%¢ from the above




expression. (A smaller codimension is better for their application.) Simplifying
the dimension of our code from Proposition 2, we see that the codimension of
our code is smaller by a multiplicative factor of roughly O(£*/2~1), making our
codes noticeably better. Unfortunately such changes do not alter the essential
relationship between N = 2", the parameter e (which determines the locality of
the tester) and the codimension of the code. The following theorem summarizes
the performance of our codes.

Theorem 3. For every positive s there exists a constant T such that for every
sufficiently small € and sufficiently large N there exists a code of block length
1

—s elog N log . .
: 1oggl that is testable with a tester that makes

€ - N queries accepting codewords with probability one, while rejecting words at
distance 6 with probability at least T - §.

N, codimension (log %)

To contrast, the corresponding result in [3] would assert the existence of a
positive constant s for which the above held.

References

1. Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Test-
ing Reed-Muller codes. IEEE Transactions on Information Theory, 51(11):4032—
4039, 2005.

2. Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications.
Combinatorica, 23(3):365-426, 2003.

3. Boaz Barak, Parikshit Gopalan, Johan Hastad, Raghu Meka, Prasad Raghavendra,
and David Steurer. Making the long code shorter, with applications to the unique
games conjecture. In FOCS. IEEE Computer Society, 2012.

4. Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu Su-
dan. On sums of locally testable affine invariant properties. In Leslie Ann Goldberg,
Klaus Jansen, R. Ravi, and José D. P. Rolim, editors, Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, volume 6845 of
LNCS, volume 6845 of Lecture Notes in Computer Science, pages 400—411. IEEE
Computer Society, 2011.

5. Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. Symmetric
LDPC codes are not necessarily locally testable. In IEEE Conference on Compu-
tational Complexity, pages 55-65. IEEE Computer Society, 2011.

6. Eli Ben-Sasson and Madhu Sudan. Limits on the rate of locally testable affine-
invariant codes. In APPROX-RANDOM, volume 6845 of Lecture Notes in Com-
puter Science, pages 412-423. Springer, 2011.

7. Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and
David Zuckerman. Optimal testing of reed-muller codes. In FOCS, pages 488-497.
IEEE Computer Society, 2010.

8. Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. In STOC, pages 73-83. ACM, 1990.

9. Elena Grigorescu, Tali Kaufman, and Madhu Sudan. 2-transitivity is insufficient
for local testability. In IEEE Conference on Computational Complexity, pages
259-267. IEEE Computer Society, 2008.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Succinct representation of
codes with applications to testing. In APPROX-RANDOM, volume 5687 of Lecture
Notes in Computer Science, pages 534—547. Springer, 2009.

Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from
lifting. Proceedings of ITCS 2013, (to appear), 2013.

Elad Haramaty, Noga Ron-Zewi, and Madhu Sudan. Absolutely sound testing of
lifted codes. Electronic Colloguium on Computational Complezity (ECCC), 20:30,
2013.

Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multivariate
polynomials over small prime fields. In FOCS, pages 629-637. IEEE Computer
Society, 2011.

Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman.
Testing low-degree polynomials over prime fields. Random Struct. Algorithms,
35(2):163-193, 2009.

Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM
Journal of Computing, 36(3):779-802, 2006.

Tali Kaufman and Madhu Sudan. Algebraic property testing: The role of invari-
ance. Electronic Colloquium on Computational Complezity (ECCC), 14(111), 2007.
Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance.
In STOC, pages 403-412. ACM, 2008.

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability pcp characterization of np. In STOC, pages 475—
484. ACM, 1997.

Noga Ron-Zewi and Madhu Sudan. A new upper bound on the query complexity
for testing generalized reed-muller codes. In APPROX-RANDOM, volume 7408 of
Lecture Notes in Computer Science, pages 639—-650. Springer, 2012.

Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. on Computing, 25(2):252-271, 1996.



