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ABSTRACT
We consider the task of interactive communication in the
presence of adversarial errors and present tight bounds on
the tolerable error-rates in a number of different settings.

Most significantly, we explore adaptive interactive com-
munication where the communicating parties decide who
should speak next based on the history of the interaction.
In particular, this decision can depend on estimates of the
amount of errors that have occurred so far. Braverman
and Rao [STOC’11] show that non-adaptively one can code
for any constant error rate below 1/4 but not more. They
asked whether this bound could be improved using adaptiv-
ity. We answer this open question in the affirmative (with a
slightly different collection of resources): Our adaptive cod-
ing scheme tolerates any error rate below 2/7 and we show
that tolerating a higher error rate is impossible. We also
show that in the setting of Franklin et al. [CRYPTO’13],
where parties share randomness not known to the adver-
sary, adaptivity increases the tolerable error rate from 1/2 to
2/3. For list-decodable interactive communications, where
each party outputs a constant size list of possible outcomes,
the tight tolerable error rate is 1/2.

Our negative results hold even if the communication and
computation are unbounded, whereas for our positive results
communication and computations are polynomially bounded.
Most prior work considered coding schemes with linear com-
munication bounds, while allowing unbounded computations.
We argue that studying tolerable error rates in this relaxed
context helps to identify a setting’s intrinsic optimal error
rate. We set forward a strong working hypothesis which
stipulates that for any setting the maximum tolerable er-
ror rate is independent of many computational and commu-
nication complexity measures. We believe this hypothesis
to be a powerful guideline for the design of simple, natu-
ral, and efficient coding schemes and for understanding the
(im)possibilities of coding for interactive communications.
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1. INTRODUCTION
“Interactive Coding” or “Coding for Interactive Communi-

cation” studies the task of protecting an interaction between
two parties in the presence of communication errors. This
line of work was initated by Schulman [12] who showed,
surprisingly at the time, that protocols with n rounds of
communication can be protected against a (small) constant
fraction of adversarial errors while incurring only a constant
overhead in the total communication complexity.

In a recent powerful result that revived this area, Braver-
man and Rao [7] explored the maximal error rate that can be
tolerated in an interactive coding setting. They showed the
existence of a protocol that handles a 1/4− ε error rate and
gave a matching negative result under the assumption that
the coding scheme is non-adaptive in deciding which player
transmits (and which one listens) at any point of time. They
left open the questions whether the 1/4 error rate can be im-
proved by allowing adaptivity (see [4, Open Problem 7] and
[7, Conclusion]) or by reducing the decoding requirement
to list decoding (see [4, Open Problem 9] and [7, Conclu-
sion]), that is, requiring each party only to give a small list
of possible outcomes, of which one has to be correct.

In this work we answer both questions in the affirma-
tive (in a somewhat different regime of computational and
communication resources): We give a rate adaptive coding
scheme that tolerates any error rate below 2/7. We fur-
thermore show matching impossibility result which strongly
rules out any coding scheme achieving an error rate of 2/7.

Moreover, we also consider the adaptive coding schemes
in the setting of [9] in which both parties share some ran-
domness not known to the adversary. While non-adaptive
coding schemes can tolerate any error rate below 1/2 this
bound increases to 2/3 using adaptivity, which we show is
also best possible.

Lastly, we initiate the study of list decodable interactive
communication. We show that allowing both parties to out-
put a constant size list of possible outcomes allows non-
adaptive coding schemes that are robust against any error
rate below 1/2, which again is best possible for both the
adaptive and non-adaptive setting.



All our coding schemes are deterministic and work with
communication and computation being polynomially boun-
ded in the length of the original protocol. We note that
most previous works considered the more restrictive setting
of linear amount of communication (often at the cost of ex-
ponential time computations). Interestingly, our matching
negative results hold even if the communication and compu-
tation are unbounded. We show that this sharp threshold
behavior extends to many other computational and commu-
nication complexity measures and is common to all settings
of interactive communication studied in the literature. In
fact, an important conceptual contribution of this paper is
the formulation of a strong working hypothesis that stipu-
lates that maximum tolerable error rates are invariable with
changes in complexity and efficiency restrictions on the cod-
ing scheme. This hypothesis suggests to first consider the
simpler settings and then expand on the insights derived to
get more general results. We believe that in this way, the
working hypothesis yields a powerful guideline for the design
of simple and natural coding schemes as also the search for
negative results. This has been already partially substanti-
ated by subsequent results (see[10] and Appendix B of the
full version[11]).

Organization: In what follows, we provide the interactive
communication model in Section 2. We also introduce the
model for adaptive interaction there. Then, in Section 3,
we explain our results as well as the underlying high-level
ideas and techniques. In Section 4 we describe the simple
Exchange problem and give an adaptive protocol tolerating
a 2/7-fraction of errors in Section 4.1. In the remainder of
Section 4, we prove that the error-rate of 2/7 is the best
achievable for the Exchange problem and therefore also for
the general case of interactive communication. In Section 5,
we give interactive coding schemes over large alphabets tol-
erating a 2/7 error rate for general interactions.

2. INTERACTIVE CODING SETTINGS
In this section, we define the classical interactive coding

setup as well as all new settings considered in this work,
namely, list decoding, the shared randomness setting, and
adaptive protocols.

An n-round interactive protocol Π between two players
Alice and Bob is given by two functions ΠA and ΠB . For
each round of communication, these functions map (possi-
bly probabilistically) the history of communication and the
player’s private input to a decision of whether to listen or
transmit, and in the latter case also to a symbol of the com-
munication alphabet. All protocols studied prior to this work
are non-adaptive in that the decision of a player to listen or
transmit deterministically depends only on the round num-
ber, ensuring that exactly one party transmits in each round
(in In [7] such protocols were called robust). In this case,
the channel delivers the chosen symbol of the transmitting
party to the listening party, unless the adversary interferes
and alters the symbol arbitrarily. In the adversarial chan-
nel model with error rate ρ, the number of such errors is at
most ρn. The outcome of a protocol is defined to be the
transcript of the interaction.

A protocol Π′ is said to robustly simulate a protocol Π for
an error rate ρ if the following holds: Given any inputs to Π,
both parties can uniquely decode the transcript of an error
free execution of Π on these inputs from the transcript of any
execution of Π′ in which at most a ρ fraction of the transmis-
sions were corrupted. This definition extends easily to list

decoding by allowing both parties to produce a small (con-
stant size) list of transcripts that is required to include the
correct decoding, i.e., the transcript of Π. We note that the
simulation Π′ typically uses a larger alphabet and a larger
number of rounds. While our upper bounds are all determin-
istic, we strengthen the scope of our lower bounds by also
considering randomized protocols in which both parties have
access to independent private randomness. We also consider
the setting of [9] in which both parties have access to shared
randomness. In both cases we assume that the adversary
does not know the randomness and we say a randomized
protocol robustly simulates a protocol Π with failure proba-
bility p if, for any input and any adversary, the probability
that both parties correctly (list) decode is at least 1− p.

