
Deterministic Compression with Uncertain Priors

[Extended Abstract]
∗

Elad Haramaty
†

Department of Computer Science
Technion, Haifa.

eladh@cs.technion.ac.il.

Madhu Sudan
Microsoft Research

1 Memorial Drive, Cambridge, MA 02142.
madhu@mit.edu

ABSTRACT
Communication in “natural” settings, e.g., between humans,
is distinctly different than that in classical designed settings,
in that the former is characterized by the sender and receiver
not being in perfect agreement with each other. Solutions to
classical communication problems thus have to overcome an
extra layer of uncertainty introduced by this lack of prior
agreement. One of the classical goals of communication
is compression of information, and in this context lack of
agreement implies that sender and receiver may not agree
on the “prior” from which information is being generated.
Most classical mechanisms for compressing turn out to be
non-robust when sender and receiver do not agree on the
prior. Juba et al. (Proc. ITCS 2011) showed that there
do exists compression schemes with shared randomness be-
tween sender and reciever that can compress information
down roughly to its entropy.

In this work we explore the assumption of shared random-
ness between the sender and receiver and highlight why this
assumption is problematic when dealing with natural com-
munication. We initiate the study of deterministic compres-
sion schemes amid uncertain priors, and expose some the
mathematical facets of this problem. We show some non-
trivial determinstic compression schemes, and some lower
bounds on natural classes of compression schemes. We show
that a full understanding of deterministic communication
turns into challenging (open) questions in graph theory and
communication complexity.

Categories and Subject Descriptors
E.4 [Coding And Information Theory]: Data com-
paction and compression

∗A full version of this paper is available as ECCC Technical
Report TR 12-166, November 26, 2012.
†Work done in part when this author was visiting Microsoft
Research New England.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Communication complexity, Graph coloring, Source coding

1. INTRODUCTION
In this work we consider the task of compressing informa-

tion deterministically, in settings where the sender and re-
ceiver are not in agreement on the distribution from which
the information is being generated. We start by first de-
scribing the general motivation for the study of this problem
before formally describing the problem and our results.

1.1 Natural Communication: Context and
Uncertainty

Natural communication, say between two humans, differs
in significant ways from “designed communication”, say be-
tween a cell phone and its nearby tower. The latter are care-
fully engineered to optimize use of the channel of commu-
nication, while introducing careful redundancy to overcome
any unreliability of the channel. The resulting problems and
solution concepts, such as compression schemes and error-
correcting encoding schemes are well understood by now.

Natural communication, as characterized by the vagaries
of natural language, is much less understood mathemati-
cally. Natural communication, often characterized by dictio-
naries and grammars, do not follow the rules they prescribe.
They tend to be ambiguous locally, and seemingly needlessly
redundant in other cases; without offering the same reliabil-
ity as error-correcting codes do. At the same time, natural
communication has remarkable capacity to overcome lack of
“perfect engineering”of the sender or receiver of information,
and in particular do not seem to require perfect agreement
between then two (on the design of the protocol). Under-
standing this resilience mathematically would be a fruitful
pursuit and forms the motivation for this and prior works in
this stream.

The main goal here is to understand what does “lan-
guage” look like and what parameters does it try to opti-
mize. Roughly language takes an intended message in the
sender’s mind and attempts to describe how to convert this
message to a sequence of, say, bits. This part is similar to
the encoding map of a error-correcting scheme, However to
model language more precisely, one should really take into
account its context-sensitivity. A more precise description
of a language would be as an encoding map from a pair (con-
text,message) to a word which is a sequence of bits. For the
time being, one may view context and message as elements
of some abstract space (each being possibly a countable set).
The language also gives rules on how a receiver should re-



cover the message from the word: it does so by applying a
decoding map that maps a pair (context,word) to a message.
The goal hopefully is to make sure the receiver decodes to
a message that is somehow compatible with the sender’s in-
tent. Defining compatibility is complex, and we will skirt
this issue in this paper. (Such issues are considered, e.g.,
in [8, 4].) We will simply require receiver to decode to the
same message as the sender wished to send (so in particu-
lar the message space for sender and receiver are identical).
Even with this simplication, there remains a major hurdle to
communication, namely that sender’s context and receiver’s
context may not be identical! Remarkably, natural com-
munication manages to function reasonably well even when
these contexts are not identical, but reasonably close to each
other, and it is this aspect that is the focus of this work.

In order to model contexts that are not identical, but are
reasonably close, we need a more structured view of con-
texts (than merely as elements of an abstract set). Juba et
al. [7] proposed a natural view: namely a context is simply a
probability distribution on messages: The distribution that
describes the message that the receiver is expecting to re-
ceive, or the distribution that the sender thinks the receiver
is expecting to receive. In this framework, the encoding
function becomes a map from a distribution P supported on
some set U and message m ∈ U to a word w ∈ {0, 1}∗; and
the decoding function becomes a map from a distribution
Q also supported on U and word w ∈ {0, 1}∗ to a mes-
sage m̂ ∈ U and the goal of the language is to ensure that
m̂ = m even if P 6= Q, provided they are reasonably close.
At the same time the language would like to reduce the ex-
pected length of the communication, assuming say that the
messages are generated from the distribution P . (More gen-
erally we could consider a setting where the messages are
generated from some distribution R; our assumption that
R = P is mostly for simplicity.)

Classical communication dealt with the setting where P =
Q. In the classical setting, it turns out that the entropy of
the distribution P precisely describes the expected length
of the transmission. Does entropy still give a good measure
characterizing the expected length of the transmission in
the natural setting, when P 6= Q? (We note that classical
communication also considered the setting where R 6= P =
Q and this leads to notions such the KL-divergence, but
the important aspect is that they did not consider settings
where sender and receiver disagreed on the prior. )

Juba et al. consider the following notion of distance be-
tween distributions (a notion which is also used commonly
in differential privacy): δ(P,Q) = maxm∈U{| log2 P (m) −
log2 Q(m)|}. (If δ(P,Q) ≤ ∆ then for every m ∈ U we
have 2−∆Q(m) ≤ P (m) ≤ 2∆Q(m).) With this notion of
distance in place, Juba et al. roughly show that entropy
is a good measure of the compression length: Specifically
they show that there exist encoding and decoding schemes
that use shared randomness between sender and receiver
and manage to compress information to a length of roughly
H(P )+2δ(P,Q) whereH(·) denotes the binary entropy func-
tion. (We note that works of Harsha et al. [6] and Braver-
man and Rao [1] also explore questions somewhat similar
to the ones considered by Juba et al., though their motiva-
tions were quite different. Both works focus on the setting
when sender and receiver have different priors and are trying
to generate a random variable that is maximally correlated
under their priors. In our case the sender gets a concrete

message from its prior and wishes to communicate it. The
focus in both works is on randomized solutions that get the
communication complexity down to the minimum possible
amount, whereas our thrust is to use less (or no) randomness
at the expense of slightly larger communication complexity.)

