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Abstract. The rich collection of successes in property testing raises a
natural question: Why are so many different properties turning out to
be locally testable? Are there some broad “features” of properties that
make them testable? Kaufman and Sudan (STOC 2008) proposed the
study of the relationship between the invariances satisfied by a prop-
erty and its testability. Particularly, they studied properties that were
invariant under linear transformations of the domain and gave a charac-
terization of testability in certain settings. However, the properties that
they examined were also linear. This led us to investigate linear-invariant
properties that are not necessarily linear. Here we describe some of the
resulting works which consider natural linear-invariant properties, specif-
ically properties that are described by forbidden patterns of values that
a function can take, and show testability under various settings.

Keywords: property testing, regularity lemma, linear invariance

1 Introduction

The field of property testing, initiated by the works in [BLR93,BFL91] and de-
fined formally in [RS96,GGR98], has seen an enormous and diverse collection
of successes lately. The rich collection of properties that turn out to be testable
extremely locally (with say, constant number of queries) relative to the size of
the object being tested, leads to a natural question: Why are so many properties
locally testable? Are there some broad unifying themes in the properties being
tested, and the testers being used? In an attempt to explain this richness and
diversity, Kaufman and Sudan [KS08] suggested that the “invariances” shown
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by a property may play a central role in their testability. A property of func-
tions mapping a domain D to a range R is said to be invariant under a map
π : D → D, if whenever a function f satisfies the property, so does the function
f ◦ π. In particular, if π is a permutation, then this says that the property is
invariant if the domain is relabelled according to π. Kaufman and Sudan suggest
that many properties that are known to be testable have a rich collection of in-
variances and often testability is implied by such invariances. They then focus on
algebraic properties in particular and notice that the properties in consideration
are defined over domains that are vector spaces over some field, and the prop-
erties are invariant under linear, and sometimes affine, transformations of the
domain. They also show that using very few additional features of the property,
one can deduce testability, thus unifying many previous results (including those
in [BLR93,RS96,AKK+05,KR06,JPRZ04]).

One of the more restrictive “additional features” of the properties studied
by [KS08] is that the property itself is “linear”, the range of the functions be-
ing considered is a field and the property forms a vector space over this field.
While this feature is definitely exhibited by all algebraic properties, it is a very
different requirement to the requirement of linear-invariance; and motivated our
work [BCSX09] where we attempt to extend the study of “testing based on
invariance” beyond this restriction. The principal results of our work is an infi-
nite class of “natural non-linear, linear-invariant properties” which we show to
be testable. In the process we describe an even richer class of linear-invariant
properties whose testability remains open, which if shown to be locally testable
would unify the results of this work, with those studied in the algebraic setting
(including those of [KS08]). We describe our problems and results in greater
detail below.

2 Definitions: Constraints, Characterizations, Invariance
and Orbits

We consider properties of functions mapping some domain D to some range R.
We let {D → R} denote the set of all such functions and describe a property by
the set of functions F ⊆ {D → R} that satisfy the property. Throughout this
article, we will consider functions mapping the domain D = {0, 1}n to the range
{0, 1}, where the domain is viewed as the n-dimensional vector space over the
binary5 field F2. By an abuse of notation, F will actually refer to an ensemble
of properties, one for each value of n ∈ Z+.

We measure the distance between functions in the (by now) standard way: the
distance between f and g, denoted δ(f, g), is the quantity δ(f, g) = Prx∈D[f(x) 6=
g(x)]. The distance of f to a property F is the quantity δ(f,F) = ming∈F{δ(f, g)}.
We say f is δ-close to F if δ(f,F) ≤ δ and δ-far otherwise. A (k(δ), τ(δ))-local
(one-sided) tester for F is a probabilistic oracle algorithm T that takes as input

5 Most notions also extend to the case where the domain is a vector space over an
arbitrary finite field, and the range is an arbitrary finite set.
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a parameter δ and queries an oracle for f k(δ) times and accepts functions in F
with probability one, while rejecting functions that are δ-far with probability at
least τ(δ). If such a tester exists, F is said to be locally testable. Note that we
are interested only in testers where τ(δ) > 0 for every δ > 0. Also, neither k(·)
nor τ(·) is a function of n. If k is furthermore independent of δ, we say that the
tester is proximity-oblivious, following Goldreich and Ron [GR09].

