
Efficient Semantic Communication via Compatible Beliefs∗

Brendan Juba
Harvard University and MIT CSAIL

bjuba@mit.edu

Madhu Sudan
Microsoft Research
madhu@mit.edu

October 14, 2010

Abstract

In previous works, Juba and Sudan [6] and Goldreich, Juba and Sudan [4] considered the idea
of “semantic communication”, wherein two players, a user and a server, attempt to communicate
with each other without any prior common language (or communication) protocol. They showed
that if communication was goal-oriented and the user could sense progress towards the goal (or
verify when it has been achieved), then meaningful communication is possible, in that the user’s
goal can be achieved whenever the server is helpful.

A principal criticism of their result has been that it is inefficient: in order to determine the
“right” protocol to communicate with the server, the user enumerates protocols and tries them
out with the server until it finds one that allows it to achieve its goal. They also show settings
in which such enumeration is essentially the best possible solution.

In this work we introduce definitions which allow for efficient behavior in practice. Roughly,
we measure the performance of users and servers against their own “beliefs” about natural pro-
tocols. We show that if user and server are efficient with respect to their own beliefs and their
beliefs are (even just slightly) compatible with each other, then they can achieve their goals very
efficiently. We show that this model allows sufficiently “broad-minded” servers to talk with “ex-
ponentially” many different users in polynomial time, while dismissing the “counterexamples”
in the previous work as being “narrow-minded,” or based on “incompatible beliefs.”

∗Portions of this work are presented in modified form in the first author’s Ph.D. thesis. [5, Chapter 4]. Research
supported in part by NSF Awards CCF-0915155 and CCF-0939370.

1

1 Introduction

In this work we continue the work initiated previously by Juba and Sudan [6] and Goldreich, Juba
and Sudan [4] who considered “universal semantic communication” in the presence of “misunder-
standing.” Here, we address one of the main criticisms faced by these prior works, and to this end,
we summarize these works first.

The two works mentioned above consider two-party (or more generally n party) communication
in the setting where the two players don’t necessarily understand each other. Lack of understanding
is modeled by letting each of the two players, the user and the server, come from a large (possibly
infinite) class of potential users or servers, and each player does not know which specific member
of the other class it is communicating with. The semantics of the communication are modeled by
goals. In [6] the goal of the user is computational: Specifically, it wishes to decide some instance of
a (potentially hard) decision problem and the hope is that the server can simply solve the question
and communicate the answer to the user. In [4] this setting is extended to consider any possible goal
of communication. In the exposition below, we stick to the computational goal of [6] to describe
our work, though the results do generalize to the broader context of [4].

The work [6] considers the setting where the class of users is all probabilistic polynomial time1

interacting stateful machines, interacting with servers that are also stateful machines, but with
unrestricted time complexity. [6] shows that for the goal of deciding a PSPACE-complete problem,
there is a universal user that can achieve its goal (i.e., solve the decision problem on the given
instance) in polynomial time when interacting with any helpful server, i.e., one for which there exists
some (other) efficient user who reliably achieves the goal with the server. Thus this setting captures
the lack of common language: a server can pick the language of communication (or protocol) of its
choice while still being helpful (since it allows the user that speaks the same language to achieve its
goal), and the result shows that the universal user can achieve its goal despite the lack of common
language (and effectively implies that the user learns the language in a functional sense).

A weakness of the result above is what we shall refer to as the “enumeration bottleneck.” The
way the universal user U achieves its goal is to try and enumerate every user U ′ in the class of all
users and attempt to simulate the interaction of U ′ with the server. (If correct, such an interaction
will not only help U solve the decision problem, but also generate an (interactive) proof. If such a
valid proof is not obtained, then it must be that U ′ is not the right user to interact with the server.)
Unfortunately, this whole process works in a reasonable amount of time only if the correct user U ′

appears early in the enumeration used by U . As in the “classical theories” a la Kolmogorov [8] and
Levin [7], every protocol is enumerated within “constant” time, and this also allows [6] to obtain
their results. In particular, their user only succeeds in time exponential in the shortest encoding
of a U ′ that works with the server. This raises the question of whether it is possible to construct
systems where the user can “learn” the server’s language more actively.

In [6] it is shown that in their model such a more efficient user can not be achieved. Specifically
they note that the server may pick a k-bit password and only be helpful to users that attach this
password as a prefix to every question (and reply with the null string on all other questions). A
universal user would have to “discover” this password to achieve its goal and this discovery clearly
takes exponential time in k (whereas the description of the server has length linear in k).

1Strictly, they consider all users that run in polynomial time when interacting with any given server, though the
polynomial depends on the server. This seems to be the more natural definition of polynomial time in this setting,
and we stick to the same convention.

2

In view of this limitation result, one needs to search for alternative definitions that allow user-
server interactions to be more efficient. A priori this seems to require a search for “natural”
properties of “natural languages,” but we see no evidence for any universal consensus on what
should be taken to be “natural”—the various notions of which ways to communicate are natural
seem highly contextual and appear not to yield any universal truths. In view of this, we propose
another way to model efficient learning, which we believe will be useful in designing better servers.