The main goal of this paper is to explore the need for
shared randomness in their work. The assumption of shared
randomness takes the solution further away from the mo-
tivation of natural communication. Roughly their solution
suggests that if the “dictionary”, or any other codebook as-
sociated with language, is random, then information can
be compressed. However in natural usage, the dictionary
remains somewhat static whereas the contexts for commu-
nication vary vastly. Furthermore, it is even very plausi-
ble that the dictionary influences our communication and
its context. We thus feel that a compression scheme based
on shared randomness is not sufficient evidence to suggest
that entropy is the natural complexity measure of capturing
the complexity of communicating in natural settings. This
leads us to study deterministic compression schemes in this
paper, and as we stress below, this turns out to be surpris-
ingly challenging to analyze. We illustrate the complexity
by considering a rather simple problem in this space.

1.2 A toy problem
The following example illustrates the questions studied

in this paper: Suppose Alice and Bob have a ranking of a
set U of N elements, say, movies. Specifically Alice’s rank
function is A : [N ] → U and Bob’s rank function is B :
[N ]→ U where [N ] = {1, . . . , N} and A and B are bijections
with A(i) naming the ith ranked movie in Alice’s ranking.
Suppose further that Alice and Bob know that their rankings
are“close”, specifically for every x ∈ U , |A−1(x)−B−1(x)| ≤
2. How many bits does Alice have to send to Bob so that
Bob knows her top-ranked movie, i.e., A(1)?

On the one hand Bob knows A(1) is one of the three el-
ement set S1 = {B(1), B(2), B(3)} and so the information-
content from his point of view is bounded by log2 3 bits.
Indeed this leads to a randomized communication scheme,
with Alice and Bob sharing common randomness with O(1)
bits of communication: Alice and Bob use their randomness
to get a hash function hashing their universe to a constant
number of bits. Alice sends the hash of A(1), and Bob re-
covers the name of the movie provided the elements of S1

hash to distinct values. However the deterministic commu-
nication complexity of the question is not as easily settled.
Part of the reason is that Alice doesn’t know S1 and so has
to “guess” it to communicate A(1). Still she is not clue-
less: She knows it is contained in T2 = {A(1), . . . , A(5)}
and perhaps this can help her communicate A(1) efficiently
to Bob. The question of interest to us in this work is: Can
Alice communicate A(1) to Bob with a number of bits that
is independent of N? (Unfortunately, we do not answer this
question, though we do give a non-trivial upper bound. We
will elaborate on this later.)

The question above is a prototypical example of “commu-
nication amid uncertainty”, where the communicating play-
ers have fairly good information about each other (in the
example above Alice and Bob know each others ranking of
each movie to within ±2), but are not sure of each other’s
information and do not have a common-ground to base com-
munication on. As we elaborate on in this paper, solutions
to this problem influence solutions to the general problems



of communication amid uncertainty, while this problem is
itself a special case (when Alice and Bob’s distributions are
geometric).

We describe our problems and solutions shortly, but to
give a gist of the findings: We show in this work that there is
a solution to the above toy problem communicating roughly
2O(log∗ N) bits, which is a very slowly growing, but never-
theless growing, function of U . We are unable to resolve if
a growing function of N bits is necessary for this problem;
however we do show that any solution that looks at only a
constant number of Alice’s top movies (or a constant num-

ber of Bob’s top movies) must communicate log(Ω(1)) N bits

(where log(i) denotes the ith iterated logarithm function.

1.3 Formal definitions and main results
We start by defining the notion of an “uncertain compres-

sion scheme”.
We let {0, 1}∗ denote the set of all finite length binary

strings. For x ∈ {0, 1}∗, let |x| denote its length. Through-
out U , the set of all messages, will be a finite set of size N .
Let P(U) denote the space of all probability distributions
over U .

Definition 1.1. ((Basic) Uncertain Compression
Scheme) For positive real ∆ an Uncertain Compression
Scheme (UCS) for distance ∆ over the universe U is given
by a pair of E : P(U) × U → {0, 1}∗ and D : P(U) ×
{0, 1}∗ → U that satisfy the following correctness condition:
For every pair of distributions P,Q ∈ P(U) that are ∆-
close (i.e δ(P,Q) ≤ ∆) and for every m ∈ U , we have
D(Q,E(P,m)) = m. The performance of a UCS (E,D)
is given by the function L : P(U) → <+, where L(P ) =
Em←PU [|E(P,m)|], i.e., the expected length of the encoding
under the distribution P . We refer to such a scheme as a
(∆, L)-UCS.

In English, the definition above explicitly provides the dis-
tribution as input to the encoding and decoding schemes,
and expect the schemes to work correctly even if the distri-
butions used by the encoder and decoder are not the same,
as long as they are ∆-close to each other. While in general
we would like compression schemes which work for all pos-
sible distributions P,Q that are within ∆ of each other, and
with no error (as expected in the definition above), some of
our schemes are weaker and work with some error, or only
for some class of distributions. We define such general UCS’s
below.

Definition 1.2. ((General) Uncertain Compres-
sion Scheme) For positive real ∆ (for distance), ε ∈ [0, 1]
(for error), a class of distributions F ⊆ P, and performance
function L : F → <+ a (∆, ε,F , L)-Uncertain Compression
Scheme (UCS) over the universe U is given by a pair of E :
F×U → {0, 1}∗∪{⊥} and D : F×{0, 1}∗∪{⊥} → U ∪{⊥}
that satisfy the following conditions:

1. For every pair of distributions P,Q ∈ F that are ∆-
close and for every m ∈ U , it is the case that if
E(P,m) 6= ⊥ then D(Q,E(P,m)) = m. Furthermore
D(⊥) = ⊥.

2. Prm←PU [E(P,m) = ⊥] ≤ ε.

3. For every P ∈ F , we have Em←PU [|E(P,m)|] ≤ L(P ).

Note that we do not distinguish the two definitions above
by name, but rather just by the number of parameters. So
if the number of parameters is just two, then it is assumed
that there is no error, and the performance holds for all
distributions.