Next, we turn to the notion of invariance. For a function π : D → D, we say
that a property F is invariant under π if the function f ∈ F implies f ◦ π ∈ F .
A property F ⊆ {{0, 1}n → {0, 1}} is linear-invariant if for every linear function
L : {0, 1}n → {0, 1}n, F is invariant under L. Our hope is to describe a large
collection of natural linear-invariant properties that are locally testable.

A very broad collection of natural testable properties are what may be de-
scribed as “locally characterized properties” – we describe these next. A k-local
constraint C = (a1, . . . , ak;S) is given by a k-tuple a1, . . . , ak ∈ D and non-
empty set S ⊆ Rk. We say that a function f : D → R satisfies the constraint C
if (f(a1), . . . , f(ak)) 6∈ S. We say that a property F satisfies the constraint C if
every function f ∈ F satisfies C. A collection of constraints C1, . . . , Cm k-locally
characterizes a property F if each constraint is k-local and f ∈ F if and only if
f satisfies Cj for every j ∈ {1, . . . ,m}. If k does not depend on n, we say the
property is locally characterized.

It is natural to analyze the testability of locally characterized properties, and
indeed the early work of Rubinfeld and Sudan [RS96] does suggest analyzing the
“robustness” of characterizations to design and analyze local tests for properties.
(Roughly, a characterization is robust if the only functions that satisfy most
constraints in the characterization are those that are close to the property.)
Characterizations are effectively also a necessary condition for the existence of
non-adaptive proximity-oblivious tests [GR09], which are the prevalent ones in
the algebraic setting. Finally, for linear-invariant properties, characterizations
take on an especially nice form, as we describe next.

Given a k-local constraint C = (a1, . . . , ak;S) on functions mapping D to R
and a map π : D → D, let the π-rotation of C, denoted π ◦ C, be the k-local
constraint π ◦C = (π(a1), . . . , π(ak);S). Note that if F is invariant under π and
F satisfies C, then it also satisfies π◦C. For linear-invariant properties, it follows
that the existence of a single constraint C implies an abundance of constraints
L◦π, one for each linear function L mapping the domain to itself. We refer to the
set of constraints {L◦C|L is linear } as the orbit of the constraint C. Given this
abundance of local constraints satisfied by a property F , one could even hope
that the family is characterized by the orbit of a single constraint. To this end
we say that F has a k-local single orbit characterization if there exists a k-local
constraint C such that its orbit characterizes F . At first glance, the existence of
a single orbit characterization may seem like a very strong requirement, but not
at second glance! In particular the following proposition is easy to show:

Proposition 1. If F ⊆ {{0, 1}n → {0, 1}} is k-locally characterized and linear-
invariant, then it has a K-local single orbit characterization, for some K ≤ 2k.
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(When the domain is a vector space over a field of cardinality q, the bound
weakens to K ≤ qk.) The existence of such a nice and very “uniform” character-
ization of F suggests a very natural test for the propery F locally characterized
by the orbit of a single constraint C: Pick a random linear map L and verify
that f satisfies L ◦C. If this test can be shown to be sound, then it would imply
that every locally characterized linear-invariant property is locally testable. This
question remains open (see more in Section 4.1), and our work [BCSX09] takes
some first steps towards understanding the testability of this class of proper-
ties (and shows testability of a proper, but infinite, subclass). We describe our
specific results next.

