
Princeton Companion to Mathematics Proof 1

Reliable Transmission of
Information
By Madhu Sudan

1 Introduction

The notion of “digital information” emerged in the
middle of the twentieth century, in response to the
advent of the telegraph and to the beginnings of
computer science, which at the time was princi-
pally a theoretical discipline. Of course, the use of
electricity to communicate signals goes back fur-
ther, but the earlier uses involved signals of a “con-
tinuous” nature: music, voice, etc. The new era was
characterized by the transmission of (or the need to
transmit) more “discrete” messages, i.e., messages
such as English sentences, which can be described
as finite sequences of letters taken from some finite
alphabet. The phrase “digital information” came
to be applied to such families of messages.

Digital information posed some novel challenges
to the engineers and mathematicians charged with
the task of communicating such messages. The root
cause of these challenges is “noise.” Every commu-
nication medium is noisy, and never transmits any
signal completely accurately. In the case of contin-
uous signals, somehow the receivers (typically, our
ears and eyes) can adjust to such errors and learn
to discount them. For example, if you play a very
old recording of a musical performance, then there
will typically be a crackling noise, but it is possi-
ble to ignore this, unless the quality is very bad
indeed, and concentrate on the music. However, in
the case of digital information errors can have a
more catastrophic effect. To see this, suppose that
we are communicating in English sentences and
that the communication medium makes occasional
mistakes by altering one of the transmitted letters.
In such a scenario the message

WE ARE NOT READY

could easily be changed into the message

WE ARE NOW READY.

All it takes is one error on the part of the communi-
cation medium, and the entire intention of the mes-
sage is reversed. Digital information tends to be
inherently intolerant of errors, and the the mathe-
maticians and engineers of the time were charged

with the task of inventing methods that would
make communication reliable even if the process
of transmission is not.

Here is one way of achieving this. To commu-
nicate any message, the sender of the message
repeats every letter, say five times. For example,
to send the message

WE ARE NOT READY
the sender says something like

WWWWWEEEEE AAAAA. . . .
The receiver can then detect errors (as long as
there are not too many) by checking that every
block of five successive letters repeats the same let-
ter. If this ever fails to be the case, then it is clear
that errors have occurred during transmission. If
it is not possible for five successive symbols to be
in error (or even if it is just very unlikely), then it
follows that the resulting scheme is also more reli-
able than the underlying means of transmission.
Finally, if even less error is possible, then it may
be possible for the receiver to determine the actual
message, rather than simply being able to tell when
errors have occurred. For example, if at most two
symbols in any block of five can be erroneous, then
the most commonly occurring letter in each block
of five must be the letter from the original message:
a sequence such as

WWWMWEFEEE AAAAA. . .

for instance, would be interpreted by the receiver
as

WE A. . . .
Repeating every symbol five times in order to

be able to correct two errors does not appear to
be a very efficient way to use the communication
channel. Indeed, as we will show in the rest of this
article, when transmitting long messages one can
do much better. However, in order to understand
this issue, we need to define the process of commu-
nication, the model of error, and the measures of
performance more carefully. We do so next.

2 Model

2.1 Channel and Errors

The central object of attention in the problem of
information transmission is the “channel of com-
munication,” or simply the channel. The chan-
nel has an input (the original signal to be com-

2 Princeton Companion to Mathematics Proof

municated) and an output (the signal after it is
transmitted). The input consists of a sequence of
elements from some finite set: by analogy with
the English-language example, these elements are
called letters and the finite set, which is typi-
cally denoted Σ, is called an alphabet. The chan-
nel attempts to transmit the input to the receiver,
but while doing so it may make some errors. The
alphabet and the process that underlies the errors
are what specifies the channel.

The alphabet Σ varies from scenario to scenario.
In the example described above, the alphabet con-
sisted of the English characters {A, B, . . . ,Z}, and
possibly some punctuation symbols. In most com-
munication scenarios, the alphabet is the “binary
alphabet” that consists just of the “letters” 0
and 1, which are known as bits. On the other hand,
in applications involving storage of digital informa-
tion (in compact discs (CDs), digital versatile discs
(DVDs), etc.), the alphabet contains 256 elements
(the alphabet of “bytes”).