1.1 Our model and main result

Our approach to make progress on this somewhat elusive question is to model the “intent” of the
server better. For example, in the “password-protected” server example above, one may ask, why
is the server insisting on this password? If it is for security reasons, or to discourage frivolous users
then a 2k lower bound on the communication complexity is really consistent with the intent of the
server and little can be done to overcome this limit. On the other hand, if the server is picking this
password as a very natural k bit string that ought to be evident to any “intelligent” person as a
natural choice (e.g., when PS files are expected to be prefaced with “%!PS-Adobe ...” by postscript
printers) then the server doesn’t think of the k-bit password as a deterrent to potential users, and
this ought to be somehow captured by the “beliefs” of the server as to what is natural. In this
work, we set out to do exactly this.

Throughout the following, we consider users whose goal is to decide some decision problem Π,
i.e., to compute Π(w) for some input instance w of length n.

Server’s Beliefs We model the beliefs of a server S by a distribution Q over all potential user
protocols it “intends” to serve. We then measure the efficiency TS of the server by the expected
time that it takes a user U , chosen from the distribution Q, to achieve its goal. (The complexity
bounds we consider are worst-case over instances and average case over users, and we study this
bound as a function of the size of the instances, n; we can also take the distribution Q be an
ensemble parameterized by the “length of a protocol” ` for a given encoding of protocols.) The
pair (Q,TS) thus describe the beliefs and intentions of the server S. A server is helpful with respect
to its own beliefs Q if TS is polynomial in n and `.

Of course, a server who is efficient with respect to its own beliefs need not be efficient for every
user. To understand which users it can serve efficiently, we also need to study the beliefs of the
users.

User’s Beliefs In our model, users also have beliefs about which servers they may be talking
to, and one could model this by a distribution over all possible servers. But this makes it hard to
compare and evaluate the compatibility of the server’s beliefs and the user’s beliefs (since they are
defined on different universes). Instead, we model the user’s beliefs by a distribution P on the users
that it thinks that a typical server may serve. (For instance, P could be the distribution induced
on users by picking a server S according to the user U ’s beliefs about which server it may be talking
to, and then picking a user U ′ according to the distribution Q = QS , assuming the user can easily
obtain samples from QS given S.) We don’t dwell on how the user arrives at this distribution, but
rather insist that the user should express its beliefs in such terms, and further that this distribution
P should be efficiently sampleable.

Having defined the beliefs of the user and the server, we now ask, when are these compatible?
To this end, we define the agreement between two distributions, denoted α(D1, D2), to be the

3

quantity 1 − ||D1 − D2||, where ||D1 − D2|| denotes the total variation distance between D1 and
D2. (Equivalently, α(D1, D2) =

∑
ω∈Ω min{D1(ω), D2(ω)}.)

Main Result Our main theorem shows that for every sampleable distribution P on users,
there exists a universal user U with PU = P that can achieve its goal (of deciding Π) in time
poly(TS/α(P,QS)) when communicating with server S. Thus, as the time required by the univer-
sal user to communicate with a server depends only polynomially on the agreement of the user’s
distribution with QS , the user only needs to find a distribution D that has “reasonable” agreement
with the distribution QS to communicate with S in a similarly “reasonable” amount of time. This
result is stated formally in Theorem 7.

We note that once the definitions are in place the theorem is not hard to prove. We discuss the
utility of the theorem in the next section.

1.2 Implications

The utility of Theorem 7 depends on the ability of the “universal user” to guess an appropriate
distribution P that is compatible with that of the server and simultaneously, the ability of the
server to efficiently service a large class of users (those with large probability mass in Q). Below
we argue that the latter can be done, and the former is roughly the best hope we have.

We first discuss the possibility of designing servers that can service a large class of users simul-
taneously.

We note first that this is already being done quite often in practice, and we are merely providing
the right definitions to support this practice. For instance a USB (Universal Synchronous Bus)
driver (acting as the server) on a standard laptop very quickly learns the identity of the user (the
USB device, be it a CD player, a memory stick, a printer etc., and therefore its corresponding
protocol) and quickly learns to serve it (i.e., send/collect information with the right instructions).
We formalize such actions by a simple theorem. which shows that there exist servers that are helpful
to exponentially many user protocols. Specifically there is a server S that has uniform support on
exponentially many user protocols of description length `, while allowing each to reach its goal in
time poly(`) on this distribution. (See Theorem 8.)

Of course, simply counting the number of user protocols is not sufficient, but it seems to be
a minimal requirement which we can claim to satisfy. In our proof, the exponential class of users
seem to be quite diverse, and can each demand service in completely different languages and yet
may all be simultaneously serviced if they functionally identify themselves.