3 Our results in [BCSX09]

To understand the class of properties that are linear-invariant and not linear, it
is useful to start with a simple example (that is not already covered by the results
of [KS08]). Our work starts with the “triangle-freeness” property introduced by
Green [Gre05] and extends it. A function f : {0, 1}n → {0, 1} is said to be
triangle-free if the set f−1(1) does not contain a triple of the form x, y, x+ y. In
our language, the property of being triangle-free could be describe by the family
F characterized by the orbit of the constraint C = (a, b, a+b;S = {111}) where a
and b are two (arbitrary) linearly independent vectors over the domain {0, 1}n.
Green [Gre05] shows that the property of being triangle-free is indeed locally
testable, though the analysis is quite different from the analyses in algebraic
settings. In our work, we extend this test to a broader collection of constraints.

To describe this extension, we need to introduce a few more pieces of nota-
tion. We say that a property F characterized by the orbit of a constraint C =
(a1, . . . , ak;S) is monotone if S is an upward closed set, i.e., for x, y ∈ {0, 1}k, if
x ∈ S and xi ≤ yi for all i ∈ [k], then y ∈ S. (In other words, removing elements
from the support of a function satisfying a monotone property keeps the function
in the property.) We call the constraint C = (a1, . . . , ak;S) a pattern if the set S
has only one element. Note that if C is a pattern, it is monotone exactly when
S = {1k}. We refer to the property described by the orbit of a single monotone
pattern C as being C-free.

Notice that the family described by a constraint C = (a1, . . . , ak;S) is essen-
tially a function of the underlying “matroid”. The matroid perspective simply
views a1, . . . , ak as an abstract set of k elements and tells us which subsets of
these elements are independent and which ones are not. (The exact definition
is not important to us, since we retain the linear-algebraic descriptions in our
definition below; but the notions is from matroid theory.) We say a1, . . . , ak form
a graphic matroid if there exists an undirected graph G = (V,E) with k edges
E = {e1, . . . , ek} such that for every subset S ⊆ {1, . . . , k} the set {ai|i ∈ S} is
linearly independent if and only if the graph GS = (V, {ei|i ∈ S}) has no cycles.
We say that a constraint C is based on a graphic matroid if the constraint points
a1, . . . , ak form a graphic matroid.

Our main theorem in [BCSX09] can now be stated.
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Theorem 1 ([BCSX09]). For a k-local monotone pattern C based on a graphic
matroid, the property of being C-free is locally testable. Specifically, there exists
a function τ = τk : <+ → <+ and a k-query test T that accepts C-free functions
with probability one, while rejecting functions that are δ-from being C-free with
probability at least τ(ε).

As a consequence, any monotone linear-invariant property locally character-
ized by the orbit of a constraint C based on a graphic matroid is locally testable
with a proximity-oblivious tester.

The bound on τ is quite weak. Let W (t) denote a tower of twos with height
dte. Our proof only guarantees that τ(ε) ≥ W (poly(1/ε))−1, a rather fast van-
ishing function. In fact, all known proofs, even for the property of being triangle-
free, have this tower-behavior inherently because they rely on some form of a
“regularity lemma”, which we now describe.

To analyze the triangle-freeness property, Green developed a regularity lemma
for groups, which is analogous to Szemerédi’s regularity lemma for graphs.
In the boolean case, Green’s regularity lemma shows how, given any function
f : {0, 1}n → {0, 1}, one can find a subgroup H of {0, 1}n such that the restric-
tion of f to almost all cosets of H is “regular”, where “regularity” is defined
based on the “Fourier coefficients” of f .

This lemma continues to play a central role in [BCSX09] as well. To extract
a large feasible class of matroids, we also use a notion from a work of Green
and Tao [GT06] of the complexity of a linear system (or matroids). The “least
complex” matroids have complexity 1, and it was shown that the regularity
lemma can be applied to all matroids of complexity 1 to show that they are
testable.