We note that the definitions above only cover determinis-
tic compression schemes. A compression scheme with shared
randomness can be defined analogously, but we don’t do so
here. We also stress that the choice of P and Q is “worst-
case” within the family F (as formalized by the universal
quantifier in the correctness condition). There are no as-
sumptions that F is small (has only finitely many elements),
which tends to be the setting for universal compression. Sim-
ilarly, we do not consider a sequence of messages that need
to be transmitted: Rather, we are considering one-shot com-
munication with no assumptions on the distributions P and
Q, other than that they are from F and ∆-close.

We recall that Juba et al. present a (∆, H(P ) + 2∆ + c)-
UCS (with shared randomness) for some constant c ≤ 3. We
give two deterministic schemes in this paper, both having
complexity depending on N , but both using substantially
less than logN bits.

Theorem 1.3. For every ∆ ≥ 0, there exists a
(∆, O(H(P )+∆+log logN))-UCS, i.e., a deterministic uni-
versal compression scheme that works for all pairs P,Q that
are within distance ∆ of each other, and where the expected
length of encoding is at most O(H(P ) + ∆ + log logN).

The dependence on N of this scheme is non-trivial and
thus may even be reasonable in “natural circumstances”.
However it is not clear if such a dependency on N is neces-
sary. Motivated by the quest to understand the dependence
on N more closely, we explore schemes whose performance
is not necessarily linear in H(P ). Simultaneously we re-
lax our schemes to allow them to “drop” messages with ε
probability. We note that if we don’t do the latter, then
the former is not really a relaxation: Any error-free scheme
with superlinear dependence on H(P ) can be converted to
one with linear dependence on H(P ) by a simple reduction
(see Lemma 3.11).

Our next theorem gives a scheme that is weaker than the
one from Theorem 1.3 in its dependence on the entropy
H(P ) and in that it errs with non-zero probability. But
it does achieve significantly better dependence on N .

Theorem 1.4. For every ε > 0 and ∆ ≥ 0 there ex-
ists a (∆, ε,P(U), exp (H(P )/ε+ ∆ log∗N))-UCS, i.e., the
scheme has error probability at most ε, it works for all pairs
of distributions P,Q within distance ∆ and the expected
length of the encoding is at most exp (H(P )/ε+ ∆ log∗N).

In the above the notation exp(x) denotes a function of the
form cx for some universal constant c, and log∗N denotes
the minimum integer i such log(i) N ≤ 1 and log(i) is the
logarithm function iterated i times.

An alternate way to get around the barrier of Lemma 3.11,
which insists that schemes must have linear dependence on
H(P ) or make some error, is to have schemes that do not
work for all possible pairs of distributions P and Q. As
it turns out the scheme from Theorem 1.4 does have this
behavior for many natural distributions. In Theorem 3.8 we
show that our scheme from Theorem 1.4 works without error
and with same performance as long as P (or Q) are close to



a “flat distribution” (uniform over a subset), or a geometric
distribution, or a binomial distribution. We stress that the
scheme is not particularly carefully tailored to the class of
distributions (though of course the encodings and decodings
do depend on the distributions), but naturally adapts to
being error-free for the above classes.

1.4 Techniques: Graph Coloring
While the most natural framework for studying our prob-

lem is as a question of communication complexity of a rela-
tional problem (as in [9]), this turns out not to be the most
useful for studying the deterministic communication com-
plexity. Indeed, as pointed out earlier, the modern stress in
communication complexity is often on designing and under-
standing the limits of protocols that are interactive and use
shared randomness, while in our case the thrust is in the
opposite direction.

It turns out our questions are naturally also captured as
graph-coloring questions. Furthermore such questions (or
related ones) have been studied in the literature on dis-
tributed computing in the attempt to color graphs in a local
distributed manner. In particular, the work of Linial [10]
shows that a “local” algorithm for 3-coloring a cycle, due
to Cole and Vishkin [2], implies that a large “high-degree
graph” is 3-colorable. The ideas of Cole and Vishkin [2]
and Linial [10] turn out to be quite useful in our context.
Our work abstracts some of these techniques, and extends
them to get combinatorial results, which we then convert to
efficient compression schemes.

Uncertainty graphs and Chromatic number.
We start by defining a class of structured combinatorial

graphs whose chromatic number turns out to be central to
our problems. Let [N ] = {1, . . . , N}. Let SN denote the
set of all permutations on N elements, i.e., the set of all
bijections from [N ] to itself. For π, σ ∈ SN , let δ(π, σ) =
maxi∈[N ] |π−1(i)− σ−1(i)|.

Definition 1.5 (Uncertainty graphs). For integer
N, ` the uncertainty graph UN,` has as elements of SN as
its vertices, with π ↔ σ if (1) π(1) 6= σ(1) and δ(π, σ) ≤ `.

It turns out that the chromatic number of the uncertainty
graphs have a close connection to uncertain communica-
tion schemes. Roughly these graphs emerge from a very
restricted version of the communication problem, where the
distributions P and Q are geometric distributions (giving

probability proportional to β−π
−1(i) and β−σ

−1(i) to the el-
ement i ∈ [N ]). It follows that if δ(π, σ) is small, then P and
Q are close to each other. Furthermore, for simplicity these
graphs only consider the case that the message is the element
with maximal probability under P . To understand how the
chromatic number plays a role, fix a receiver with distribu-
tionQ and consider two possible senders P and P ′ that could
communicate with this receiver. Consider coloring P and P ′

by E(P, argmaxm{P (m)}) and E(P ′, argmaxm{P ′(m)}) re-
spectively. This would lead to distinct colors on pairs P and
P ′ that are too close to each other, provided their messages,
i.e., argmaxm{P (m)} and argmaxm{P ′(m)} are different.
This exactly corresponds to adjacency in our graph: the un-
derlying permutations π and σ are close, and the top ranked
elements are different.

The results of Juba et al. imply that the “fractional chro-

matic number” of UN,` is bounded by O(`).1 The (integral)
chromatic number on the other hand does not immediately
seem to be bounded as a function of ` alone. The impli-
cation of the low fractional chromatic number is that the
chromatic number of UN,` is at most O(`N logN), but this
is worse that the naive upper bound of N , which can be ob-
tained by setting the color of π to be π−1(1). (By definition
of adjacency this is a valid coloring.) Our main technical
contribution is in obtaining some non-trivial upper bounds
on the chromatic number of this graph.