Specifying an alphabet is easy, but if we wish to
define a good mathematical model for the way that
errors are produced, then a lot more care is needed.
At one extreme is a worst-case model suggested
by Hamming (1950), where there is some limit on
the number of errors that the channel can make,
but within that limit it chooses the errors to be as
damaging as possible. A more benign class of errors
was proposed by Shannon (1948), who suggested
that errors could be modelled by a probabilistic
process.

We will focus on one probabilistic model to illus-
trate many of the concepts below. In this model,
the error of the channel is specified by a real num-
ber parameter p, where 0 � p � 1. Every use of
the channel results in an error with probability p.
To be precise, if the sender transmits an element
σ ∈ Σ, then with probability 1 − p the output
for that element is σ but with probability p it is
some other element σ′ of Σ, chosen uniformly at
random. Furthermore, and this is very crucial to
this model, the errors are assumed to be indepen-
dent, i.e., the channel repeats this process for each
letter it transmits without any memory of how it
acted on previous symbols. We refer to this model
as the Σ-symmetric channel with parameter p (or
Σ-SC(p)) in the rest of this article. A special case
of particular importance is the binary symmetric
channel, which is the Σ-symmetric channel when

Σ is the binary alphabet {0, 1}. Then, if the input
bit is 0, say, the corresponding output bit will be
0 with probability 1 − p and 1 with probability p.

While this model of error may seem rather over-
simplified (and even unnatural if Σ is not the
binary alphabet {0, 1}), it turns out that it cap-
tures the essence of most mathematical challenges
that arise when one tries to make communica-
tion reliable. Furthermore, many of the solutions
found to make communication reliable in this set-
ting have been generalized to other scenarios, so
this simple model is very useful both in practice
and in the theoretical study of communication.

2.2 Encoding and Decoding

Suppose the sender wishes to transmit a sequence
through a channel that makes errors. One way to
compensate for these errors is to send through
the channel not the sequence itself but a modi-
fied version of the sequence that contains redun-
dant information. The process of modification that
we choose is called the encoding of the message.
We have already seen one method of encoding,
namely repeating each term in the sequence sev-
eral times. However, this is by no means the only
way of doing it, so to discuss encoding we use the
following general framework: if the sender has a
message consisting of a sequence of k elements of
Σ, then by some means or another it expands the
message into a new sequence, now consisting of n
elements of Σ, for some n > k. Formally, the sender
applies an encoding function E : Σk → Σn to the
message. (Σk stands for the set of sequences of
length k with letters in Σ, and Σn for the set of
sequences of length n.) Thus, to convey a message
m = (m1, m2, . . . , mk) to the receiver, the sender
transmits over the channel not the k symbols of m
but the n symbols of E(m).

The receiver now receives a sequence r =
(r1, r2, . . . , rn), belonging to Σn, and its goal is
to “compress” this sequence back to a k-letter
sequence, removing the error and obtaining the
original message m (at least if not too many errors
have occurred). It does this by applying a decod-
ing function D : Σn → Σk, which tells it how
sequences of length n are converted back into
sequences of length k.

The possible pairs of functions E, D describe the
options available to the designers of the communi-
cation system. Their choice determines the perfor-

Princeton Companion to Mathematics Proof 3

mance of the system. Let us now describe how this
performance is measured.

2.3 Goals

Very informally, our goals are threefold. We would
like to make the communication as reliable as pos-
sible. At the same time, we would like to maximize
the utilization of the channel. Finally, we would like
to do so with effective computation. We describe
these goals more carefully below, in the case of the
model Σ-SC(p) described earlier.

Consider first the reliability. If we start with a
message m, encode it as E(m), and pass it through
the channel, then the output, after some random
errors have been introduced, will be a string y.
The receiver will decode y, producing a new mes-
sage D(y). For each message m, there is a certain
probability of a decoding error, i.e., a certain prob-
ability that D(y) will not in fact be equal to the
original message m. The reliability of the commu-
nication is measured by the largest of these prob-
abilities. If this is small, then we know that, what-
ever the original message m, a decoding error is
unlikely, and then we regard the communication
as reliable.