We now present the notion of an adaptive protocol. Defin-
ing a formal model for adaptivity leads to several subtle is-
sues. We define the model first and discuss the issues later.

In an adaptive protocol, the communicating players are
allowed to base their decision on whether to transmit or
listen (probabilistically) on the communication history. In
particular, this allows players to base their decision on es-
timates of the amount of errors that have happened so far
(see Section 3.1 for why this kind of adaptivity is a natu-
ral and useful approach). This can lead to rounds in which
both parties transmit or listen simultaneously. In the first
case no symbols are delivered while in the latter case the
symbols received by the two listening parties are chosen by
the adversary, without it being counted as an error.

Discussion on the adaptivity model: It was shown in
[7] that protocols which under no circumstances have both
parties transmit or listen simultaneously are necessarily non-
adaptive. Any model for adaptivity must therefore allow
parties to simultaneously transmit or listen and specify what
happens in either case. Doing this and also deciding on how
to measure the amount of communication and the number
of errors leads to several subtle issues.

While it seems pessimistic to assume that the symbols
received by two simultaneously listening parties are deter-
mined by the adversary, this is a crucial assumption. If,
e.g., a listening party could find out without doubt whether
the other party transmitted or listened by receiving silence
in the latter case, then uncorrupted communication could
be arranged by simply using the listen/transmit state as an
incorruptible one-bit communication channel. More subtle
points arise when considering how to define the quantity
of communication on which the adversaries budget of cor-
ruptions is based. The number of transmissions performed
by the communicating parties, for example, seems like a
good choice. This however would make the adversaries bud-
get a variable (possibly probabilistic) quantity that, even
worse, non-trivially depends on when and how this budgets
is spent1. It would moreover allow parties to time-code, that
is, encode a large number (even an encoding of all answers
to all possible queries) in the time between two transmis-
sions. While time-coding strategies do not seem to lead to
efficient algorithms they would prevent strong lower bounds
which show that even over an unbounded number of rounds
no meaningful communication is possible (see, e.g., Theo-
rem 3.2 which proves exactly this for an error rate of 2/7).

Our model avoids all these complications. For non-adaptive
protocols that perfectly coordinate a designated sender and
receiver in each round our model matches the standard set-
ting. For the necessary case that adaptive parties fail to co-

1See [1] for an independent work exploring this direction.



ordinate our model prevents any signaling or time-sharing
capabilities and in fact precludes any information exchange.
This matches the intuition that in a conversation no advan-
tage can be derived from both parties speaking or listening
at the same time. It also guarantees that the product be-
tween the number of rounds and the bit-size of the commu-
nication alphabet is a clean and tight information theoretic
upper bound on the total amount of information or entropy
that can be exchanged (in either direction) between the two
parties. This makes the number of rounds the perfect quan-
tity to base the adversaries budget on. All this makes our
model, in hindsight, the arguably cleanest and most natu-
ral extension of the standard setting to adaptive protocols.
The strongest argument for our model however is the fact
that it allows to prove both strong and natural positive and
negative results, implying that our model does not overly
restrict or empower the protocols or the adversary.

3. OVERVIEW
In this section we state our results and explain the high

level ideas and insights behind them.

3.1 Adaptivity
A major contribution of this paper is to show that adap-

tive protocols can tolerate more than the 1/4 error rate of
the non-adaptive setting:

Theorem 3.1. Suppose Π is an n-round protocol over a
constant bit-size alphabet. For any ε > 0, there is a deter-
ministic computationally efficient protocol Π′ that robustly
simulates Π for an error rate of 2/7− ε using O(n) rounds
and an O(n)-bit size alphabet.

The proof is given in Section 5. Section 6 of the full ver-
sion [11] shows that the same error rate can be tolerated
with a constant size alphabet but O(n2) rounds.

Furthermore, in Section 4.2, we show a matching impos-
sibility result which even applies to the arguably simplest
interactive protocol, namely, the Exchange Protocol. In the
Exchange Protocol each party gets a one bit input which it
has to communicate to the other party.

Theorem 3.2. There is no (deterministic or randomized)
protocol that robustly simulates the Exchange Protocol for an
error rate of 2/7 with an o(1) failure probability even when
allowing computationally unbounded protocols that use arbi-
trarily large number of rounds and an unbounded alphabet.

Why Adaptivity is Natural and Helpful: Next, we
explain why it should not be surprising that adaptivity leads
to a higher robustness. We also give some insights for why
the 2/7 error rate is the natural noise tolerance threshold
for adaptive protocols.

It is helpful to first understand why the 1/4 error rate was
thought of as a natural barrier. The intuitive argument, pre-
sented in [7], for why one should not be able to cope with
an error rate of 1/4 is as follows: During any N round in-
teraction one of the parties, w.l.o.g. Alice, is the designated
sender for at most half of the rounds. With an error rate
of 1/4 the adversary can corrupt half of the symbols Alice
sends out. This makes it impossible for Alice to (reliably)
deliver even a single bit x because the adversary can always
make the first half of her transmissions consistent with x = 0
and the second half with x = 1 without Bob being able to
know which of the two is real and which is corrupted.

While this intuition is quite convincing at the first glance,
it silently assumes that it is a priori clear which of the two
parties transmits less often. This in turn essentially only
holds for non-adaptive protocols for which the above argu-
ment can also be made into a formal negative result [7, Claim
10]. On the other hand, we show that assuming this a pri-
ori knowledge is not just a minor technical assumption but
indeed a highly nontrivial restriction which is violated in
many natural settings of interaction. For example, imagine
a telephone conversation on a connection that is bad/noisy
in one direction. One person, say Alice, clearly understands
Bob while whatever Alice says contains so much noise that
Bob has a hard time understanding it. In a non-adaptive
conversation, Bob would continue to talk half of the time
(even though he has nothing to say given the lack of un-
derstandable responses from Alice) while Alice continues to
talk little enough that she can be completely out-noised.
This is of course not how it would go in real life. There,
Bob would listen more in trying to understand Alice and by
doing this give Alice the opportunity to talk more. As soon
as this happens, the adversary cannot completely out-noise
Alice anymore and the conversation will be able to progress.
Similar dynamic rate adaptation mechanisms that adapt the
bitrate of a sender to channel conditions and the communi-
cation needs of other senders are common in many systems,
a prominent example being IEEE 802.11 wireless networks.

Even if one is convinced that adaptive algorithms should
be able to beat the 1/4 error rate, it is less clear at this
point what the maximum tolerable error rate should be. In
particular, 2/7 seems like a quite peculiar bound. Next,
without going into details of the proofs, we want to give at
least some insight why 2/7 is arguably the right and natural
error rate for the adaptive setting.