A more subtle question is, how can one guess a distribution P that might be compatible with
the server distribution? Indeed, this seems to be as hard a problem as proposing any “natural” or
“logical” restrictions on “language,” and there are a multitude of inconsistent opinions on this. A
nice aspect of our definition, based on “flexible beliefs” as opposed to dogmatic certainty, is that it
naturally allows a moderate number of (potentially inconsistent) “naturalness” restrictions to be
incorporated: if distributions P1 and P2 (possibly supported on disjoint sets of users) are proposed
as “natural” candidate distributions for what the server may service, then the distribution P which
puts half its mass on P1 and half on P2 will allow the user to achieve its goal with just a constant
factor slowdown.

4

1.3 Related models in the literature

The notion of using beliefs to model and cope with uncertainty is of course not new, and is a
standard theme in statistics, AI, and Game theory. The usual model here tends to assume some
globally known beliefs about various random variables, and focuses on the design and analysis of
processes which work well when the random variables come from this distribution. For example,
in traditional Bayesian inference, one may have a (parameterized) family of models, and a prior
belief about which members of the family are likely, often given as a distribution over the settings
of the parameters in a model family. The objective is then to guess the settings of the parameters
capturing a real process after observing a sample of data generated by that process. The work is
in obtaining a “best guess” from the posterior, i.e., the distribution obtained by incorporating the
new data into the prior using Bayes’ rule. If the prior distribution is good – e.g., if it is informative
and the process was drawn from this prior distribution over models – then we expect that the best
guess given by Bayesian methods should be pretty good. One of the drawbacks of the Bayesian
approach, though, is that it really doesn’t provide much guidance in choosing a prior, and there
are no guarantees about the performance with a bad prior.

A model inspired by traditional Bayesian inference, but similar to ours, is the PAC-Bayes ap-
proach to inference. This approach, suggested by Shawe-Taylor and Williamson [12] and developed
by McAllester [10], attempts to repair the weakness in Bayesian methods mentioned above by
establishing a bound on the quality of the guesses that holds for any quality of prior—precisely,
the generalization error of members of the model family are uniformly bounded by a function of
how much our posterior distribution differs from our prior. Informally then, a PAC-Bayes bound
expresses the quality of the guesses in terms of the quality of the prior. Of course, possession of
such a bound naturally suggests an analogue of the structural risk minimization principle from
statistical learning theory [13], which suggests that, rather than the guess indicated directly by the
posterior distribution, the best guess for a model is the one that has the lowest total loss on the
sample and in the generalization bound. Thus, the PAC-Bayes approach allows one to incorporate
the beliefs from prior distribution, but moreover fails gracefully if these beliefs are not accurate.

Our approach is similar, though of course the prime difference is that we are not interested
in learning/inference, but rather in communicating. In our setting, a priori it is not even clear
how to express beliefs of the users and servers (or how to compare them) and we view our main
contribution to be a method to do so which allows for an improved efficiency analysis.

1.4 Organization of this paper

In Section 2 we describe the basic notions of semantic communication from [6]. In Section 3 we
describe our model and prove our main result. In Section 4 we show that there exist servers that
serve exponentially many different users in polynomial time. Some concluding thoughts are given
in Section 5.

2 Preliminaries

We start by reviewing the principal notions from the previous works [6, 4], capturing communication
in the absence of a fixed common language; in this case, correctness is determined by fixing a
goal of communication that the parties should achieve. [6] fixes some arbitrary decision problem
Π : {0, 1}∗ → {0, 1} and considers a user U interacting with a server S with the aim of computing

5

Π(w) for some given w ∈ {0, 1}n. We now formally express that the user achieves its goal in the
absence of a common language by saying that it successfully computes Π with a large class of
servers S, “speaking” many different languages:

Definition 1 ((Π,S)-Universal) We say that a user U is a universal decider for a decision prob-
lem Π with a class of servers S, or (Π,S)-universal, if for any server S ∈ S, and any initial state
σ of S S starting in state σ helps U decide Π and there exists a polynomial pS such that for every
instance w ∈ {0, 1}∗ U runs in expected time pS(|w|).

The principal result of [6] is that for PSPACE-complete problems Π, there a universal proba-
bilistic polynomial time user that can compute Π by interacting with any “Π-helpful” server. We
describe the result more formally below, but we must first recall the definition of Π-helpful:

Definition 2 (Π-Helpful) For a decision problem Π, we say that a server S is Π-helpful if there
exists a probabilistic user algorithm US and a polynomial p, such that for every state σ of S, S
starting in state σ helps US decide Π in p(n) steps.

Note that it is a minimal requirement that S contain only Π-helpful servers, since (Π,S)-
universal users witness the Π-helpfulness of any S ∈ S. Now, the main theorem of [6] is:

Theorem 3 ([6]) Fix a problem Π and let S be the set of all Π-helpful servers. If Π is PSPACE
complete then there is (Π,S)-universal user. Conversely if there is a (Π,S)-universal user, then Π
is in PSPACE.