Next, let us look at the utilization of the channel.
This is measured by the rate of the encoding, i.e.,
the quantity k/n. In other words, it is the ratio of
the length of the original message to the length of
the encoded message: the smaller this ratio is, the
less efficiently one is using the channel.

Finally, practical considerations also require us
to be able to encode and decode quickly: a pair of
reliable and efficient encoding and decoding func-
tions will not be of much use if they are very
time-consuming to compute. Adopting the stan-
dard convention in algorithm design, we regard
our algorithms as feasible if they run in polyno-
mial time: that is, if their running time can be
bounded above by a polynomial function of the
length of their input and output (see Computa-

tional Complexity, page ??, and The Math-

ematics of Algorithm Design, page ??).
To illustrate the above ideas, let us analyze

the “repetition encoding” that repeats every let-
ter of the alphabet five times. For simplicity, take
the alphabet Σ to be {0, 1}, let the probability
p be fixed, and let us consider the behaviour of
the model as the message length k tends to ∞.
Our encoding function takes strings of length k to

strings of length 5k and thus has a rate of 1
5 . Given

any particular block of five transmissions, the prob-
ability that it contains three or more errors is

p′ =
(

5
3

)
p3(1 − p)2 +

(
5
4

)
p4(1 − p) +

(
5
5

)
p5.

The probability that that block does not give rise
to a decoding error is 1 − p′, so the probability
that there is no decoding error is (1 − p′)k and
the probability that there is a decoding error is
1 − (1 − p′)k. If we fix p > 0 and let k → ∞, then
(1 − p′)k tends to 0 (exponentially quickly), so the
probability of decoding error tends to 1. Thus, this
encoding/decoding pair is highly unreliable, and
its rate is not too good either. The only redeeming
feature is that it is very easy indeed to compute.
(Its computational efficiency is easily seen to be
bounded by a number of operations that is linear
in k.)

One way to salvage the repetition code is to
repeat every symbol c log k times. For a largish con-
stant c, the probability of a decoding error goes
to 0, but now the rate of the code goes to 0 as
well. Prior to the work of Shannon it may have
even been believed that a trade-off of this kind
was inevitable: every encoding/decoding scheme
would either achieve a vanishingly small rate or
make mistakes with probability tending to 1. As
we will see later in the article, it is in fact possible
to define encoding schemes that achieve all three of
our goals: they operate at a positive rate, they can
correct errors that occur a positive proportion of
the time (in either the probabilistic or the worst-
case model), and they use efficient encoding and
decoding algorithms. Most of the insight for this
remarkable result goes back to a seminal paper by
Shannon. In that paper he gave the first examples
of encoding and decoding functions that satisfied
the first two goals, though they were not compu-
tationally efficient.

Shannon’s encoding and decoding functions were
not, therefore, practical, but we can now see, with
the benefit of hindsight, that ignoring the goal
of efficient computability in order to gain some
theoretical insight into the channels was extraor-
dinarily fruitful. A general rule of thumb seems
to operate: that the performance of the very best
encoding and decoding functions can be matched
arbitrarily closely by encoding and decoding func-
tions that are also computationally efficient. This

4 Princeton Companion to Mathematics Proof

justifies considering the goal of efficiency sepa-
rately from the other two goals.

3 The Existence of Good Encoding
and Decoding Functions

In this section we will describe results that demon-
strate the existence of encoding and decoding func-
tions that have an extremely good rate and reli-
ability. In order to describe these results, first
proved by Shannon, it will be useful to consider two
related notions introduced by Hamming in work
that was essentially concurrent with that of Shan-
non.

In order to understand these notions, let us start
by describing what makes one encoding function
E better or worse than another. The task of the
decoding function is to work out, when it receives
a string y, what the original message m was. Notice
that this is equivalent to working out what the
encoded message E(m) was, since no two messages
are encoded in the same way. The possible encoded
messages are called codewords: in other words, a
codeword is a string of length n that arises as E(m)
for some message m ∈ Σk.

What we are worried about is the possibil-
ity of confusing two codewords after errors have
been introduced, and this depends only on the set
of codewords, and not on which codeword corre-
sponds to which original message. Therefore, we
adopt what at first seems a strange definition:
an error-correcting code is any set of strings of
length n in the alphabet Σ (that is, any subset
of Σn). The strings in an error-correcting code are
still called codewords. This definition completely
ignores the actual process of encoding of a message,
but that is so that we can focus on the rate and the
decoding error while ignoring computational effi-
ciency. If we are given an encoding function E, then
the corresponding error-correcting code is simply
the set of all the codewords of E. Mathematically,
this is just the image of the function E.