We first give an intuitive argument why even adaptive
protocols cannot deal with an error rate of 1/3. For this,
the adversary runs the same strategy as above which con-
centrates all errors on one party only. In particular, given a
3N rounds conversation and a budget of N corruptions, the
adversary picks one party, say Alice, and makes her first N
transmissions sound like as if her input is x = 1. The next N
transmissions are made to sound like Alice has input x = 0.
During the first N responses, regardless of whether x = 1
(resulting in Alice talking herself) or x = 0 (resulting in
the adversary imitating the same transmissions), the whole
conversation will sound legitimate. This prevents any rate
adaptation, in this case on Bob’s side, to kick in before 2N
rounds of back and forth have passed. Only then it becomes
apparent to the receiver of the corruptions, in this case Bob,
that the adversary is trying to fool him. Knowing that the
adversary will only try to fool one party, Bob can then stop
talking and listen to Alice for the rest of the conversation.
Still, even if Bob listens exclusively from this point on, there
are only N rounds left which is just enough for all of them
to be corrupted. Having received N transmission from Al-
ice claiming x = 1 and equally many claiming x = 0, Bob
is again left puzzled. This essentially proves the impossi-
bility of tolerating an error rate of 1/3. But even this 1/3
error rate is not achievable. To explain why even a lower
fraction of errors, namely 2/7, leads to a negative result, we
remark that the radical immediate back-off we just assumed
for Bob is not possible. The reason is that if both parties are
so sensitive and radical in their adjustment, the adversary
can fool both parties simultaneously by simply corrupting
a few transmissions of both parties after round 2N . This
would lead to both parties assuming that the transmissions



of the other side are being corrupted. The result would be
both parties being silent simultaneously which wast es valu-
able communication rounds. Choosing the optimal tradeoff
for how swift and strong protocols are able to adaptively re-
act without falling into this trap naturally leads to an error
rate between 1/4 and 1/3, and what rate in this range could
be more natural than the mediant 2/7.

3.2 Other Settings
We also give results on other settings that have been sug-

gested in the literature, in particular, list decoding and the
shared randomness setting of [9]. We briefly describe these
results next.

Franklin et al. [9] showed that if both parties share some
random string not known to the adversary, then non-adaptive
protocols can boost the tolerable error rate from 1/4 to 1/2.
We show that also in this setting adaptivity helps to in-
crease the tolerable error rate. In particular, in Section 7 of
the full version[11], we prove that an error rate of 2/3− ε is
achievable and best possible:

Theorem 3.3. In the shared randomness setting of [9],
there exists a efficient robust coding scheme for an error
rate of 2/3 − ε while no such scheme exists for an error
rate of 2/3. That is, the equivalents of Theorem 3.1 and
Theorem 3.2 hold for an error rate of 2/3. The number
of rounds of the robust coding scheme can furthermore be
reduced to O(n) if one allows exponential time computations.

We also give the first results for list decodable coding
schemes (see Section 2 for their definition). The notion of
list decodability has been a somewhat recent but already
widely successful addition to the study of error correcting
codes. It is known that for error correcting codes such a
relaxation leads to being able to efficiently [13] tolerate any
constant error rate below 1, which is a factor of two higher
than the 1/2 − ε error rate achievable with unique decod-
ing. It has been an open question whether list decoding can
also lead to higher tolerable error rates in interactive cod-
ing schemes (see [4, Open Problem 9] and [7, Conclusion]).
We show that this is indeed the case. In particular, for the
non-adaptive setting the full factor of two improvement can
also be realized in the interactive setting:

Theorem 3.4. Suppose Π is an n-round protocol over a
constant-bit size alphabet. For any ε > 0 there is an O(1)-
list decodable non-adaptive deterministic computationally-
efficient protocol Π′ that robustly simulates Π for an error
rate of 1/2 − ε using O(n) rounds and an O(n)-bit size al-
phabet.

The proof of this theorem is presented in Section 5.2 and
its extension to the constant alphabet size setting can be
found in Section 6 of the full version [11]. We note that a
subsequent but independent work by Braverman and Efre-
menko [6] also gave a list decodable coding scheme with the
same tolerable error rate. Lastly, we show that this 1/2− ε
error rate is best possible even for adaptive coding schemes.
That is, no adaptive or non-adaptive coding scheme can
achieve an error rate of 1/2. We prove these impossibility
results formally in Appendix D of the full version[11].

Taken together, our results provide tight negative and
matching positive results for any of the eight interactive cod-
ing settings given by the three Boolean attributes, {unique
decoding / list decoding}, {adaptive / non-adaptive}, and
{without shared randomness / with shared randomness} (at

least when allowing a linear size alphabet or quadratic num-
ber of rounds in the simulation). Table 1 shows the maxi-
mum tolerable error rate for each of these settings:

Unique Dec. (UD) UD & shared rand.
Non-adaptive 1/4 ([7] ) 1/2 ([9] )
Adaptive 2/7 2/3

List Dec. (LD) LD & shared rand.
Non-adaptive 1/2 1/2
Adaptive 1/2 2/3

Table 1: Unless marked with a citation all results
in this table are new and presented in this paper.
Matching positive and negative results for each set-
ting show that the error rates are tight.

3.3 Invariability Hypothesis
In this section, we take a step back and propose a general

way to understand the tolerable error rates specific to each
setting and to design interactive coding schemes achieving
them. We first formulate a strong working hypothesis which
postulates that tolerable error rates are invariable regard-
less of what communication and computational resources
are given to the protocol and to the adversary. We then
use this hypothesis to determine the tight tolerable error
rate for any setting by looking at the simplest setup. Fi-
nally, we show how the insights coming from these simpler
setups can lead to designs for intuitive, natural, and easily
analyzable interactive coding schemes for the general setup.

Invariability Hypothesis: In this section we formulate
our invariability hypothesis.

Surveying the literature for what error rates could be tol-
erated by different interactive coding schemes, the maxi-
mum tolerable error rate appears to vary widely depending
on the setting and more importantly, depending on what
kind of efficiency one strives for. For example, even for the
standard setting—that is, for non-adaptive unique decoding
coding schemes using a large alphabet—the following error
rates apply: for unbounded (or exponential time) compu-
tations, Schulman [12] tolerates a 1/240 error rate; Braver-
man and Rao [7] improved this to 1/4; for sub-exponential
time computations, Braverman [5] gave a scheme working
for any error rate below 1/40; for randomized polynomial
time algorithms, Brakerski and Kalai [2] got an error rate
of 1/16; for randomized linear time computations, Braker-
ski and Naor [3] obtained an unspecified constant error rate
smaller than 1/32; lastly, assuming polynomially bounded
protocols and adversaries and using a super-linear number
of rounds, Chung et al. [8] gave coding schemes tolerating
an error rate of 1/6 (with additional desirable properties).

We believe that this variety is an artifact of the current
state of knowledge rather then being the essential truth. In
fact, it appears that any setting comes with one tolerable er-
ror rate which exhibits a strong threshold behavior: For any
setting, there seems to be one error rate for which commu-
nication is impossible regardless of the resources available,
while for error rates only minimally below it simple and
efficient coding schemes exist. In short, the tolerable er-
ror rate for a setting seems robust and completely indepen-
dent communication resource or computational complexity
restrictions made to the protocols or to the adversary.