The positive direction in the theorem above leverages the existence of interactive proofs for
PSPACE problems [9, 11] to create the universal user. As stated above, the theorem does not clarify
the status for PSPACE-intermediate problems, but as noted by [4] (and shown in detail in [5]), the
technique generalizes. We give their more refined version of the above theorem, which characterizes
problems with universal users exactly in terms of languages with “competitive interactive proofs,”
a notion studied in [2], in the appendix. In any event, the theorem stated above suffices to make
our concerns explicit and address them.

The unfortunate consequence of this level of generality that we address here is that the universal
user constructed in Theorem 3 experiences an overhead in its running time that can be exponential
in the user’s shortest encoding of a protocol for using the server. Note that if a third party (who
knew both the server and the user) was available to describe the shortest protocol to the user, the
user’s running time would have only had a polynomial dependence on the encoding of this protocol.
It was shown in [6] that such efficiency cannot be obtained without the presence of a third party,
and we recall this result next.

For simplicity, we will present the result in terms of the “password closure” of a helpful server:

Definition 4 Given any server S, the password closure of S, denoted PW(S), is the following class
of servers: for each x ∈ {0, 1}∗, PW(S) contains the password-protected server with password x,
Sx, described as follows. Sx has a copy of the states of S and in addition, a “waiting for password”
state, from which it sends only empty messages to the user until it first receives the message x,
whereupon it enters a designated “initial state” from the states of S.

6

Notice that the password closure of a Π-helpful server S contains only Π-helpful servers (in
particular, that help various other users with the same asymptotic running time); therefore, an
exponential lower bound for the running time of a Π-universal user on this class is also a meaningful
lower bound for the overhead of the Π-universal user in general.

Theorem 5 Let Π be a PSPACE-complete decision problem and let S be a Π-helpful server. Sup-
pose there exists (Π,PW(S))-universal user U running in time T (n,m) on instances of length n
when interacting with servers Sx for |x| = m. If for some m(n) = ω(log n), T (n,m(n)) is bounded
by a polynomial in n (and thus T (n,m) = o(2m)), then PSPACE = BPP.

Thus, the above theorem shows that enumeration is unfortunately qualitatively optimal for our
goal of interest in the basic universal setting. Since this exponential “constant” in the running
time of a universal user protocol is extremely undesirable, we need to explore means of restricting
the class of servers so that it does not contain password-protected servers in particular, but is still
broad enough to yield useful protocols. In particular, this result strongly suggests that merely
restricting the computational complexity of the user protocols that the servers help cannot suffice
for obtaining a more efficient universal user.

In the next section, we explore some definitions that rule out the “hiding” behavior of the
password-protected servers and allow us to measure the compatibility of a server with a user. We
can then exhibit a protocol for which the efficiency scales appropriately with this quantity, and
therefore under some natural conditions a universal protocol can run more efficiently.

3 Our Model and Results

In the previous section, we saw that as a consequence of our counting “password-protected” servers
as “helpful” servers that our universal users were expected to work with, we had no hope of
giving a really efficient user strategy—the number of rounds required under such conditions grows
exponentially in the length of the user protocol needed to successfully communicate with the server.
This is a dissatisfying state of affairs since, in applications, one surely never expected a protocol
that could quickly break into a password-protected server; we would have been quite happy to use
a protocol that was only efficient when the server was not designed to keep us out in the first place.
Thus, we desire a refinement of our notion of “helpfulness” to include only easy-to-access servers,
and a protocol that can take advantage of such servers, both of which we will develop presently,
inspired by “PAC-Bayesian” analyses in learning theory [10, 12].

3.1 Motivating the notions

Our model was already introduced informally in Section 1, and we will formalize it later in this
section. But before doing so we explain why some alternative approaches fail.

As a starting point, consider a server designer who is attempting to design an easy-to-access
server for some fixed goal that is known to all parties. Once we have a notion of what kind of server
a benign designer might produce, we will be able to ask whether or not we, as users, can generally
access such servers and achieve the goal efficiently with their assistance.

A first attempt at developing a notion of an easy-to-access server might proceed by considering
what went wrong with password-protected servers: the reason a long password provides security is
that, for a user who does not have the password, accessing the server requires searching through an

7

exponentially large space, but this only holds if the password is properly chosen—if the password
does not have enough “randomness,” then it may be possible to break it by searching through a
smaller space, such as searching through the words in the dictionary, for example. Relative to the
dictionary, such weak passwords have short descriptions, and may be considered “easier to guess”
or more “natural.” Thus, as a first stab at a notion of easy-to-access along these lines, we might
wish to say that a server should operate with a user protocol with a short description.

The problem with the “short description” requirement is that there could be a gap between
our notion of a short description and the server designer’s notion. One might be tempted to retort
that a basic result in Kolmogorov complexity is that these description lengths should not differ
by more than a constant [8], but this is exactly the deficiency of the prior works in semantic
communication [6, 4]. Thus, it is clear that this first attempt is inadequate.