What makes an error-correcting code good or
bad? To answer this question, let us consider
what happens if the alphabet is {0, 1} and the
code contains two strings x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) that differ in precisely d
places. If errors are introduced with probability p,
then the probability that x is converted into y is

pd(1 − p)n−d. Assuming that p < 1
2 , this probabil-

ity gets smaller as d increases, so the smaller d
is, the more likely the strings x and y are to be
confused. It seems preferable, therefore, that there
should not be too many pairs of strings in the code
that differ in just a few places. A similar argument
applies to larger alphabets as well.

The above thoughts lead to a definition that
is very natural in this context. Given an alpha-
bet Σ and two strings x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) belonging to Σn, the Ham-
ming distance between x and y is defined to be
the number of coordinates i for which xi �= yi.
For example, let Σ = {a, b, c, d} and let n = 6.
The strings abccad and abdcab differ in the third
and sixth places and are identical otherwise, so
their Hamming distance is 2. Our goal is to find an
encoding function E such that the associated code
maximizes the typical Hamming distance between
pairs of codewords.

Shannon’s solution to this is an extremely sim-
ple application of the probabilistic method (see
Extremal and Probabilistic Combinatorics

on page ??): he picks the encoding function at
random. That is, for every message m, the encod-
ing E(m) is chosen entirely randomly from the set
Σn, with all choices equally likely. Furthermore,
for every message m, this choice is independent of
the encoding of every other message m′. It is a
good exercise in basic probability to see that such
a choice almost always leads to a code where the
distances between codewords are on average large.
In fact, even the minimum distance between code-
words is almost always large. However, we will not
show this. Instead, we will argue that with high
probability this random choice leads to a “nearly
optimal” encoding function, from the point of view
of rate and reliability.

First, let us consider what the decoding func-
tion ought to be. In the absence of computa-
tional requirements, it is not hard to say what the
“optimal” decoding algorithm is. If you receive a
sequence z, then you should choose the message m
that is most likely to have resulted in this sequence.
For the model Σ-SC(p) with p < 1 − 1/|Σ|, it is
easily verified that this will be the message m for
which the encoding E(m) is nearest to z, as mea-
sured by Hamming distance. (If E(m) and E(m′)
are equal nearest, then one can make an arbitrary
choice between them.) The condition on p is impor-

Princeton Companion to Mathematics Proof 5

tant here. It ensures that when the sequence E(m)
passes through the channel, the most likely out-
put corresponding to any given term, out of the
|Σ| different possibilities, is the same as the input.
Without this condition, there would be no reason
to expect z to be close to E(m). We shall argue
that there is a number C, depending only on the
error probability p and the size of the alphabet,
such that for a random encoding function with
rate smaller than C, this decoding function recov-
ers the original message with a high probability. As
an aside, Shannon also showed that for the same
constant C, any attempt to communicate at rates
greater than C would lead to errors with probabil-
ity exponentially close to 1. Because of this result,
the constant C is known as the Shannon capacity
of the channel.

Once again, for simplicity we shall consider just
the case of the binary alphabet {0, 1}. In this
case we are choosing a random function E from
{0, 1}k to {0, 1}n, and we would like to show that,
under suitable circumstances, the resulting code
will almost certainly be very reliable. In order to
do this, we shall focus on a single message m, and
rely on two basic ideas.

The first idea is a precise form of the law of
large numbers. If the error probability is p, then
the expected number of errors introduced into a
codeword E(m) is pn, so, if n is large, then we
expect that the actual number of errors will almost
certainly be very close to this, just as, if you toss a
fair coin 10000 times, you will be surprised if the
number of heads is not close to 5000. The result
that expresses this formally is as follows.

Claim. There exists a constant c > 0 such that
the probability that the number of errors exceeds
(p + ε)n is at most 2−cε2n.

The same can be said of the probability that the
number of errors is less than (p − ε)n, but we shall
not use this result.