Taking this observation as a serious working hypothesis
was a driving force in obtaining, understanding, and struc-
turing the results obtained in this work. As we will show,
it helped to identify the simplest setup for determining the
tolerable error rate of a setting, served as a good pointer
to open questions, and helped in the design of new, simple,
and natural coding schemes. We believe that these insights
and schemes will be helpful in future research to obtain the
optimal, and efficient coding schemes postulated to exist. In
fact, we already have a number of subsequent works confirm-
ing this (e.g., the results of [5, 2, 8] mentioned above can all
be extended to have the optimal 1/4 error rate). All in all,
we believe that identifying and formulating this hypothesis
is an important conceptual contribution of this work:

Hypothesis 3.5 (Invariability Hypothesis). Given
any of the eight settings for interactive communication (dis-
cussed above) the maximum tolerable error rates is invariable
regardless:

1. whether the protocol to be simulated is an arbitrary n-
round protocol or the much simpler (n-bit) exchange
protocol, and

2. whether only O(1)-bit size alphabets are allowed or al-
phabets of arbitrary size, and

3. whether the simulation has to run in O(n) rounds or
is allowed to use an arbitrary number of rounds, and

4. whether the parties are restricted to polynomial time
computations or are computationally unbounded, and

5. whether the coding schemes have to be deterministic or
are allowed to use private randomness (even when only
requiring an o(1) failure probability), and

6. whether the adversary is computationally unbounded or
is polynomially bounded in its computations (allowing
simulation access to the coding scheme if the coding
scheme is not computationally bounded)

We note that our negative results are already as strong
as stipulated by the hypothesis, for all eight settings. The
next corollary furthermore summarizes how far these nega-
tive results combined with the positive results presented in
this work (see Table 1) already imply and prove two weaker
versions of the hypothesis:

Corollary 3.6. The Invariability Hypothesis holds if one
weakens point 3. to “3’. whether only O(n)-bit size alphabets
are allowed or alphabets of arbitrary size”. The Invariability
Hypothesis also holds if one weakens point 4. to “4’. whether
the simulation has to run in O(n2) rounds or is allowed to
use an arbitrary number of rounds”.

We also refer the reader to [10, 6] for further (subsequent)
results supporting the hypothesis, such as, a proof that the
hypothesis holds if either point 5. or point 6. are omitted.

Understanding Tolerable Error Rates: Next, we ex-
plain how we use the invariability hypothesis to find and
understand optimal tolerable error rates.

Suppose that one assumes, as a working hypothesis, the
invariability of tolerable error rates to hold regardless of the
computational setup and even the structure of the proto-
col to be simulated. Under this premise, the easiest way
to approach determining the best error rate is in trying to
design robust simulations for the simplest possible two-way
protocol, the Exchange Protocol. This protocol simply gives
each party n bits as an input and has both parties learn
the other party’s input bits by exchanging them (see also
Section 4). Studying this setup is considerably simpler. For

instance, for non-adaptive protocols, it is easy to see that
both parties sending their input in an error correcting code
(or for n = 1 simply repeating their input bit) leads to the
optimal robust protocol which tolerates any error rate below
1/4 but not more. The same coding scheme with applying
any ECC list decoder in the end also gives the tight 1/2
bound for list decoding. For adaptive protocols (both with
and without shared randomness), finding the optimal ro-
bust 1-bit exchange protocol was less trivial but clearly still
better than trying to design highly efficient coding schemes
for general protocols right away. Interestingly, looking at
simpler setup actually crystallized out well what can and
cannot be done with adaptivity, and why. These insights,
on the one hand, lead to the strong lower bounds for the
exchange problem but, on the other hand, were also trans-
lated in a crucial manner to the same tradeoffs for robustly
simulating general n-round protocols.

Natural Interactive Coding Schemes: The invariability
working hypothesis was also helpful in finding and formaliz-
ing simple and natural designs for obtaining robust coding
schemes for general protocols.

Before describing these natural coding schemes we first
discuss the element of “surprise/magic” in prior works on
interactive coding. The existence of an interactive coding
scheme that tolerates a constant error rate is a fairly sur-
prising outcome of the prior works, and remains so even in
hindsight. One reason for this is that the simplest way of
adding redundancy to a conversation, namely encoding each
message via an error correcting code, fails dramatically be-
cause the adversary can use its budget non-uniformly and
corrupt the first message(s) completely. This derails the in-
teraction completely and makes all further exchanges useless
even if no corruptions happens from there on. While prior
works, such as [12] or [7], manage to overcome this ma-
jor challenge, their solution remains a technically intriguing
works, both in terms of the ingredients they involve (tree
codes, whose existence is again a surprising event) and the
recipe for converting the ingredients into a solution to the
interactive coding problem. As a result it would appear that
the challenge of dealing with errors in interactive communi-
cation is an inherently complex task.

In contrast to this, we aim to give an intuitive and natural
strategy which lends itself nicely to a simple explanation
for the possibility of robust interactive coding schemes and
even for why their tolerable error rates are as they are. This
strategy simply asserts that if there is no hope to fully trust
messages exchanged before, one should find ways to put any
response into the assumed common context by (efficiently)
referring back to what one said before. Putting this idea into
a high-level semi-algorithmic description gives the following
outline for a robust conversation:

At first glance the algorithm may appear vague. In par-
ticular notions like “making sense”, and “most relevant re-
sponse”, seem ambiguous and subject to interpretation. It
turns out that this is not the case. In fact, formalizing
this outline into a concrete coding scheme turns out to be
straightforward. This is true specially if one accepts the in-
variability working hypothesis and allows oneself to not be
overly concerned with immediately getting a highly efficient
implementation. This permits to use the simplest (ineffi-
ciently) summary, namely referring back word by word to
everything said before. This straightforward formalization
leads to Algorithm 2. Indeed, a reader that compares the
two algorithms side-by-side will find that Algorithm 2 is es-
sentially a line-by-line formalization of Algorithm 1.



Algorithm 1 Natural Strategy for a Robust Conversation
(Alice’s Side)

1: Assume nothing about the context of the conversation
2: loop
3: Listen
4: E′

B ← What you heard Bob say last (or so far)
5: EA ← What you said last (or so far)
6: if EA and E′

B makes sense together then
7: Determine the most relevant response r
8: Send the response r but also include an (efficient) sum-

mary of what you said so far (EA)
9: else

10: Repeat what you said last (EA)

11: Assume / Output the conversation outcome(s) that seem
most likely

In addition to being arguably natural, Algorithm 2 is also
easy to analyze. Simple counting arguments show that the
conversation outcome output by most parties is correct if
the adversary interferes at most a 1/4 − ε fraction of the
time, proving the tight tolerable error rate for the robust
(while somewhat still inefficient) simulation of general n-
round protocols. Maybe even more surprisingly, the exact
same simple counting argument also directly shows our list
decoding result, namely, that even with an error rate of 1/2−
ε the correct conversation outcome is among the 1/ε most
likely choices for both parties. Lastly, it is easy to enhance
both Algorithm 1 and similarly Algorithm 2 to be adaptive.
For this one simply adds the following three, almost obvious,
rules for a succesful adaptive conversation:

Rules 3.7. Be fair and take turns talking and lis-
tening, unless:

1. you are sure that your conversation partner al-
ready understood you fully and correctly, in which
case you should stop talking and instead listen
more to also understand him; or reversely

2. you are sure that you already understood your
conversation partner fully and correctly, in which
case you should stop listening and instead talk
more to also inform him.