A second approach is to consider somewhat more restricted classes of users/servers. Common
suggestions include: (a) servers/users whose languages/protocols have features similar to natu-
ral/programming languages; (b) servers/users whose behavior shows strong “analogies” in different
contexts; or (c) servers/users who announce their preferred “protocol” before starting to communi-
cate. While each of these restrictions may seem natural, they lead us away from universality, and
we cannot insist on such behavior.

This leads to our suggestion that preference for such restrictions should be expressed as beliefs.
Beliefs, by their very nature, allow opinions to be expressed without full justification. A “natural”
restriction in the opinion of the server can thus hopefully be captured by its “belief” and similarly
for the user. Now we don’t have to insist on a universal notion of “natural” programs: different
users/servers may have different notions of “naturalness” which are captured by different beliefs.
For example, the length-weighted uniform distribution over user protocols is a natural sampleable
belief capturing our first attempt, while our proof of Theorem 8 uses a belief similar to (c) above.

Our approach then relies on two crucial properties of these “beliefs.” First, each user and server
can evaluate their own behavior with respect to their beliefs to see how “broad-minded” they seem—
for example, if the server Sx in the password protected case produced x by picking x uniformly at
random from {0, 1}m, then it should understand that it is acting “narrow-mindedly” since the user
should not have much of a chance at guessing x in any reasonable amount of time. On the other
hand, if the server chose x as a string of “low complexity,” it may legitimately believe that “natural”
intelligent users should be able to guess this string. Of course, there still remains the question as
to whether the user would also think x has low complexity, but this is where the (in)compatibility
of the beliefs works in to the efficiency: the second crucial property is that we can define a measure
of compatibility of beliefs that captures its effect on the efficiency of communication.

3.2 Beliefs and Compatibility

As mentioned in Section 1, the “prior” beliefs of a server S are modeled by a distribution QS on the
users. We now define the “benchmark” running time of the server when interacting with a random
user chosen according to some distribution.

Definition 6 (Benchmark running time) For a problem Π, a server S, and a user protocol U ,
let tU,S(n) denote the maximum expected (over internal coin tosses of U and S) running time of
U to compute Π(x) when interacting with S, over instances x ∈ {0, 1}` for 1 ≤ ` ≤ n and starting
states of S. Then, for a distribution over user protocols Q, the Q-benchmark running time for Π
with S, denoted tQ,S(n), is given by the expected value of tU,S(n) when U is sampled from Q.

8

P

inefficient
(type II)

Q
(type I)

inefficient

P Q
(efficient)

(efficient)

Figure 1: An illustration of the two types of inefficiencies; P denotes the set of user protocols given high
weight by the prior distribution P , and similarly Q denotes the set of user protocols given high weight by
the prior distribution Q.

We compare the performance of a server S with belief Q with that of a user U designed with
prior P . To compare them we use the “compatibility” of P and Q. Specifically, for distributions
P and Q supported on Ω (where P (ω), Q(ω) represent the probability of a point ω ∈ Ω), let the
agreement of P and Q, denoted α(P,Q), be the quantity

∑
ω∈Ω min{P (ω), Q(ω)}.

Our main theorem shows that for every sampleable distribution P there is a user U (who knows
P) that computes Π efficiently whenever (I.) P has noticeable agreement with the server’s beliefs
QS , and (II.) S is helpful with respect to its beliefs QS .

Theorem 7 (Universal users for close priors) For a class of servers S, let a distribution on
user protocols QS be given for each S ∈ S and let tS : N→ N denote the benchmark running time of
S on distribution QS (i.e., tS(n) = tS,QS (n)). Let Π be a PSPACE complete problem. Then there
exist polynomials q = qΠ and r = rΠ such that for every efficiently sampleable distribution P over
users, there is universal user U = UP that computes Π in time TS(n) = q(n, 1/α(P,Q)) · (tS ◦ r)(n)
when interacting with server S.

As with Theorem 3, the above theorem can also be extended to other problems that have
competitive interactive proofs (see Appendix). Figure 1 pictorially describes the two types of
conditions required by Theorem 7 to get efficient universal users.
Proof: We use a variant of the protocol used in the proof of Theorem 3 in which the enumeration
of protocols is replaced by simply sampling repeatedly from our given distribution P .

Construction. Consider any interactive proof system for Π in which each message of the
prover is a single bit. Since we know that the optimal prover strategy can be simulated in PSPACE,
there is a polynomial time reduction that, given the current message history and instance x, pro-
duces an instance y such that Π(y) is the prover’s next message. Let r(n) be the corresponding
polynomial upper bound on the length of Π(y) for x of length n.

Now, since the reduction can be computed in polynomial time, we see that the entire interaction
between the prover and the verifier can be simulated in polynomial time relative to an oracle for
Π. Let q1 be the time bound, and let U (·)(x, b) be a protocol that computes this simulation for
common input Π(x) = b, answering oracle queries for the prover strategy by invoking its oracle
O(log q1(n)) times per query, and returning a majority vote.