When n is large, 2−cε2n is extremely small, so
the number of errors is almost certainly at most
(p + ε)n. The number of errors equals the Ham-
ming distance from y, the output of the channel, to
E(m), the codeword that was transmitted. There-
fore, the decoding algorithm that chooses the code-
word with smallest Hamming distance from y will
almost certainly choose E(m), provided that there

is no message m′ such that E(m′) is closer to y
than (p + ε)n.

The second idea, which allows us to say that this
will almost certainly be the case, is that “Hamming
balls are small.” Let z be a sequence in {0, 1}n.
Then the Hamming ball of radius r about z is the
set of all sequences w with Hamming distance at
most r from z. How big is this set? Well, in order
to specify a sequence w with Hamming distance
exactly d from z, it is enough to specify the set of
d places where w and z differ. There are

(
n
d

)
ways

of choosing this set, so the number of sequences
with distance at most r is(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · · +

(
n

r

)
.

If r = αn and α < 1
2 , then this number is at most

a constant times
(
n
r

)
, because each term is at least

n − r

r
=

1 − α

α

times the one before. But(
n

r

)
=

n!
r!(n − r)!

.

If we now use Stirling’s formula (see The Gamma

Function on page ??) or the looser approxima-
tion n! = (n/e)n, then we find that this is about
(1/α(1 − α))n, which is 2H(α)n, where

H(α) = −α log2 α − (1 − α) log2(1 − α).

(Note that H(α) is positive, because α and 1 − α
are less than 1 and therefore have negative loga-
rithms.) The function H is called the entropy func-
tion. It is continuous and strictly increasing on the
interval [0, 1

2] with H(0) = 0 and H(1
2) = 1. So,

if α < 1
2 , then H(α) < 1, and therefore 2H(α)n is

exponentially smaller than 2n: this is what is meant
by saying that the Hamming ball of radius αn is
small.

Let us set α to be p + ε < 1
2 . Then the probabil-

ity that a single randomly chosen sequence E(m′)
lies in the Hamming ball of radius (p + ε)n about
y is at most 2H(p+2ε)n2−n. (The 2ε is to compen-
sate for slight inaccuracies in the above estimate
for the size of the ball.) Since there are 2k − 1 pos-
sibilities for m′, the probability that one can be
found for which E(m′) lies in the ball is at most
2k2H(p+2ε)n2−n. Therefore, if k � n(1 − H(p +

6 Princeton Companion to Mathematics Proof

2ε) − ε), this probability is at most 2−εn, which is
exponentially small.

Because we can choose ε to be as small as
we like, we can make k/n as close as we like
to 1 − H(p) while still maintaining an exponen-
tially small probability of decoding error. It turns
out that the quantity 1 − H(p) is the constant
C discussed earlier: the Shannon capacity of the
binary symmetric channel. Thus, the capacity of
the binary symmetric channel is always positive if
p < 1

2 .
Shannon’s theorem and proof are significantly

more general than the above example demon-
strates. For a wide variety of channels, and for
a wide variety of models of (probabilistic) error,
his theory pins down the capacity of the channel
and shows that reliable communication is possible
if and only if the rate of the channel is less than its
capacity. Shannon’s proof is a remarkable example
of the use of the probabilistic method in the prac-
tice of engineering. Note, however, that the encod-
ing and decoding algorithms are quite impracti-
cal. The proof gives no clue about how to find an
encoding function, though of course one can con-
sider every encoding function E : {0, 1}k → {0, 1}n

to check if it is good. However, even if such a func-
tion is found, it may have no succinct description,
in which case the encoder and decoder have to store
this encoding function as an exponentially long
table in their memory. Finally, the decoding algo-
rithm seems to involve a brute-force search for the
nearest codeword, a problem which seems to be the
most serious obstacle to obtaining a computation-
ally efficient version of Shannon’s theorem that can
be used in practice. What the theorem definitely
does give us is a significant insight into the limi-
tations and potential utility of the communication
channel. With this in mind, we can set ourselves
the right targets to strive for when we come to
devise more practical encoding and decoding pro-
cedures. In the next section we will show that it
is possible to achieve a fixed rate that is bounded
away from zero, to tolerate a constant fraction of
errors, and to do both of these with efficient algo-
rithms.