Our algorithm Algorithm 3 exactly adds the formal equiv-
alent of these rules to Algorithm 3. A relatively simple proof
that draws on the insights obtained from analyzing the op-
timal robust exchange protocol then shows that this sim-
ple and natural coding scheme indeed achieves the optimal
2/7 − ε tolerable error rate for adaptive unique-decoding.
This means that Algorithm 3 is one intuitive and natural
algorithm that simultaneously achieves the 1/4 error rate
(if the adaptivity rules are ignored), the 2/7 − ε error rate
for adaptive protocols and the 1/2 − ε error rate with op-
timal list size when list decoding is allowed. Of course, so
far, this result comes with the drawback of using a large
(O(n)-bits) alphabet. Nonetheless, this result together with
the invariability hypothesis hold open the promise of such
a “perfect” algorithm that works even without the drastic
communication overhead. Subsequent works have achieved
this for algorithms using randomization or doing exponential
computations [10, 6].

4. RESULTS FOR THE EXCHANGE PROB.
Here we study the Exchange Problem, which can be viewed

as the simplest instance of a two-way (i.e., interactive) com-
munication problem. In the Exchange Problem, each party

is given a bit-string of n bits, that is, iA, iB ∈ {0, 1}n, and
each party wants to know the bit-string of the other party.

Recall that the 1/4 impossibility bound on tolerable error-
rate for non-adaptive interactive protocols presented by Braver-
man and Rao [7] is this simple setting. In Section 4.1, we
show that adding rate adaptivity to the exchange algorithms
helps one break this 1/4 impossiblity bound and tolerate an
error-rate of 2/7−ε, and in fact, this is done with a minimal
amount of adaptivity-based decisions regarding whether a
party should transmit or listen in each round. We show in
Section 4.2 that the error-rate of 2/7 is not tolerable even for
the exchange problem, even if one is given infinite number of
rounds, alphabet size, and computational power. Further-
more, the intuition used to achieve the 2/7 − ε possibility
result also extends to the more general simulation problem,
discussed in Section 5.

4.1 Exchange with an Error-Rate of 2/7− ε
Note that a simple solution based on error correcting codes

suffices for solving exchange problem under error-rate 1
4
− ε:

parties use a code with relative distance 1 − ε. In the first
half of the time, Alice sends its encoded message and in the
second half of the time, Bob sends its encoded message. At
the end, each party decodes simply by picking the codeword
closest to the received string. As discussed before, the error
rate 1

4
− ε of this approach is the best possible if no rate

adaptation is used. In the following, we explain that a simple
rate adaptation technique boosts the tolerable error-rate to
2
7
− ε, which we later prove to be optimal.

Theorem 4.1. In the private randomness model with rate
adaptation, there is an algorithm for the n-bit Exchange
Problem that tolerates adversarial error rate of 2/7 − ε ≈
0.2857− ε for any ε > 0.

Proof. The algorithm runs in N = 7n/ε rounds, which
means that the budget of adversary is (2/7−ε)7n/ε = 2n/ε−
7. Throughout the algorithm, we use an error-correction
code C : {0, 1}n → {1, . . . , q}

n
ε that has distance n

ε
− 1.

Also, for simplicity, we use Cκ to denote the code formed by
concatenating κ copies of C.

The first 6N/7 rounds of the algorithm do not use any rate
adaptation: Simply, Alice sends C3(iA) in the first 3N/7
rounds and Bob sends C3(iB) in the second 3N/7 rounds.
At the end of this part, each party “estimates” the errors
invested on the transmissions of the other party by simply
reading the hamming distance of the received string to the
closest codeword of code C3. If this estimate is less than
N/7 = n/ε, the party—say Alice—can safely assume that
the closest codeword is the correct codeword. This is be-
cause the adversary’s total budget is 2n/ε − 7 and the dis-
tance between two codewords of C3(iB) is at least 3n/ε− 3.
In this case, in the remaining N/7 rounds of the algorithm,
Alice will be sending C(iA) and never listening. On the
other hand, if Alice reads an estimated error greater than
N/7 = n/ε, then in the remaining N/7 rounds, she will be
always listening. The algorithm for Bob is similar.

Because of the limit on the budget of the adversary, at
most only one of the parties will be listening in the last N/7
rounds. Suppose that there is exactly one listening party and
it is Alice. Then, throughout the whole algorithm, Alice has
listened a total of 4N/7 = 4n/ε rounds where Bob has been
sending C4(iB). Since the adversaries budget is less than
2n/ε− 7, and because C4 has distance 4n

ε
− 4, Alice can also

decode correctly by just picking the codeword of C4 with the
smallest hamming distance to the received string.
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Figure 1: The adversary’s strategy for the 1/3-
impossibility proof

4.2 Impossibility of Tolerating Error-Rate 2/7

In this section, we turn our attention to impossibility re-
sults and particularly prove that the error-rate 2/7 is not
tolerable. See the formal statement in Theorem 3.2.

Braverman and Rao [7] showed that it is not possible to
tolerate error-rate of 1/4 with non-adaptive algorithms. For
completeness, a (slightly more formal) proof in the style of
distributed indistinguishably arguments is presented in the
full version[11], which also covers random algorithms.

We first explain a simple (but informal) argument which
shows that even with adaptivity, error-rate 1/3 is not tol-
erable. A formal version of this proof appears in the full
version[11]. The informal version explained next serves as a
warm up for the more complex argument used for proving
the 2/7 impossibility, presented formally in Theorem 4.3.

Lemma 4.2. There is no (deterministic or randomized)
adaptive protocol that robustly simulates the Exchange Pro-
tocol for an error rate of 1/3 with failure probability o(1),
even when allowing computationally unbounded protocols with
arbitrarily large number of rounds and unbounded alphabet.

Proof. To simplify the discussion, here we only explain
the argument for deterministic algorithms and we also ig-
nore the rounds in which both parties listen. Note that by
definition of the model, in those all-listening rounds, the ad-
versary can deliver arbitrary messages to each of the parties
at no cost. A complete proof appears in the full version[11].

For the sake of contradiction, suppose that there is an al-
gorithm that solves the exchange problem under adversarial
error-rate 1/3, in N rounds. We work simply with 1-bit in-
puts. Let SX,Y denote the setting where Alice receives input
X and Bob gets input Y . The idea is to make either settings
S0,0 and S0,1 look indistinguishable to Alice or settings S0,0

and S1,0 look indistinguishable to Bob.
Consider setting S0,0 and suppose that for the first 2N/3

rounds, the adversary does not interfere. Without loss of
generality, we can assume that in this setting, Alice listens
(alone) in less than N/3 of these 2N/3 rounds. We next ex-
plain adversary’s strategy for the case that this assumption
holds. An pictorial illustration is presented in Figure 1.