The presence of the many restrictions on the nature of the constraint C leads
to a natural question: Are there many (or any) new properties that can be tested
based on Theorem 1? Of course, there are infinitely many different constraints
C, but the property of being C-free need not be different for different C’s.
For example, one can permute the points a1, . . . , ak and the coordinates of S to
obtain essentially the same constraint. Alternately, one can replace the constraint
C by the constraint L◦C for an invertible linear map L and get the same family.
But equivalence goes beyond such syntactic concerns. For example, suppose C
is a constraint based on a graphic matroid, where the underlying graph is one
whose biconnected components are triangles. Then being C-free is essentially
the same as being triangle-free, in that every triangle-free function is also C-
free, while every C-free function is O(2−n)-close to being triangle free. Thus
one needs to prove explicitly that the class of properties being tested include
(infinitely many) new ones. (We also advocate that this concern ought to be
addressed explicitly in any work in property testing that aims to work for a
broad class of properties.)

In [BCSX09], we consider the following two infinite classes of (monotone)
patterns based on graphic matroids. For ` = 3, 4, . . . , let O` be the constraint
O` = (a1, . . . , a`; {1`}) where a1, . . . , a`−1 ∈ {0, 1}n are linearly independent
and a` =

∑
i<` ai. O` is thus based on the graphic matroid corresponding to the
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cycle of length `. Similarly for ` = 2, 3, . . . , let K` be the constraint on k =
(
`
2

)
points based on the graphic matroid of the complete graph on ` vertices. Note
that O`-freeness and K`-freeness are testable for every `, by Theorem 1. The
following theorem shows that these (infinite class of properties) are all pairwise
distinct (i.e., for every pair, at least one property contains elements which are
Ω(1)-far from the other).

Theorem 2 ([BCSX09]). The class of C-free properties for C being a mono-
tone pattern based on graphic matroids include infinitely many distinct ones. In
particular:

1. For every odd ` ≥ 3, if f is O`+2-free, then it is also O`-free. However, there
exist functions g that are O`-free but far from being O`+2-free.

2. For every ` ≥ 2, if f is K`-free, then it is also K`+1-free. However, for ` ≥ 3
there exists a function g that is K`-free but far from being K(`

2)+2-free.

Theorems 1 and 2 combine to give some room for optimism that one may
get an exact understanding of the class of linear-invariant properties that have
O(1)-query proximity oblivious tests.

Our results show that, at least under severe restrictions, the natural test for
such a property does work, and that, despite the restrictions, this does lead to
an infinite class of new properties. Fortunately, subsequent work revealed that
several of the limitations in Theorem 1 above turned out to be limitations of the
proof technique alone, and stronger techniques can be brought to bear on this
class of problems. We discuss some of the subsequent work next.

4 Subsequent work and Open problems

4.1 Boolean functions over Fn
2

Our work can be viewed as a step towards the proof of the following conjecture.

Conjecture 1. Suppose F is a linear-invariant property of functions mapping
{0, 1}n to {0, 1}. Then, F is locally testable with a proximity-oblivious tester if
and only if F is locally characterized.

It’s not hard to show one direction, namely that any linear-invariant property
that has a proximity-oblivious local tester is locally characterized. The proof
of this is analogous to the proof of the corresponding statement for graphs in
Theorem 4.7 of [GR09]. Our work in [BCSX09] makes some progress in the
opposite direction but is restricted due to two obstacles. The first restriction is
that we have to assume that the characterization of the property corresponds
to a graphic matroid, and secondly, we have to assume that the property is
monotone.

The restriction that the underlying matroid be graphic was tackled inde-
pendently by Král et al. [KSV08] and Shapira [Sha09]. (It turns out that such a
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step also relates closely to a conjecture of Green [Gre05] about solutions to linear
systems over the integers.) They showed6 the following in our terminology.

Theorem 3 ([KSV08,Sha09]). If a linear-invariant property is locally char-
acterized and monotone, then it is locally testable with a proximity-oblivious
tester.