4 Efficient Encoding and Decoding

We now turn to the task of designing encoding
and decoding functions that can be calculated effi-

ciently. Currently, there are at least two very dif-
ferent approaches to building such functions. We
describe here an approach based on algebra over
finite fields. The alternative approach is based on
the construction of expanding graphs, but we
will not describe that here.

4.1 Codes for Large Alphabets Using Alge-
bra

In this section we describe a simple way to get an
encoding function E : Σk → Σn, where Σ is a
finite field with at least n elements. (Recall that
there are finite fields with q elements whenever
q is of the form pt for a prime p and a positive
integer t.) These codes were introduced by Reed
and Solomon (1960) and have since been called the
Reed–Solomon codes.

A Reed–Solomon code is specified by a sequence
of n distinct field elements α1, . . . , αn ∈ Σ.
Given a message m = (m0, m1, . . . , mk−1) ∈
Σk, we associate with the message the polyno-
mial M(x) = m0 + m1x + · · · + mk−1x

k−1. The
encoding of m is simply the sequence E(m) =
M(α1), M(α2), . . . , M(αn). In other words, to
encode a sequence m, you treat the terms of the
sequence as the k coefficients of a polynomial of
degree k − 1 and write out the values that this
polynomial takes at α1, . . . , αn.

Before describing the error-correcting capability
of this code, let us note that it is very succinctly
represented: all that is needed to specify it is a
description of the field Σ and the sequence of n
elements α1, . . . , αn. It is easy to show that the
number of additions and multiplications needed to
compute M(α) is at most Ck for some constant C.
(For example, to work out 3α3 − α2 + 5α + 4, you
start with 3, multiply by α, subtract 1, multiply by
α, add 5, multiply by α, and add 4.) Therefore, the
number of field operations needed to compute the
entire encoding is bounded above by Cnk, for some
(different) constant C. (In fact, more sophisticated
and efficient algorithms are known for the encoding
problem that take at most Cn(log n)2 steps.)

Now let us consider the error-correcting prop-
erties of the code. We start by showing that the
encodings of any two messages m1 and m2 have
a Hamming distance of at least n − (k − 1). To
see this, let M1(x) and M2(x) be the polynomials
associated with m1 and m2. Now the difference
p(x) = M1(x) − M2(x) has degree at most k − 1,

Princeton Companion to Mathematics Proof 7

and it is not the zero polynomial (since M1 and M2
are distinct), and therefore it has at most k − 1
roots. This tells us that there are at most k − 1
values of α for which M1(α) = M2(α). It follows
that the Hamming distance between the sequences

E(m1) = (M1(α1), M1(α2), . . . , M1(αn)

and

E(m2) = (M2(α1), M2(α2), . . . , M2(αn)

is at least n − k + 1.
It follows that if z is any sequence, then its

Hamming distance from at least one of E(m1)
and E(m2) is greater than 1

2 (n − k) (since other-
wise the distance between E(m1) and E(m2) would
have to be at most n − k). Therefore, if the num-
ber of errors that occur during transmission is
at most 1

2 (n − k), then the original message m is
uniquely determined by the received sequence z.
What is much less obvious is that there is an effi-
cient algorithm for working out what m was, but,
remarkably, it is possible to compute m with a
polynomial-time algorithm (in n), which we shall
now describe.

What must the decoding algorithm do? It is
given the numbers α1, . . . , αn and the received
sequence z1, . . . , zn, and is required to find a poly-
nomial M of degree k−1 or less such that M(αi) =
zi for all but at most 1

2 (n − k) values of i. If such
a polynomial exists, then it is unique, as we have
just seen, and its coefficients will give the origi-
nal message m (if the number of errors is at most
1
2 (n − k)).

If there were no errors, then our task would be
much easier: one can determine the coefficients of
a polynomial of degree k − 1 from k of its values
by solving k simultaneous equations. However, if
some of the values we use are incorrect, then we
will end up with a completely different polynomial,
so this method is not easy to use for the problem
we actually face.