To derive our upper bounds, we look at “coarsened” ver-
sions of the graph UN,`. For positive integer k, we say that
π : [k] → [N ] is a k-subpermutation if π is injective. We
let SN,k denoted the set of all k-subpermutations on [N ].
For k′ ≥ k, we say subpermutation π : [k] → [N ] ex-
tends the subpermutation σ : [k′] → [N ] if σ(i) = π(i)
for all i ∈ [k]. For k-subpermutations π and σ, we let
δ(π, σ) = minπ′,σ′∈SN extending π,σ{δ(π′, σ′)}.

Definition 1.6 (Restricted Uncertainty graphs).
For integers N, ` and k the k-restricted uncertainty graph
UN,`,k has elements of SN,k as its vertices, with π ← σ if
(1) π(1) 6= σ(1) and δ(π, σ) ≤ `.

Note that UN,`,N = UN,`. We derive our upper bounds on
the chromatic number of UN,` by giving non-trivial upper
bounds on the chromatic number of UN,`,k.

Lemma 1.7. 1. For every k ≤ k′, χ(UN,`,k′) ≤
χ(UN,`,k).

2. For every N, `, χ(UN,`,2`) ≤ O(`2 logN).

3. For every N , ` and k that is an integral multiple of `,
we have χ(UN,`,k) ≤ 2O(k log `) log(k/`) N .

4. For every N , ` and k that is an integral multiple of `,
we have χ(UN,`,k) ≥ log(2k/`)(N/`).

As an immediate application we get the following theorem.

Theorem 1.8. For every N and `, we have χ(UN,`) ≤
O
(

min{`2 logN, 2O(` log ` log∗ N)}
)

.

Unfortunately, the lower bound from Part (4) of
Lemma 1.7 goes to 0 as k → N and so we don’t get a grow-
ing function of N as a lower bound. However, it does rule
out most natural strategies for coloring U , and shows limita-
tions of the intuition that suggests U may be colorable with
f(`) colors independent of N . This is so since the intuition,
as well most natural strategies, only use the top O(`) rank-
ing elements of a permutation π to determine its color; and
such the lower bound shows that such strategies are inher-
ently limited. In particular, it shows that there is no hope
to extend the methods of Juba et al. (which was based on
this intuition) in a simple way to get a deterministic UCS.

1The fractional chromatic number of a graph G is the small-
est positive real w such that there exists a collection of in-
dependent sets I1, . . . , It in G with weights w1, . . . , wt such
that

∑t
j=1 wj = w and for every vertex u ∈ V (G) it is the

case that
∑
j:Ij3u wj ≥ 1.



1.5 Directions for further work
Given that most of the questions raised in this work

haven’t found tight answers, there is an obvious number of
natural questions to resolve here — the most fundamental
one being whether one can compress information down to
its entropy (to within constant multiplicative factors) deter-
ministically (or even just with private randomness) in the
uncertain setting.

In addition to resolving open questions, a number of
modelling challenges remain in trying to understand nat-
ural modes of communication. Language is an organically
evolved concept with communicational, computational and
societal pressures acting on it. The game that was played
out with natural languages over the past millenia is now get-
ting played out at a faster pace among computer networks:
Protocols evolve, compete for survival, and develop a strange
mix of tolerance for errors with intolerance for others. Most
of the mechanics have not been studied mathematically and
indeed little is known as to what the evolution process is
trying to achieve, and what the steady state might look like,
if at all one exists. Understanding aspects of language and
its evolution definitely seem to be worthy causes.

One aspect in particular that we have not explored is the
impact of “computational efficiency” of the encoding or de-
coding procedures. One of the reasons to set aside this con-
cern for the time being is that ingredients like the dictionary
suggest that natural language seems not to pay serious at-
tention to the complexity of encoding/decoding relying in-
stead on table look up for much of its performance; and
tables don’t appear to be particularly compact. Neverthe-
less, efficiency perhaps does play a significant role in the
evolution of languages since some changes are more easy for
humans to adapt to, as opposed to others. Understanding
this aspect of efficiency is probably another challenge for the
future.

Organization of this paper..
We start with the analysis of the chromatic number in Sec-

tion 2. We then use the methods to build uncertain compres-
sion schemes in Section 3. Proofs omitted from this version
may be found in the full version of the paper [5].

2. UNCERTAINTY GRAPHS
We start with some elementary material in Section 2.1

that already allows us to prove Parts (1) and (2) of
Lemma 1.7. The lower bound mentioned in Part (4) of
Lemma 1.7 follows also relatively easily from a result of
Linial [10] and we show this in Section 2.2. Our main con-
tribution, in Section 2.3, gives the upper bound from Part
(3) of Lemma 1.7.

2.1 Preliminaries
We recall the concept of a homomorphism of graphs:

For graph G = (V,E) and G′ = (V ′, E′), we say that
φ : V → V ′ is a homomorphism from G to G′ if (u, v) ∈
E ⇒ (φ(u), φ(v)) ∈ E′. We say G is homomorphic to G′ if
there exists a homomorphism from G to G′.

Proposition 2.1. For every N , ` ≥ 1 and k′ ≤ k ≤ N ,
the k-restricted uncertainty graph UN,`,k is homomorphic to
the k′-restricted uncertainty graph UN,`,k′ .

Proof. We construct the homomorphism φ from UN,`,k
to UN,`,k′ as follows: For π = 〈π(1), . . . , π(k)〉 ∈ SN,k let

φ(π) = 〈π(1), . . . , π(k′)〉 ∈ SN,k′ . From the definitions it
follows that this is a homomorphism.

Proposition 2.2. . For every G and G′ such that G is
homomorphic to G′, we have χ(G) ≤ χ(G′).

Proof. Follows from the composability of homomor-
phisms and the fact that G is k-colorable if and only if it is
homomorphic to Kk, the complete graph on k vertices.

Part (1) of Lemma 1.7 follows immediately from Proposi-
tions 2.1 and 2.2.

Proposition 2.3. For every N, `, and k ≥ `+1 the frac-
tional chromatic number of the restricted uncertainty graph
UN,`,k is at most 4`.

Proof. For every function f : [N ] → [2`] we associate
the set If = {π ∈ SN,k|f(π(1)) = 1 and f(π(j)) 6= 1 ∀ j ∈
{2, . . . , `+ 1}}.

We claim that If is an independent set of UN,`,k for every
f . To see this consider an edge (π, σ) and suppose π ∈ If .
Then σ(1) ∈ {π(2), . . . , π(`+ 1)} and so f(σ(1)) 6= 1 and so
σ 6∈ If .

Next we note that for every π, the probability that π ∈ If
for f chosen uniformly at random is 1/(2`) · (1− 1/(2`))` ≥
1/(4`).