The techniques used to prove this theorem were somewhat different from those
in [BCSX09]. Both [KSV08] and [Sha09] gave ingenious reductions to testing
whether a hypergraph is free from a fixed collection of sub-hypergraphs. Powerful
tools for tackling the latter problem were already known [FR02,RS04,NRS06,Gow07,AT08],
which could then be applied. Unfortunately, it is not at all clear how to reduce to
a sub-hypergraph-freeness property if the linear-invariant property is not mono-
tone.

More recently, Bhattacharyya et al. [BGS10] could remove the monotonicity
condition but now again had to insist that the underlying matroid be graphic.
The restriction to graphic matroids is essentially because of the same reason as
in our paper [BCSX09].

Theorem 4 ([BGS10]7). If a linear-invariant property is locally characterized
by the orbit of a constraint based on a graphic matroid, then it is locally testable
with a proximity-oblivious tester.

It remains open how to combine Theorems 3 and 4. In fact, even the special
case when the property is characterized by the orbit of a single non-monotone
pattern remains unresolved. We note that a positive resolution to questions such
as the above would lead to a single unifying result capturing the theorems of
Alon et al. [AKK+05] as well as Green [Gre05] – a unification that we don’t have
yet.

4.2 Finite-valued functions over Fn
q

A general open direction is to extend the results of the previous section to
arbitrary finite-valued functions over arbitrary, but constant sized, fields. There
has been some partial progress for boolean-valued functions over field Fnq for fixed
prime power q. Theorem 3 is known to hold in this setting. (In fact, [KSV09]
even shows testability for certain monotone properties of boolean functions over
nonabelian groups!) The authors of [BGS10] conjecture that their techniques can
be extended to prove the analog of Theorem 4 for boolean-valued functions over
Fnq . We are not aware of any nontrivial progress for the analogous questions for
non-boolean-valued functions.
6 More precisely, Theorem 3 follows from the main result of [KSV08] and [Sha09], along

with a twist to handle non-uniformity of the property with respect to n, similar to
what is done in the proof of Theorem 4.7 in [GR09].

7 We note that the main result of [BGS10] is actually stronger, since it also shows
testability for certain properties which are not locally characterized, and so, do not
have proximity-oblivious testers.
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More generally one could also consider functions over Fnq where the field size
is not a constant. We note that in such a case, single orbit characterizations do
not necessarily capture all locally characterized properties, but understanding
the testability of single-orbit characterized properties would remain a challenging
first step.

4.3 Improving the soundness analysis

One of the intriguing aspects of testing non-linear linear-invariant properties
is that the proof techniques employed thus far have been very different from
the techniques used in the linear cases. One implication of the difference in
techniques is that the “soundness” analysis is much weaker. In particular this
leads to τ(ε) being much smaller than any polynomial in ε in Theorem 1 (as
well as in the stronger forms). In contrast, in the case of linear, linear-invariant
properties, the growth of τ(ε) is linear in ε (Theorem 5.20 of [KS08]). This leads
to the question: Is such subpolynomial growth inherent? A positive answer to this
question would be insightful in that it would explain (somewhat) the need for
new proof techniques in the case of testing non-linear, linear-invariant properties.
Partial progress in this direction is reported in the work of Bhattacharyya and
Xie [BX10]. They show that distinguishing triangle-free functions from those
ε-far from triangle-free with constant probability requires (1/ε)1+α queries for
some positive constant α, thus separating non-linear linear-invariant properties
from linear linear-invariant ones.

In the other direction, Fox has recently shown [Fox10] that the use of the
Szemerédi regularity lemma can be avoided for the analysis of testing subgraph-
freeness, and the soundness analysis can be (very) mildly improved. This trans-
lates to a corresponding improvement for the properties considered in [BCSX09]
also. Perhaps it is possible to strengthen such an approach to get much better
bounds than we currently have.
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