Our protocol is then as follows. In parallel, we run two algorithms, one directly computing Π
in time 2q2(n) for some polynomial q2, and one computing the following:

9

• For i = 1, 2, . . ., repeat the following:

– For j = 1, 2, 3, . . . , i− 2 log i, and k = 1, 2, 3, . . . , 2j , repeat the following:

1. Sample a protocol Ũ from P .
2. For up to t = 2i−j−2 log j steps, invoke Ũ O(log q1(n)) times and take a majority

vote of the verdicts to get a candidate b for Π(x), and then in the remaining steps,
invoke U Ũ (x, b) up to O(q2(n)) times, and if the verifier accepts in a majority of
these runs, output b and halt.

Whenever one of these two algorithms halts, we halt and return that algorithms’ answer.
Analysis. Correctness is clear: we run the proof system in the inner loop of the second

algorithm at most 2q2(n) times, where its soundness guarantees that it only incorrectly accepts
with probability 1/3. So, for an appropriate choice of constants, the inner loop halts with a wrong
answer before the first algorithm returns a correct answer with probability less than 1/3.

It thus remains to analyze the running time. Since U (·) simulates an interactive proof system,
for any user strategy Ũ that decides Π with S with probability 2/3, the verifier accepts in each
run of U Ũ with probability at least 2/3. If a 1 − δ′ fraction of the user strategies under P decide
Π with S on instances of length up to r(n) with probability at least 2/3 in t′ steps, then if t >
Ct′q1(n)q2(n) log q1(n) for an appropriate C, with probability at least 2/3 a majority of the runs
of U Ũ accept, given that we successfully sampled such a Ũ . We will call these Ũ good protocols.

If i ≥ i∗ = log(Ct′q1(n)q2(n) log q1(n))− log(1− δ′) + 2 log log 1
1−δ′ , then for j = 1, . . . log 1

1−δ′ ,
we run each protocol we sample for at least Ct′q1(n)q2(n) log q1(n) steps, and there are precisely∑log 1

1−δ′
j=1 2j = 2 1

1−δ′ − 1 such samples in phase i∗; we therefore obtain a good protocol in phase

i∗ and run it for sufficiently many steps with probability at least 1 − (1 − δ′)
1

1−δ′ ≥ 1 − 1
e , where

each time we then succeed and halt with probability at least 2/3. Moreover, in phase i∗ + r, there
are 2r+1 1

1−δ′ − 1 such samples, and thus if we group our samples into batches of 1
1−δ′ , in each of

our first 2r+1 − 1 batches, we only fail when we either fail to hit a good protocol, or when a good
protocol fails, which by a union bound occurs in each group with probability at most 1/3 + 1/e,
and thus at most (1/3 + 1/e)2r+1−1 overall. Since the total running time up to phase i∗ + r is∑i∗+r

i=1

∑i−2 log i
j=1 2j 2i

j22j
≤ π2

3 2i
∗+r our expected running time is at most

π2

3
2i
∗

(
1 +

∞∑
r=0

2r+1(
1
3

+
1
e

)2r+1−1

)
= O(2i

∗
) = O

(
t′q1(n)q2(n) log q1(n)

1
1− δ′

log2 1
1− δ′

)
We now note that if the probability of sampling a good protocol under QS is at least 1 − δ,

1 − δ′ ≥ α(P,QS) − δ. Moreover, for t′ = 2(tS ◦ r)(n)/α(P,QS), it follows by Markov’s inequality
that δ ≤ α(P,QS)/2, we therefore find for this choice of t′ that our expected running time is at
most

O

(
(tS ◦ r)(n)q1(n)q2(n) log q1(n)

(
1

α(P,QS)
log

1
α(P,QS)

)2
)

10

4 Servers serving wide classes of users

We note in this section that it is possible to construct servers who serve an exponentially large
class of distinct users efficiently. Our construction, though simple, suggests a “simple” abstraction
of how such universal protocols are being implemented in practice.

We say that a distribution D on {0, 1}∗ has exponential support if the probability of picking a
length k string under this distribution is inverse polynomial in k and, conditioned on this event, it
is uniform on an exponentially large subset of length k strings.

Theorem 8 For any PSPACE-complete problem Π, there exists a Π-helpful server S with as-
sociated distribution Q with exponential support such that the benchmark running time tS,Q is
polynomial in the input length and in the length of the user description.

Proof: The class of users UΓ we consider includes one for each LINSPACE-complete problem Γ.
On an instance y of Π, the user UΓ sends the message “E(Γ);x” where E(Γ) is an encoding of the
problem Γ in some fixed universal language and x = RΠ(y) for some reduction from Π to Γ, and
returns the server’s response as its answer.