Thus if we give each If a weight of 4`/(2`)N , then we have
that the weight of independent sets containing any given
vertex π is at least one, while the sum of all weights is 4`,
thus yielding the claimed bound on the fractional chromatic
number.

The following is a well-known connection between frac-
tional chromatic number and chromatic number.

Proposition 2.4. For every graph G, χ(G) ≤ χf (G) ·
ln |V (G)|.

We are now ready to prove part (2) of Lemma 1.7.

Lemma 2.5. χ(UN,`) ≤ χ(UN,`,`+1)) ≤ 4`(`+ 1) lnN

Proof. The first inequality follows from Proposi-
tions 2.1 and 2.2. The second one follows from Proposi-
tion 2.4 and 2.3 and the fact that UN,`,`+1 has at most N `+1

vertices.

2.2 Lower Bound on Chromatic Number
We now prove Part (4) of Lemma 1.7 giving a lower bound

on χ(UN,`,k). We use a lower bound on a somewhat related
family of graphs due to Linial [10].

Definition 2.6 (Shift graphs). For integers N and
k < N , we say that π ∈ SN,k is a left shift of σ ∈ SN,k if
π(i) = σ(i+ 1) for i ∈ [k− 1] and π(k) 6= σ(1). We say π is
a right shift of σ if σ is a left shift of π, and we say π is a
shift of σ if π is a left shift or a right shift of σ. For integers
N and k, the shift graph SN,k is given by V (SN,k) = SN,k
with (π, σ) ∈ E(SN,k) if π is a shift of σ.

Theorem 2.7 (Linial [10, Proof of Theorem 2.1]).

For every odd k, χ(SN,k) ≥ log(k−1) N .

(We note that the notation in [10] is somewhat different:
The graph SN,k is denoted BN,t for t = (k − 1)/2 in [10].)

We show that the uncertainty graphs contain a subgraph
isomorphic to the shift graph. This gives us our lower bound
on the chromatic number of uncertainty graphs.



Lemma 2.8. For every N , ` and k that is an integral mul-
tiple of `, we have χ(UN,`,k) ≥ (log(2k/`)(N/`)).

Proof. First without loss of generality we only consider
the case of even `. Then we reduce to the case ` = 2, by con-
sidering only those permutations π which fix π(i) = i if `/2
does not divide i. This still leaves us with 2N/` unfixed ele-
ments and subpermutations from S2N/`,2k/` that are within
distance 2 of each other are within distance ` when mapped
back to SN,k.

So we assume ` = 2 and show that UN,2,k contains a
subgraph isomorphic to the shift graph SN,k. Consider
the map φ from V (SN,k) to V (UN,2,k) which sends π =
〈π(1), . . . , π(k)〉 to φ(π) = σ = 〈σ(1), . . . , σ(k)〉 as follows:
Let t = bk/2c. Then σ(2i) = π(t+i) and σ(2i+1) = π(t−i)
σ(t+ i) = π(2i) and σ(t− i) = π(2i+ 1). It is easy to verify
that the map is a bijection and if π and π′ are shifts of each
other, then φ(π) and φ(π′) are within distance 2 of each
other. It follows that UN,2,k contains a copy of SN,k and so

χ(UN,2,k) ≥ χ(SN,k) ≥ log(k−1)N .

2.3 Upper Bound on Chromatic Number
In this section we give an upper bound on the chromatic

number of the uncertainty graphs. We first describe our
strategy. Fix N and `. Now for every k, we know that
there is a homomorphism from UN,`,k to UN,`,k−1. However
we note that if we jump from UN,`,k to UN,`,k−` then the
homomorphism has an even nicer property. To describe this
property, we introduce a new parameter associated with the
homomorphism from UN,`,k to UN,`,k−`. Let us denote this
homomorphism φk. For π ∈ SN,k let dk(π) = |{φk(σ) |
(π, σ) ∈ E(UN,`,k)}|. Note that dk(π) is independent of π
and so we just denote it dk. We note first that dk is small.

Recall that φk : SN,k → SN,k−` and maps π : [k] → [N ]
to π′ : [k − `]→ [N ] by setting π′(i) = π(i).

Claim 2.9. For every k, dk ≤ (2`+ 1)k.

Proof. Let (σ, π) ∈ E(UN,`,k) then δ(σ, π) ≤ `. In par-
ticular for every i ∈ [k − `], we have there exists j(i) ∈
{−`, . . . , `} such that σ(i) = π(i+ j(i)). Thus the sequence
j(1), . . . , j(k− `) completely specifies φk(σ). Since the num-
ber of such sequences is at most (2` + 1)k−`, we get our
claim.

The next lemma shows that a homomorphism with a small
d-value yields especially good colorings.

Lemma 2.10. Let φ be a homomorphism from G to H and
let c = χ(H) and d = maxv∈V (G) |{φ(w) | (v, w) ∈ E(G)}|.
Then χ(G) ≤ 2d(d+ 1) log c = O(d2 log c).

Proof. For integers t andM , we start by building a small
family of hash functions H = {h1, . . . , hM} ⊆ {h : [c]→ [t]}
with the property that for every subset S ⊆ [c], with |S| ≤ d,
and for every i ∈ [c] − S, there exists j ∈ [M ] such that
hj(i) 6∈ {hj(i′)|i′ ∈ S}.

Given such a hash family, we claim there is a coloring of
G with t · M colors. To get such a coloring, let χ′ be a
coloring of H with colors [c]. Now, consider v ∈ V (G) and
let Sv = {χ′(φ(w)) | (w, v) ∈ E(H)}. By the definition of
d, we have |Sv| ≤ d. Also since χ′ is a coloring of H and
φ is a homomorphism, we have χ′(φ(v)) 6∈ Sv. Thus by the
property of H, we have that there exists a j = j(v) such
that hj(χ

′(φ(v)) 6∈ {hj(i′)|i′ ∈ Sv}. We let the coloring χ of

G be χ(v) = (j(v), hj(v)(χ
′(φ(v))}. Syntactically it is clear

that this is a t ·M coloring of G. To see it is valid, consider
(v, w) ∈ E(G). If j(v) 6= j(w) then we are done. Else,
suppose j(v) = j(w) = j. Then by definition of Sv we have
χ′(φ(w)) ∈ Sv and so hj(χ

′(v)) 6= hj(χ
′(w)) ∈ {hj(i)|i ∈

Sv}, and thus χ(v) 6= χ(w) as desired.
To conclude we need to give an upper bound on t and M .

Claim 2.11. There exists such a hash family with t ≤ 2d
and M ≤ log(cd+1).