First, we explain the adversary’s strategy for setting S0,1:

Adversary creates a dummy personality B̃ob0 and simulates
it with Alice in setting S0,0 where adversary does not inter-
fere. In the first 2N/3 rounds of setting S0,1, whenever Alice

listens (alone), the adversary delivers transmission of B̃ob0
to Alice. As a shorthand for this, we say Alice is connected

to B̃ob0. Since Alice listens less than N/3 of the time, the
adversary will have enough budget to completely fake Bob as

B̃ob0 (from Alice’s viewpoint). Thus, the two settings look
identical to Alice for the first 2N/3 rounds. During the last
N/3 rounds of the execution in setting S0,1, the adversary
lets Alice and the real Bob talk without no interference.

Now, we explain the adversary’s strategy for setting S0,0:

The adversary generates another dummy personality B̃ob1
by simulating Bob in setting S0,1 where alone-listening rounds

of Alice in the first 2N/3 rounds are connected to B̃ob0. In
setting S0,0, the adversary lets Alice and Bob talk freely
during the first 2N/3 rounds but for the last N/3 rounds,

whenever Alice listens, the adversary connects her to B̃ob1.
To conclude, in each of the settings S0,1 and S1,0 at most

N/3 rounds get corrupted by the adversary. Furthermore,
the two settings look identical to Alice. This means she
cannot know Bob’s input, which completes the proof.

Theorem 4.3. [A rephrasing of Theorem 3.2] There is
no (deterministic or randomized) adaptive protocol that ro-
bustly simulates the Exchange Protocol for an error rate of
2/7 with an o(1) failure probability even when allowing com-
putationally unbounded protocols that use an arbitrarily large
number of rounds and an unbounded alphabet.

Proof. Suppose that there is an algorithm that solves
the exchange problem under adversarial error-rate 1/3, in N
rounds. We study this algorithm simply with 1-bit inputs.
Let SX,Y denote the setting where Alice receives input X
and Bob gets input Y . We focus on settings S0,0, S0,1, and
S1,0. If a party has an input 1, it knows in which of these
three settings we are. The idea is to present an adversarial
strategy that changes the receptions of the party, or parties,
that have a 0 input so as to make that party, or parties,
unable to distinguish (between two of) the settings.

For simplicity, we first assume that the algorithm is deter-
ministic and we also ignore the rounds where both parties
listen. Note that by the definition of the model for adaptive
algorithms (see Section 2), for these rounds, the adversary
can deliver arbitrary messages to the parties at no cost.

For this lower bound, we need to define the party that
becomes the base of indistinguishability (whom we confuse
by errors) in a more dynamic way, compared to that in The-
orem 4.2 or in [7, Claim 10]. For this purpose, we first study
the parties that have input 0 under a particular pattern of
received messages (regardless of the setting in which they
are), without considering whether the adversary has enough
budget to create this pattern or not. Later, we argue that
the adversary indeed has enough budget to create this pat-
tern for at least one party and make that party confused.

To determine what should be delivered to each party with

input 0, the adversary cultivates dummy personalities Ãlice0,

Ãlice1, B̃ob0, B̃ob1, by simulating Alice or Bob respectively
in settings S0,0, S1,0, S0,0, and S0,1, where each of these
settings is modified by adversarial interferences (to be spec-
ified). Later, when we say that in a given round, e.g. “the

adversary connects dummy personality B̃ob1 to Alice”, we

mean that the adversary delivers the transmission of B̃ob1
in that round to Alice2. For each setting, the adversary
uses one method of interferences, and thus, when we refer
to a setting, we always mean the setting with the related
adversarial interferences included.

2This is assuming B̃ob1 transmits in that round, we later

discuss the case where both Alice and B̃ob1 listen later.



We now explain the said pattern of received messages.
Suppose that Alice has input 0 and consider her in settings
S0,0 and S0,1, as a priori these two settings are identical to
Alice. Using connections to dummy personalities, the adver-
sary creates the following pattern: In the first 2N/7 rounds
in which Alice listens alone, her receptions will be made to
imply that Bob also has a 0. This happens with no adversar-
ial interference in setting S0,0, but it is enforced to happen
in setting S0,1 by the adversary via connecting to Alice the

dummy personality B̃ob0 cultivated in setting S0,0. Thus,
at the end of those 2N/7 listening-alone rounds of Alice, the
two settings are indistinguishable to Alice. In the rest of
the rounds where Alice listens alone, the receptions will be
made to look as if Bob has a 1. That is, the adversary leaves
those rounds of setting S0,1 intact, but in rounds of setting
S0,0 in which Alice listens alone, the adversary connects to

Alice the dummy personality B̃ob1 cultivated in setting S0,1

(with the adversarial behavior described above). The ad-
versary creates a similar pattern of receptions for Bob in
settings S0,0 and S1,0. That is, the first 2N/7 of his alone
receptions are made to imply that Alice has a 0 but the
later alone-receptions imply that Alice has a 1. The de-
scribed reception pattens make Alice unable to distinguish
S0,0 from S0,1 and also they make Bob unable to distinguish
S0,0 from S1,0. However, the above discussions ignore the
adversary’s budget. We now argue that the adversary in-
deed has enough budget to create this reception pattern to
confuse one or both of the parties.

Let xA be the total number of rounds where Alice lis-
tens, when she has input 0 and her receptions follow the
above pattern. Similarly, define xB for Bob. If xA ≤ 4N/7,
then the adversary indeed has enough budget to make the
receptions of Alice in settings S0,0 and S0,1 follow the dis-
cussed behavior, where the first 2N/7 alone-receptions of
Alice are altered in S0,1 and the remaining alone-receptions
are altered in S0,0. Thus, if xA ≤ 4N/7, the adversary has a
legitimate strategy to make Alice confused between S0,0 and
S0,1. A similar statement is true about Bob: if xB ≤ 4N/7,
the adversary has a legitimate strategy to make Bob con-
fused between S0,0 and S0,1.

Suppose that xA > 4N/7 and xB > 4N/7. Then, the
number of alone-receptions of Alice is at most xA − (xA +
xB − N) = N − xB ≤ 3N/7 and similarly, the number of
alone-receptions of Bob is at most xB − (xA + xB − N) =
N − xA ≤ 3N/7. This is because xA + xB − N is a lower
bound on the overlap of the rounds that the two parties
listen. In this case, the adversary has enough budget to
simultaneously confuse both Alice and Bob of setting S0,0;
Alice will be confused between S0,0 and S0,1 and Bob will
be confused between S0,0 and S1,0. For that, in setting S0,0,
the adversary leaves the first 2N/7 alone-receptions of each
party intact but alters the remaining at most N/7 alone-
receptions of each party, for a total of at most 2N/7 errors.
On the other hand, in setting S0,1, 2N/7 errors are used on
the first 2N/7 alone-receptions of Alice and in setting S1,0,
2N/7 errors are used on the first 2N/7 alone-receptions of
Bob. Note that these errors make the receptions of each
party that has input 0 follow the pattern explained above.