The server S on receiving a message E(Γ);x uses the canonical reduction RΓ from Γ to Π to
compute RΓ(x) and responds with Π(RΓ(x)) = Γ(x) (= Π(y)). This server is thus Π-helpful to
every user UΓ and thus under, e.g., some universal distribution on UΓ, has polynomial benchmark
running time.

The theorem follows from the fact that the number of different LINSPACE-complete problems
with description length E(Γ) ≤ k is exponential in k.

5 Conclusions

We introduced a new measure of compatibility between users and servers that allows each to pick
their own favorite “language” or “protocol” of communication, and measures the compatibility
between the two. The measure, based on measuring the proximity between the beliefs of the user
and server (about who they are talking to), allows for the design of “broad-minded” servers and
users that allow many user/server pairs to reach understanding quickly.

We believe this measure is the right one to explain the general success of natural (human-to-
human) communication, while allowing for occasional miscommunication.

This measure also articulates the main challenge in “robust” server design: a server should
attempt to efficiently service many different users, and this is not always easy. As we understand
it, the way “USB servers” manage to do so is not very different from the example construction in the
proof of Theorem 8. In practice, such servers maintain a “large” list of possible device identifiers
and for each such identifier maintain a piece of software/instructions indicating how this device
ought to be treated. While such designs remain ad-hoc, our notions provide a way to formally
measure their performance. They also raise the question as to whether there are other ways to
design servers that are efficient while having beliefs that have exponential support. In particular,
there is a large body of literature on Bayesian inference in the Machine Learning community, which
might suggest ways to construct more sophisticated servers that learn (how to help) a user’s protocol
during their interaction, e.g., if the prior over user protocols is for some appropriate parameterized
class of protocols.

11

Moving away from computers to “human-to-human” communication, one could ask how users
and/or servers form “beliefs” about who they are talking to. We feel this is a natural phenomenon
where the users/servers attempt to generalize from multiple interactions. Such interactions ought
to lead each user/server to create some general models capturing the diversity of users/servers they
interact with, along with some priorities if the frequencies with which they deal with different kinds
of users/servers is very different.

Thus, in our opinion, modeling the efficiency of communication in terms of beliefs and compat-
ibility is possibly the right way to seek efficient protocols, while capturing existing attempts to do
so, both in engineering and in nature.

Acknowledgements

This work was inspired by conversations with Adam Kalai, Dan Roy, and David Sontag; it has
benefitted from the insightful input and criticisms of Oded Goldreich and Sanjeev Khanna.

References

[1] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.

[2] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM J.
Comput., 23(1):91–119, 1994.

[3] Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995. Preliminary version appeared in Proc. 21st STOC, pp86–97, 1989.

[4] Oded Goldreich, Brendan Juba, and Madhu Sudan. A theory of goal-oriented communication.
Technical Report TR09-075, ECCC, 2009.

[5] Brendan Juba. Universal Semantic Communication. PhD thesis, MIT, 2010.

[6] Brendan Juba and Madhu Sudan. Universal semantic communication I. In Proc. 40th STOC,
2008.

[7] Leonid A. Levin. Universal search problems. Probl. Inform. Transm., 9:265–266, 1973.

[8] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications (2nd
ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[9] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859–868, October 1992.

[10] David A. McAllester. Some PAC-Bayesian theorems. Mach. Learn., 37(3):355–363, 1999.

[11] Adi Shamir. IP = PSPACE. JACM, 39(4):869–877, 1992.

[12] John Shawe-Taylor and Robert C. Williamson. A PAC analysis of a Bayesian estimator. In
Proc. 10th COLT, pages 2–9, 1997.

[13] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

12

Appendix

A Extensions to Problems with Competitive Interactive Proofs

Theorem 3 as stated in Section 2 (which, in turn, is nearly identical to the main result of Juba and
Sudan [6]) does not address the feasibility of constructing Π-universal users for problems Π that are
in PSPACE but not PSPACE-complete. As pointed out in subsequent work by Goldreich, Juba,
and Sudan [4], the construction actually works in somewhat greater generality; moreover, given
the right definition, it is then possible to obtain an exact characterization in terms of interactive
proofs [5], similar to the characterization of program checking in terms of interactive proofs by
Blum and Kannan [3]. We will review the appropriate definitions for this characterization, and
sketch the argument.

The construction of universal users described above relies on the availability of an appropriate
kind of proof system for the problem. Again, we already know that Π must lie in IP in order
for it to be feasible for us to give a universal user for Π. Moreover, though, the constructions of
Theorem 3 and 7 worked by searching the space of user protocols for a protocol that simulated the
prover in an interactive proof for Π with the given server, where we could show that some such user
protocol existed. Now, in general, there may be a “gap” between algorithms that decide Π with a
server S, and algorithms that can prove membership in Π with S, even given that some protocol
for deciding Π exists. The appropriate kind of proof system for our characterization will be one in
which no such “gap” exists.