Proof. The proof is an elementary probabilistic method
argument. Let t = 2d. We pick members of H at uniformly
at random from {h : [c] → [t]}. Fix a set S with |S| ≤ d
and i ∈ [c] − S. Say that h separates i from S if h(i) 6∈
{h(i′)|i′ ∈ S}. The probability that a random h separates
i from S is at least 1/2 and the probability that there does
not exist h ∈ H separating i from S is at most 2−M . The
probability that there exists S and i ∈ [c] − S such that
there does not exist h ∈ H separating i from S is strictly
less than cd+1 · 2−M . It follows that if M = log cd+1 then
such a family H exists.

The lemma follows.

We are now ready to prove Part (3) of Lemma 1.7, restated
below.

Lemma 2.12. There exists a constant c such that for ev-
ery N, `, k, we have χ(UN,`,k) ≤ 2ck log ` log(b(k−1)/`c−1) N .

Proof. We prove the lemma by induction on k. For
notational simplicity assume k − 1 is a multiple of `.
For k ≤ ` the lemma is immediate from the fact that
χ(UN,`,1) ≤ N . Assume the lemma is true for k − `.
Then, by Lemma 2.10 we have that for χ(UN,`,k) ≤
2dk(dk + 1) · log(χ(UN,`,k−`)) ≤ 4d2

k logχ(UN,`,k−`).
By Claim 2.9, dk ≤ (2` + 1)k ≤ (4`)k and so

for χ(UN,`,k) ≤ 4(4`)2k log(2c(k−`) log ` log(k−`−1)/ellN ≤
2ck log ` log(k−1)/`) N for a suitably large c.

3. UNCERTAIN COMMUNICATION
We now convert some of the methods from the previous

section into schemes for uncertain compression. In Sec-
tion 3.1 we derive a simple compression scheme based on the
relationship between fractional chromatic number and chro-
matic number from Section 2.1. We then use the “nested
series of homomorphisms” from Section 2.3 to derive a sec-
ond compression scheme in Section 3.2. The compression
scheme of Section 3.2 can make errors with positive proba-
bility and has a non-linear dependence on entropy. In Sec-
tion 3.3 we show that for some natural distributions, this
scheme is error-free. In Section 3.4 we show how an error-
free scheme working for all distributions would automati-
cally have linear dependence on the entropy, suggesting some
of the weaknesses in Section 3.2 are necessary.

3.1 A simple, zero-error compression scheme
Our first construction uses the notion of an isolating hash

family as defined implicitly in Section 2.3, which we make
explicit now. For positive integers `, N and m ∈ [N ] and
S ⊆ [N ] − {m}, we say that a function h : [N ] → {0, 1}`
isolates m from S if h(m) 6∈ {h(m′)|m′ ∈ S}. We say that
a hash family H` = {h1,`, . . . , hM,`} is (N, `)-isolating if for



every S ⊆ [N ] with |S| ≤ 2`−1, and for every m ∈ [N ] −
S, there exists j = j(m,S) such that hj,`(m) 6∈ hj,`(S)

4
=

{hj,`(m′)|m′ ∈ S}.
We note first that small isolating families exist and then

give a compression scheme based on small isolating families.

Lemma 3.1. For every ` and N , there exists an (N, `)-
isolating family of size at most 2` · logN .

Proof. The proof is straightforward application of the
probabilistic method. We pick H = {h1, . . . , hM} by picking
hi uniformly and independently from the set of all functions
from [N ] to {0, 1}`. Fix m 6∈ S ⊆ [N ]. The probability that
a randomly chosen h isolates m from S is at least 1/2. Thus
the probability that some hi in H does not isolate m from
S is at most 2−M . Taking the union bound over all m,S
we find that the probability that H does not isolate some m

from S is at most N2`/2M . We conclude that M ≤ 2` · logN
suffices for the existence of such a H.

We are now ready to describe our encoding and decoding
schemes.
Encoding: Given m,P let S = {m′ ∈ [N ] \ {m} |
P (m′) ≥ P (m)/22∆} and let ` = log2 1/P (m) + 2∆. Let
H be an (N, `)-isolating family of size M and let H =
{h1,`, . . . , hM,`}. Now let j ∈ [M ] be such that hj,`(m) 6∈
{hj,`(m′) | m′ ∈ S}. The encoding E(P,m) is defined to be
(j, hj,`(m)).

Decoding: Given Q and y = (j, z) ∈ Z+ × {0, 1}∗, let
` = |z| and let m̂ = argmaxm∈[N ]:hj,`(m)=z{Q(m)}. The

decoding of the pair (Q, y) is given by D(Q, y) = m̂.
Our next proposition verifies the correctness of the com-

pression scheme.

Proposition 3.2. For every pair of distributions P , Q
such that δ(P,Q) ≤ ∆, and for every message m ∈ [N ], it
is the case that D(Q,E(P,m)) = m.

Proof. Fix P , Q and m such that δ(P,Q) ≤ ∆. Let
E(m,P ) = (j, z) with ` = |z| and let D((j, z), Q) = m̂.
We will show that m̂ = m. By definition of E, we have
hj,`(m) = z and by definition of D we have hj,`(m̂) = z.
Thus, by the condition that m̂ maximizes probability under
Q of messages satisfying hj,`(m

′) = z, we have Q(m̂) ≥
Q(m). Since the distance of P and Q is at most ∆, we have
P (m) ≤ Q(m)2∆ and P (m̂) ≥ Q(m̂)/2∆. Combining the
inequalities we get P (m̂) ≥ P (m)/22∆. Now let S = {m′ ∈
[N ] − {m} | P (m′) ≥ P (m)/22∆}. We have m̂ ∈ S ∪ {m}.
But by definition of j, we have hj,`(m) 6∈ {hj,`(m′)|m′ ∈ S}
and since hj,`(m) = hj,`(m̂), we must have m = m̂.

Finally we analyze the performance of our scheme.

Lemma 3.3. The expected length of the encoding E is
O(H(P ) + ∆ + log logN).

Proof. Fix m ∈ S. Then we have ` ≤ 1 + log 1/P (m) +
2∆ and M ≤ (2` logN). Thus, the length of E(P,m) is
at most 2` + log logN = O(log 1/P (m) + ∆ + log logN).
Taking expectation over m drawn from P , we have the ex-
pected length of the encoding is at most O(H(P ) + ∆ +
log logN).

Theorem 1.3 follows immediately from Proposition 3.2
and Lemma 3.3.