We now go back to the issue of the rounds where both par-
ties listen. The rounds of S0,0 in which both parties listen
are treated as follows: The adversary delivers the transmis-

sion of B̃ob1 (cultivated in setting S0,1) to Alice and deliv-

ers the transmission of Ãlice1 (cultivated in setting S1,0) to
Bob. Recall that the adversary does not pay for these in-

terferences. Furthermore, note that these connections make
sure that these all-listening rounds do not help Alice to dis-
tinguish S0,0 from S0,1 and also they do not help Bob to
distinguish S0,0 from S1,0.

Finally, we turn to covering the randomized algorithms.
Note that for this case we only show that the failure prob-
ability of the algorithm is not o(1) as just by guessing ran-
domly, the two parties can have success probability of 1/4.

First suppose that Pr[xA ≤ 4N/7] ≥ 1/3. Note that the
adversary can easily compute this probability, or even sim-
pler just get a (1 + o(1))-factor estimation of it. If Pr[xA ≤
4N/7] ≥ 1/3, then the adversary will hedge his bets on that
xA ≤ 4N/7, and thus, it will try to confuse Alice. In partic-
ular, he gives Alice an input 0 and tosses a coin and gives
Bob a 0 or a 1, accordingly. Regarding whether Bob gets
input 0 or 1, the adversary also uses the dummy person-

alities B̃ob0 and B̃ob1, respectively. With probability 1/3,
we will have that in fact xA ≤ 4N/7, and in this case the
adversary by determining whether Alice hears from the real
Bob or the dummy Bob, the adversary makes Alice receive
the messages with the pattern described above. This means
Alice would not know whether Bob has a 0 or a 1. Hence,
the algorithm fails with probability at least 1/6 (Alice can
still guess in this case which is correct with probability 1/2).
Similarly, if Pr[xB ≤ 4N/7] ≥ 1/3, then adversary will make
Bob confused between S0,0 and S1,0. On the other hand, if
Pr[xA ≤ 4N/7] < 1/3 and Pr[xB ≤ 4N/7] < 1/3, then just
using a union bound we know that Pr[xA > 4N/7&xB >
4N/7] ≥ 1/3. In this case, the adversary gambles on the
assumption that it will actually happen that xA > 4N/7
and xB > 4N/7. This assumption happens with probability
at least 1/3, and in that case, the adversary makes Alice
confused between S0,0 and S0,1 and Bob confused between
S0,0 and S1,0, simultaneously, using the approach described
above. Hence, in conclusion, in any of the cases regarding
random variables xA and xB , the adversary can make the
algorithm fail with probability at least 1/6.

5. NATURAL INTERACTIVE CODING
We start by presenting a canonical format for interactive

communication and then present our natural non-adaptive
and adaptive coding schemes.

5.1 Interactive Protocols in Canonical Form
We consider the following canonical form of an n-round

two party protocol over alphabet Σ: We call the two par-
ties Alice and Bob. To define the protocol between them,
we take a rooted complete |Σ|-ary tree of depths n. Each
non-leaf node has |Σ| edges to its children, each labeled with
a distinct symbol from Σ. For each node, one of the edges
towards children is preferred, and these preferred edges de-
termine a unique leaf or equivalently a unique path from the
root to a leaf. We say that the set X of the preferred edges
at odd levels of the tree is owned by Alice and the set Y
of the preferred edges at even levels is owned by Bob. This
means that at the beginning of the protocol, Alice gets to
know the preferred edges on the odd levels and Bob gets to
know the preferred edges on the even levels. The knowledge
about these preferred edges is considered as inputs X and
Y given respectively to Alice and Bob. The output of the
protocol is the unique path from the root to a leaf following
only preferred edges. We call this path the common path
and the edges and nodes on this path the common edges
and the common nodes. The goal is to determine the com-



Figure 2: A Canonical Binary Interactive Protocol.
Alice and Bob’s preferred edges are indicated with
blue and red arrows and the common leaf is indi-
cated by a green circle.

mon path and we say a protocol succeeds if and only if both
parties learn the common path.

This is easy if the channel is noiseless: Alice and Bob
simply performing n rounds of communication, by moving
down the tree together following the path of preferred edges.
They take turns and exchange one symbol of Σ per round,
where each symbol indicates the next common node. We
call this exchange the execution of protocol P .

5.2 Natural Non-Adaptive Coding Schemes
In this section, we present a non-adaptive coding scheme

which is a straightforward formalization of the natural ap-
proach presented in Section 3. This coding scheme tolerates
the optimal error rate of 1/4 − ε for unique decoding and
simultaneously the optimal error rate of 1/2 − ε when list
decoding. The coding scheme is simple, intuitive, and com-
putationally efficient, but uses a large O(n

ε
)-bit size alpha-

bet. We note that one can view this algorithm as a simplified
version of the Braverman-Rao scheme [7] in which the use
of tree codes is circumvented by utilizing a larger alphabet.

The algorithm, for which a pseudo code is presented in Al-
gorithm 2, works as follows: In the course of the algorithm,
Alice and Bob respectively maintain sets EA and EB which
are a subset of their own preferred tree edges that are con-
sidered to be important. We call these important edge-sets
or sometimes simple edge-sets. Initially these edge-sets are
empty and in each iteration, Alice and Bob add one edge
to their sets. In each iteration, when a party gets a turn to
transmit, it sends its edge-set to the other party. The other
party receives either the correct edge-set or a corrupted sym-
bol which represents an edge-set made up by the adversary.
In either case, the party combines the received edge-set with
its own important edge-set and follows the common path in
this set. Then, if this common path can be extended by the
party’s own set of preferred edges by a new edge e, the party
adds this edge e to its edge-set, and sends this new edge-set
in the next round. If, on the other hand, the common path
already ends at a leaf, then the party registers this as a vote
for this leaf and simply re-sends its old edge-set. In the
end, both parties simply output the the leaf (respectively
the O(1/ε) leaves) with the most votes for unique decoding
(resp., for list decoding).

Analysis. We now prove that Algorithm 2 indeed achieves
the optimal tolerable error rates for non-adaptive unique
decoding and list decoding.

Theorem 5.1. For any ε > 0, Algorithm 2 is a determin-
istic polynomial time non-adaptive simulator with alphabet
size of O(n

ε
)-bits and round complexity of 2n

ε
that tolerates

an error-rate of 1/4 − ε for unique decoding, and an error-
rate of 1/2− ε for list decoding with list size 1

ε
.