This relationship between the complexity of deciding a problem Π and the complexity of the
prover for an interactive proof system for Π has been studied in the past—Bellare and Goldwasser [2]
introduced competitive proof systems to consider precisely such questions. Roughly, these are in-
teractive proof systems for set membership in which the prover can be efficiently simulated using
oracle queries to the set. In particular, the question of the existence of competitive interactive proof
systems is a generalization of the decision-versus-search question for NP proof systems—simulating
the interaction between the prover and the verifier using an oracle for the set allows one to generate
“proofs” of membership in polynomial time, given the ability to decide membership. Precisely, the
definition is as follows:

Definition 9 (Competitive interactive proof system) Let P be a probabilistic polynomial time
interactive oracle Turing machine and let V be a probabilistic polynomial time interactive Turing
machine. We say that (P, V) is a competitive interactive proof system for a set S if

1. (Completeness) For every x ∈ S, the probability that V accepts when interacting with PS

on common input x is at least 2/3.

2. (Soundness) For every x /∈ S and every interactive Turing machine P̃ , the probability that
V accepts when interacting with P̃ on common input x is at most 1/3.

We say that P is a competitive prover strategy. We let compIP denote the class of decision
problems Π with competitive interactive proof systems for membership in Π (viewed as a set),
and we let co− compIP denote the class of decision problems such that their complements are in
compIP.

13

It may now be verified that the proof of Theorem 7 applies to any Π in compIP∩ co− compIP
since the only property of PSPACE-complete Π that was used was the existence of an efficient
prover relative to an oracle for Π, i.e., a competitive prover strategy. We therefore obtain:

Theorem 10 (Universal users for problems with competitive proof systems) For a class
of servers S, let a distribution on user protocols QS be given for each S ∈ S and let tS : N → N
denote the benchmark running time of S on distribution QS (i.e., tS(n) = tS,QS (n)). Let Π be a
problem in compIP ∩ co− compIP. Then there exist polynomials q = qΠ and r = rΠ such that for
every efficiently sampleable distribution P over users, there is universal user U = UP that computes
Π in time TS(n) = q(n, 1/α(P,Q)) · (tS ◦ r)(n) when interacting with server S.

Note that this theorem generalizes the positive direction of Theorem 3 since the uniform distri-
bution over protocols yields agreement 2−|US |−2 log |US | with the distribution QS that puts all of its
mass on a protocol US helped by S of length |US | in the user’s encoding of protocols.

Now, as suggested previously, it is also possible to obtain an exact characterization of when
universal users can be constructed in terms of competitive interactive proofs. The key observation,
as noted by Goldreich, Juba, and Sudan [4], is that any (Π,S)-universal user for a set S containing
all Π-helpful servers must not halt with a wrong verdict with probability any greater than 1/3 with
any server, even if the server is not Π-helpful. Otherwise, it is possible to construct a Π-helpful
server that simulates the unhelpful server in interactions with the proposed user, and thus forces
the user to output a wrong verdict with probability greater than 1/3. (A similar argument was
also used to show that Π must be in PSPACE for (Π,S)-universal users to exist in the earlier work
of Juba and Sudan [6].)

In the present context, this observation allows us to construct competitive proof systems for Π
and its complement as follows: the competitive prover strategy simulates the oracle for Π directly
by relaying messages back and forth between the verifier and its oracle, while the verifier runs the
universal user strategy for Π for a bounded amount of time, and accepts if the strategy returns
Π(x) = 1 (resp. Π(x) = 0 for the complement) within the given time bound. Since an oracle for
Π is a Π-helpful server strategy, it follows that we can choose a polynomial time bound for the
universal user such that with this server strategy, the user outputs Π(x) and halts within the time
bound with high probability. (This argument is given in more detail in [5].) We therefore obtain:

Theorem 11 ([4, 5]) There is a (Π,S)-universal user for any set S of Π-helpful servers iff Π ∈
compIP ∩ co− compIP.

It is instructive to contrast this result with the characterization of problems that have program
checkers in terms of function-restricted interactive proofs, i.e., proof systems in which even dishonest
provers are assumed to respond according to a (stateless) function. Recall that a program checker
is an efficient algorithm that with high probability, when given an input x and access to a purported
program for Π, either returns Π(x) if the program computes Π, or otherwise, either (a) returns
Π(x) anyway or (b) outputs “BUGGY.” (We refer the reader to the work of Blum and Kannan [3]
for the precise definitions of program checkers and function-restricted interactive proofs.)

Theorem 12 ([3]) There is an efficient program checker for Π iff both Π and its complement have
a function-restricted interactive proof system.

14

Thus, we see that universal users and program checkers have a relationship to one another
analogous to the relationship between (competitive) interactive proof systems and multi-prover
interactive proof systems. In particular, Bellare and Goldwasser [2] noted that every problem with
a competitive proof system has a function-restricted proof system but the converse is of course
unlikely to hold unless EXP is contained in PSPACE since EXP-complete problems have program
checkers [1]—so, every problem with a universal user also has a program checker, but the converse
is unlikely.

15

