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Is the number 9021960864034418159813 random? Educated opinions might vary from “No! No
single string can be random”, to the more contemptuous “Come on! Those are just the 714th to
733rd digits of π”. Yet, to my limited mind, the string did appear random. Is there a way to use
some formal mathematics to justify my näıveté? The modern theory of pseudorandomness [2, 5]
indeed manages to explain such phenomena, where strings “appear” random to simple minds. The
key, this theory argues, is that randomness is really in the “eyes of the beholder”, or rather in
the computing power of the “tester” of randomness. More things appear random to simpler, or
resource-limited, algorithms than to complex, powerful, algorithms.

And why should we care? Because randomness is a key resource in computation. Monte Carlo
simulations abound in the use of computation for prediction. On the theoretical side too, algorithms
get simplified or speeded up incredibly if they use randomness. Fundamental tasks in distributed
computing (such as “synchronization”) can be solved with, and only with, randomness. And there
is no hope for maintaining privacy and secrecy in the absence of randomness. At the same time
much of the randomness we deal with in reality is not “pure”. They don’t come as a collection of
independent random bits, but are generated by other processes. Knowing how an algorithm, or a
computational process, works in the presence of somewhat random strings becomes the essence of
a recurring question. (For example, should you really trust nuclear power safety calculations made
by a Monte-Carlo algorithm using randomness from the C++ rand program?)

Questions such as the above get formalized in the theory of pseudo-randomness as follows: It
considers some source of randomness X (formally given by some probability distribution over n-bit
strings), and a class of “Boolean” algorithms A (algorithms that decide Boolean questions) and
asks if some algorithm in A behaves very differently given access to a random string generated by
X, than it does on pure random strings? If every algorithm in A behaves roughly the same on X
as on pure randomness, we say X is pseudo-random to A. In the example above, X = Xπ may be
the source that picks a random integer i between 1 and 10000 and outputs π[i + 1], . . . , π[i + 20]
where π[j] denotes the jth digit of π. Given some class of algorithms A one could now ask, does
Xπ look pseudo-random to A?

Unfortunately answering such questions leads to a fundamental challenge in the theory of com-
puting. Proving, say, that Xπ looks random to A involves showing that no algorithm in A can
detect patterns that the digits of π show. And proving that some class of algorithms can’t do some
task is a major challenge to theoretical computer science—with “Is P = NP?” question being the
most notorious example.
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Given such major obstacles to analyzing the seeming randomness in strings, it is no surprise that
the study of pseudo-randomness remains in its infancy. The research highlight article by Braverman
sheds new light on this field. It shows that a broad class of sources, as long as they have sufficient
“local randomness”, fool a broad, but relatively simple class of algorithms, those that compute
“AC0 functions”. AC0 functions are those whose input-output behavior can be described by a
Boolean logic circuit consisting n input wires and polynomially many NOT gates and AND and
OR gates of arbitrary fan-in. AC0 functions correspond to tasks that can be computed in constant
time on highly parallel machines. These functions are at the forefront of the class of computational
tasks that we do seem to understand. For instance, AC0 functions can compute the sum of two
n/2 bit integers, but not their product (and so we do know things they can’t do). In fact, we even
knew a explicit source of relatively small entropy that appeared pseudo-random to this class [4].
Yet our understanding of the essence of what sources fooled this class of algorithms was unknown,
leading Linial and Nisan [3] to conjecture that a certain form of “local randomness” was sufficient to
seem random to this class of algorithms. The “local randomness” they pointed to is widely termed
“limited independence”. A source X is said to be k-wise independent if any particular k bits of
the random source are totally random and independent. Linial and Nisan conjectured that for
every constant depth circuit, some (log n)O(1)-wise independence would look like pure n bits of
randomness. For over two decades this conjecture remained unresolved. Only recently, Bazzi [1]
resolved a special case of the conjecture (for the case of AC0 functions corresponding to depth 2
circuits, or “DNF formulae”).

Now Braverman’s work resolves the conjecture affirmatively. In the process he reveals novel,
elegant, ways in which AC0 functions can be described by low-degree multivariate polynomials,
showing some of the interplay between Boolean computation and more classical mathematics. We
need to see many more such connections before we can hope to address the wide challenges of
computational complexity (and P vs. NP). Indeed even to address the question implied by the
opening paragraph “Are the digits of π pseudo-random to AC0 functions?”, one needs to understand
much more. Fortunately, the work of Braverman may have reduced this question to a purely
number-theoretic one: Are the digits of π locally random?
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