Algorithm 2 Non-Adaptive Coding Scheme for Alice

1: X ← the set of Alice’s preferred edges;
2: EA ← ∅; . EA is Alice’s set of important edges. We

preserve that always EA ⊆ X
3: N ← 2n

ε
;

4: for i = 1 to N do
5: Receive edge-set E′

B ; . E′
B is the received version of

Bob’s important edge-set EB
6: E ← E′

B ∪ EA
7: if E is a valid edgeset then
8: r ← ∅
9: follow the common path in E

10: if the common path ends at a leaf then
11: Add one vote to this leaf
12: else
13: r ← {e} where e is the next edge in X continuing

the common path in E (if any)

14: EA ← EA ∪ r
15: Send EA
16: else
17: Send EA
18: Output the leaf with the most votes for unique decoding
19: Output the O(1/ε) leaves with the most votes for list decod-

ing

Proof. Clearly, both EA and EB grow by at most one
edge per round. Furthermore, the edges always attach to an
already present edge and therefore, each of these edge-sets
always forms a subtree with size at most Nstarting at the
root of the tree of the canonical form, which has depth n.
One can easily see that each such subtree can be encoded
using O(N) bits, e.g., by encoding each edge of the breadth
first search traversal of the subtree using alphabet of size 3
(indicating“left”, “right”or“up”). Hence, parties can encode
their edge-sets using O(n

ε
)-bits symbols, which shows that

the alphabet size is indeed as specified.
We now prove the correctness, starting with that of unique

decoding. Note that any two consecutive rounds in which
Bob and Alice’s transmissions are not corrupted by adver-
sary, one of the following two good things happens: Either
the path in EA ∪EB gets extended by at least one edge, or
both Alice and Bob receive a vote for the correct leaf.

Now suppose that the simulation runs in N = 2n/ε rounds
which can be grouped into n/ε round pairs. Given the error
rate of 1/4−ε, at most a 1/2−2ε fraction of these round pairs
can be corrupted, which leaves N/2(1/2 + 2ε) uncorrupted
round pairs. At most n of these round pairs grow the path
while the remaining N/2(1/2 + 2ε) − n rounds vote for the
correct leaf. This results in at least N(1/2 + 2ε)− dn/2e =
n
2ε

+ 2n− n > N/4 out of N/2 votes being correct.
For the list decoding, with error rate 1/2− ε, we get that

at most 1 − 2ε fraction of round-pairs are corrupted, and
thus at least Nε = 2n uncorrupted pairs exist. Hence, the
correct leaf gets a vote of at least 2n − n. Since the total
number of votes that one party gives to its leaves isN/2 = n

ε
,

the correct leaf has at least a ε fraction of all the votes.
Therefore, if we output the 1/ε leaves with the most votes,
the list will include the correct leaf.

5.3 Natural Adaptive Coding Scheme
In this section we show a simple way to introduce adapta-

tion into the natural coding scheme presented in Algorithm
2. In particular, we use the rules specified in Rules 3.7 and
show that this leads to a coding scheme tolerating an error
rate of 2/7− ε, the optimal error rate for this setting.

We first note that if in Algorithm 2 one party ends up
with a leaf that has more than (2/7 − ε)N votes, it knows



Algorithm 3 Adaptive Coding Scheme for Alice

1: X ← the set of Alice’s preferred edges;
2: EA ← ∅;
3: N ← Θ(n

ε
);

4: for i = 1 to 6
7
N do

5: Receive edge-set E′
B ;

6: E ← E′
B ∪ EA

7: if E is a valid edgeset then
8: r ← ∅
9: follow the common path in E

10: if the common path ends at a leaf then
11: Add one vote to this leaf
12: else
13: r ← {e} where e is the next edge in X continuing

the common path in E (if any)

14: EA ← EA ∪ r
15: Send EA
16: else
17: Send EA
18: Let s be number of votes of the leaf with the most votes
19: Let t be the total number of votes
20: if s ≥ t− N

7
then

21: for i = 1 to N
7

do
22: Send EA
23: else
24: for i = 1 to N

7
do

25: Receive edge-set E′
B ; E = E′

B ∪ EA
26: if E is a valid edge-set then
27: follow the common path in E
28: if the common path ends at a leaf then
29: Add one vote to this leaf
30: Output the leaf with the most votes

that this leaf is the unique correct leaf, since adversary has
only a budget of (2/7 − ε)N . This party would then follow
the second rule. Generalizing this idea, we use the rule that,
if the party has a leaf v such that only at most N

7
votes are

on leaves other than v, then the party can safely assume
that this is the correct leaf. In our proof we show that
this assumption is indeed safe and furthermore, at least one
party can safely decode at the end of the first 6/7 fraction of
the simulation. Since both parties know this in advance, if
a party cannot safely decode after 6/7 fraction of the time,
it knows that the other party has safely decoded—which
corresponds to the condition in the first rule—and thus, this
party only listens for the last 1/7 fraction of the protocol.
The pseudocode is presented in Algorithm 3.

Theorem 5.2. Algorithm 3 is a deterministic adaptive
coding scheme with alphabet size of O(n

ε
)-bits, round com-

plexity of O(n
ε
), and polynomial computational complexity

that tolerates an error-rate of 2/7− ε for unique decoding.

Proof. First, we show that if at the end of 6N
7

rounds,

one party has t votes, s ≥ t−N
7

of which are dedicated to one
leaf v, then this party can safely assume that this leaf v is
the correct leaf. We prove this by contradiction. If the party
has s votes, then there are at least 3N

7
−t that either stopped

the growth of the path or turned an edge-set into a nonvalid
edge-set. Furthermore, if v is not the correct leaf, then the
votes v are created by errors of adversary which means that
adversary has invested s errors on turning the edge-sets sent
by the other party into other valid-looking edge-sets. Hence,
in total, adversary has spent at least 3N

7
− t+ s ≥ 3N

7
− t+

t− N
7
≥ 2N

7
errors which is a contradiction.

Now that we know that the rule for safely decoding at the
end of 6N

7
rounds is indeed safe, we show that at least one

party will safely decode at that point of time. Suppose that

no party can decode safely. Also assume that Alice has tA
votes, rA of which are votes on the good leaf. That means
at least adversary has turned at least tA− rA edge-sets sent
by Bob into other valid-looking edge-sets. Similarly, tB−rB
errors are introduced by the adversary on edge-sets sent by
Alice. If neither Alice nor Bob can decode safely, we know
that tA − rA ≥ N

7
and tB − rB ≥ N

7
, which means that in

total, adversary has introduced at least 2N
7

errors. Since this
is not possible give adversary’s budget, we conclude that at
the end of 6N

7
rounds, at least one party decodes safely.

Now suppose that only one party, say Alice, decodes safely
at the end of 6N

7
rounds. Then, in the last N

7
rounds, Bob

is listening and Alice is sending. In this case, we claim that
Bob’s leaf that gets the majority of the votes at the end is
the correct leaf. The reason is, suppose that Bob has tB
votes from the first 6N

7
rounds and t′B votes from the last

N
7

rounds. Furthermore, suppose that the correct leaf had

rB votes from the first 6N
7

rounds and r′B votes from the

last N
7

rounds. Then, the adversary has introduced at least

( 3N
7
− tB)+(N

7
− t′B)+(tB−rB)+(t′B−r′B) = 4N

7
−rB+r′B

errors. Since adversaries budget is at most ( 2
7
− ε)N , we get

that rB + r′B > 2N
7

. Hence, since clearly Bob has at most
4N
7

votes in total, the correct leaf has the majority.
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