3.2 Compression with error in the low en-
tropy setting

Our compression for the low entropy setting (with bet-
ter dependence on N) relies on an extension of our coloring
scheme for the uncertainty graphs. We describe this exten-
sion in the next section and then use that to present our
compression scheme afterwards.

3.2.1 Compression for chains
We start with some terminology. We say that a finite

sequence of sets A0, . . . , Ak with Ai ⊆ [N ] is a chain in [N ]
if |A0| = 1 and Ai ⊆ Ai+1 for every i. We say that w is the
leader of the chain if A0 = {w}. We use Chain(N) to denote
the set of all chains in [N ].

In this section we will show how to compress the leader of a
chain so that it is unambiguous relative to “nearby” chains.
This is in the spirit of the coloring of uncertainty graphs.
Indeed vertices of the uncertainty graph UN,`,k correspond
to chains with the vertex 〈π(1), . . . , π(k)〉 corresponding to
the chain A with A0 = {π(1)} and Ai = {π(1), . . . , π(` · i)}
for i ≥ 1. The compressing scheme will thus be similar to
the coloring scheme, however there are two distinguishing
factors: We will want to compress some chains more than
others - a notion that would correspond to asking some ver-
tices to use small colors while allowing others to use larger
ones. Furthermore our chains will now grow arbitrarily fast
(and not just in steps of 1 or more generally `). We now
describe the precise problem.

For a chain A = 〈A0, . . . , Ak〉 we say the length of the
chain, denoted lgt(A), is the parameter k. We use sz(A)
denote the size of the final set |Ak|. For a chain A of length
at least i, we let Ai denote its prefix of length i, i.e., Ai =
〈A0, . . . , Ai〉.

For chain A = 〈A0, . . . , Ak〉 and chain B =
〈B0, . . . , Bk−d〉, we say B is within distance d from A if for
all i ∈ {0, ..., k − d}, Ai−d ⊆ Bi ⊆ Ai+d (where we consider
sets with negative index to be the empty set). We denote
the set of all chains that are within d distance from A by
Sd(A). Our goal next is to compress the leader of chains
so that the length of the compression is small as a function
of sz(A), while it remains unambiguous to chains that are
nearby.

Lemma 3.4. There exists a coloring scheme Col : Z+ ×
Chain(N)→ Z+ with the following properties:

1. If lgt(A) ≥ 2k, then for every s ≥ sz(A2k),

Col(s,A2k) ≤ 26(s+1) log(k) N .

2. Let A and A′ be chains of the same length, with
lgt(A) ≥ 2k and of size at most s. Then, if S1(A) ∩
S1(A′) 6= ∅ and A0 6= A′0, then Col(s,A2k) 6=
Col(s,A′2k).

Proof omitted from this version.

3.2.2 The Compression Scheme
We are now ready to define our final compression scheme.
Encoding: Given m,P define r = b− logP (m)c

and f = 2 blog∗Nc − 1. Further define the chain
A of length f as follows. A0 = {m} and Ak =
{m′ ∈ [N ] | | log 1/P (m′)− r| ≤ ∆(k + 1) + 1} (so that Ak
is the set of messages of probability roughly P (m) with the



difference in logarithms being at most (k + 1)∆ + 1). Let
s = sz(A). The encoding Elow(P,m) = E(P,m) is

E(P,m) =

{
(s, r,Col (s,A)) if s ≤ 2

H(P )
ε

+2∆ log∗ N+1

⊥ otherwise.

(We assume that s and r above are encoded in some prefix-
free encoding, so that the receiver can separate the three
parts.)

Decoding: The decoding function Dlow(Q, y) = D(Q, y)
works as follows: If y = ⊥ then the decoder outputs ⊥.
Else let y = (s, r, c) and let f = 2blog∗Nc − 1. Let
B = 〈B0, . . . , Bf−1〉 be as follows: B0 = {w} for some w
such that | log 1/Q(w) − r| ≤ ∆ + 1. For k ≥ 1, Bk =
{m′ | | log 1/Q(m′)− r| ≤ (k + 1)∆ + 1}. Find a chain A′
with the following properties: B ∈ S1(A′), lgt(A′) = f ,
sz(A′) ≤ s and Col(s,A′) = c. Let m̂ be the leader of A′.
The decoding D(Q, y) is set to be m̂.

We first analyze the correctness of the decoder.

Lemma 3.5. For every pair of distributions P , Q such
that δ(P,Q) ≤ ∆ and for every message m ∈ [N ] such that
Elow(P,m) 6= ⊥, it holds that Dlow(Q,Elow(P,m)) = m.

Proof. Fix P ∈ P([N ]) and a message m ∈ [N ] such
that Elow(P,m) 6= ⊥. The following claims will show that
the decoding process is well defined (and then correctness
will be essentially be immediate).

Claim 3.6. There exists w ∈ [N ] such that | log 1/Q(w)−
r| ≤ ∆ + 1.

Proof. By our choice of r, we have | log 1/P (m) − r| ≤
1. Now using δ(P,Q) ≤ ∆, we have | log 1/P (m) −
log 1/Q(m)| ≤ ∆, and so | log 1/Q(m) − r| ≤ ∆ + 1. So
w = m gives an element in [N ] with the desired property.

Thus the chain B is now well-defined. It remains to show
that there exists a chain A′ satisfying the required proper-
ties. The next claim shows that B ∈ S1(A), therefore A is
a candidate for the role of A′.

Claim 3.7. B ∈ S1(A) .

Proof. The proof follows easily from our choice of A, B
and the fact that P and Q are ∆-close. Let k ∈ {0, ..., f−1}.
We need to show that Bk is sandwiched between Ak−1 and
Ak+1.

First, We will show that Bk ⊆ Ak+1. When k = 0, we
need to show that w ∈ A1. Indeed,

| log 1/Q(w)− r| ≤ ∆ + 1

⇒ | log 1/P (w)− r| ≤ 2∆ + 1

⇒ w ∈ A1 .

Now consider 1 ≤ k ≤ f − 1. We have,

Bk =
{
m′ ∈ [N ] | | log 1/Q(m′)− r| ≤ (k + 1)∆ + 1

}
⊆

{
m′ ∈ [N ] | | log 1/P (m′)− r| ≤ (k + 2)∆ + 1

}
= Ak+1 .

This shows that Bk ⊆ Ak+1. Next we show that Ak−1 ⊆ Bk,
for 2 ≤ k ≤ f − 1. We have

Ak−1 =
{
m′ ∈ [N ] | | log 1/P (m′)− r| ≤ k∆ + 1

}
⊆

{
m′ ∈ [N ] | | log 1/Q(m′)− r| ≤ (k + 1)∆ + 1

}
= Bk .

The case where k = 1 and w ∈ B1 was proved in Claim 3.6.
So we are done.

To conclude, the decoder can find a chain A′ such that
sz(A′) ≤ s, lgt(A′) = lgt(A), Col(s,A′) = Col(s,A) and
there exists a chain B ∈ S1(A′) ∩ S1(A). From Lemma 3.4
the leader of A′ is m as required.

We are now ready to prove Theorem 1.4.

Proof. We now estimate the probability that the en-
coder will fail. Fix some probability P and a message m such

that E(P,m) = ⊥. We will first show that P (m) ≤ 2−
H(P )
ε .

Later, we will bound the probability that “m has such small
probability” by ε.

Consider the chain A = 〈A0, . . . , Af 〉 as defined by the
encoder. In this case, the size of the largest set, |Af |, is more

then the threshold T = 2
H(P )
ε

+2∆ log∗ N+1. So, there is some
element m′ ∈ Af such that P (m′) ≤ 1

T
. By our choice of

Af , P (m′) ≥ 2−b− logP (m)c−(f+1)∆−1 ≥ P (m)2−2∆ log∗ N−1.
Calculating,

1

T
≥ P (m)2−2∆ log∗ N−1 ⇒ P (m) ≤ 22∆ log∗ N+1

T
= 2−

H(P )
ε

Therefore, we can bound the failure probability by the

probability that P (m) ≤ 2−
H(P )
ε . Using the fact that

Em←P [N ]

[
log 1

P (m)

]
= H(P ), we deduce the following by

Markov’s inequality,

Pr
m←P [N ]

[
P (m) ≤ 2−

H(P )
ε

]
= Pr
m←P [N ]

[
log

1

P (m)
≥ H(P )

ε

]
≤ ε

We will finish the proof by bounding the performance of
the scheme. To this end consider a distribution P and a mes-
sage m ∈ [N ] such that E(P,m) 6= ⊥ (i.e sz(A) ≤ T ). The
encoder sends r = b− logP (m)c, s = sz(A) and Col(s,A).
We first analyze the contribution of sending r to the per-

formance. Because log |r| = O
(

log( 1
P (m)

)
)

, the accepted

length of sending r in a prefix-free encoding is at most

O
(
Em←P [N ] log( 1

P (m)
)
)

= O (H(P )).

Now we analyze the length of (s,Col(s,A)) . By
Lemma 3.4:

C(s,A) ≤ 26(s+1) log(f) N = 2O(s)

Hence, the length of (s,Col(s,A)) is at most

O(log s) + logC(s,A) = O(s) = 2
H(P )
ε

+2∆ log∗ n+O(1) .

Thus, from the linearity of expectations, it follow that the

total performance is at most 2
H(P )
ε

+2∆ log∗ n+O(1).

3.3 Error-free Compression for Natural Dis-
tributions

In this section we will show that for a large class of natural
distributions, the above scheme is error free. We start by
describing the natural distributions we can capture.

We say that a distribution P ∈ P([N ]) is flat it there exists
a set S ⊆ [N ] such that P is uniform on S. The distribution
is called geometric if there exists parameter α ∈ (0, 1) and a
permutation π on [N ] such that for all k ∈ [N − 1] it holds
that P (π(k + 1)) = αP (π(k)). We call P binomial if there
exists a parameter p ∈ (0, 1) and a permutation π on [N ]



such that ∀k ∈ [N ], P (π(k)) =
(
N
k

)
pk(1− p)n−k. The sets

of all flat, geometric and binomial distributions over [N ] are
denoted by FlatN , GeoN and BinN respectively.

The following theorem shows that the scheme (Elow, Dlow)
performs well without error on all of the above natural dis-
tributions. Moreover, this theorem is stable in the sense
that the guarantee on the performance holds even if a dis-
tribution is only close to one of the above-mentioned natural
distributions.

Theorem 3.8. Let F , FlatN∪GeoN∪BinN and L(P ) ,
2H(P ) d∆ log∗Ne. Then the scheme (Elow, Dlow) (with ε
set to 0) is a (∆, 0,F , O (L(P )))-UCS. Moreover, if P ∈
P([N ]) is ∆ log∗N-close to a distribution P̃ ∈ F then the
performance of the scheme on P is Em←PU [|E(P,m)|] =

O
(
L(P̃ )

)
.

We prove the theorem above by identifying a broad condi-
tion on distributions, which we call the capacity, and show-
ing that the performance of our scheme is good if the ca-
pacity is small. We define this notion next, show that it is
small for the distributions under consideration in Lemma 3.9
next, and finally bound the performance as a function of the
capacity in Lemma 3.10 afterwards, thus leading to a proof
of Theorem 3.8.

Let P ∈ P([N ]) be a distribution and let S ⊆ [N ]
be its support. We say that U ⊆ S is a unit set of
P if for any two elements m1,m2 ∈ U the distance
|logP (m1)− logP (m2)| ≤ 1. We define the capacity of P ,
denoted by C (P ), to be the minimal c ∈ < such that the
size of every unit set of P is bounded by 2c.

Later, we will prove the following lemma, showing that
for the previously discussed distributions, the capacity is
roughly the entropy.

Lemma 3.9. Let P ∈ FlatN∪GeoN∪BinN . Then C (P ) ≤
H(P ) +O(1).

Theorem 3.8 follows immediately from Lemma 3.9 com-
bined with the following lemma.

Lemma 3.10. For every P (Elow, Dlow) (with respect

to ε = 0) is a
(

∆, O
(

log (H(P )) + 2C(P ) d∆ log∗Ne
))

scheme. Moreover, if P is ∆ log∗N close to a distri-
bution P̃ , then the performance of the scheme on P is

O
(

log (H(P )) + 2C(P̃ ) d∆ log∗Ne
)

.

We omit the proofs of the lemmas above from this version.

3.4 Dependence of communication on entropy
In the previous sections we gave a scheme with perfor-

mance that is exponential in the entropy. This scheme is
error-free for some natural distributions and had positive
error for general distributions. The next lemma shows that
if we cannot find a scheme with performance that is linear
in the entropy, then any scheme that we will find must have
positive error for some distributions.

Lemma 3.11. For every non-decreasing function L :
<+ → <+ there exists a constant c = cL such that the fol-
lowing holds: If there exists (∆, L(H(P )))-UCS for some
∆ > 0, then there exists a (∆, c · (1 +H(P )))-UCS.

Proof omitted from this version.
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