To overcome this difficulty, let us imagine
that M exists and that the errors introduced
into the sequence M(α1), . . . , M(αn) occur at
i1, . . . , is, where s � 1

2 (n − k). Then the polyno-
mial B(x) = (x − αi1) . . . (x − αis

) has degree at
most 1

2 (n − k) and is zero if and only if x is
equal to αij

for some j. Let us set A(x) to equal
M(x)B(x). Then A(x) is a polynomial of degree

at most k − 1 + 1
2 (n − k) = 1

2 (n + k − 2), and for
every i we have A(αi) = ziB(αi). (If there is no
error at i, then this is obvious, since zi = M(αi),
and if there is an error at i, then both sides are 0.)

Conversely, suppose that we manage to find
polynomials A(x), of degree at most 1

2 (n + k − 2),
and B(x), of degree at most k − 1, such that
A(αi) = ziB(αi) for every i. Then R(x) = A(x) −
M(x)B(x) is a polynomial of degree at most 1

2 (n+
k − 2), and R(αi) = 0 whenever M(αi) = zi. Since
there are at most 1

2 (n − k) errors, this happens for
at least n− 1

2 (n−k) = 1
2 (n+k) values of i. There-

fore, the number of roots of R is bigger than its
degree, from which it follows that R is identically
zero, so that A(x) = M(x)B(x) for every x. From
this we can determine M : given k values of x for
which A(x) and B(x) are nonzero, one can deter-
mine k values of M(x) = A(x)/B(x), and hence
determine M .

It remains to show that we can indeed (effi-
ciently) find polynomials A(x) and B(x) with the
required properties. The n constraints A(αi) =
ziB(αi) turn into n linear constraints on the
unknown coefficients of A and B. Since B has
1
2 (n − k) + 1 coefficients and A has 1

2 (n + k) coef-
ficients, the total number of unknowns is n + 1.
Since the system of equations is homogeneous (that
is, we obtain a solution if we take all unknowns to
be zero) and the number of unknowns is greater
than the number of constraints, there must be a
nontrivial solution: that is, a solution where A(x)
and B(x) are not both the zero polynomial. More-
over, we can find such a solution by Gaussian elim-
ination, which takes at most Cn3 steps.

To summarize: we construct a code by exploit-
ing the fact that two distinct low-degree polyno-
mials cannot be equal for too many values. We
then exploit the rigid algebraic structure of low-
degree polynomials for the purposes of decoding.
The main tool that allows us to do this is linear

algebra and in particular the solving of systems
of simultaneous equations.

4.2 Reducing the Size of the Alphabet
Using Good Codes

The ideas described in the previous section show
us how to build codes with efficient encoding and
decoding algorithms, but they use relatively large
alphabets. In this section we shall exploit these
results to build binary codes.

8 Princeton Companion to Mathematics Proof

To begin with, let us consider a very obvious
method of converting codes over large alphabets
into codes over the binary alphabet {0, 1}. For
simplicity, assume that we have a Reed–Solomon
code over an alphabet Σ of size 2� for some inte-
ger �. Then we can associate the elements of Σ
with binary strings of length �. In such a case, we
can regard the Reed–Solomon encoding function,
which maps Σk to Σn, as a function from {0, 1}�k

to {0, 1}�n. (For instance, an element of Σk is a
sequence of k objects, each of which is a binary
sequence of length �. Putting them together pro-
duces a single binary sequence of length k�.) Since
the encodings of two distinct messages differ for at
least n−k +1 elements of Σ, they must also differ
on at least n − k + 1 bits.

This gives a fairly reasonable code over the
binary alphabet. However, n−k +1 is not as large
as a fixed fraction of �n: the ratio (n − k + 1)/�n
is less than 1/�, and since we need 2�, the size of
Σ, to be at least n, we find that this fraction is
at most 1/ log2 n, which tends to zero as n tends
to infinity. However, this can be fixed in a simple
way, as we shall see.

The problem with the simple binary approach
is that two different elements of Σ may be repre-
sented by binary sequences that differ in just one
bit. However, the Hamming distance between two
binary sequences of length � is usually much larger:
it is more like c� for some positive constant c.
Suppose that we could represent the elements of
Σ as binary sequences of some length L in such
a way that the Hamming distances between any
two of the sequences used was at least cL. This
would allow us to improve our argument above: if
the encodings of two messages were different for
at least n − k + 1 elements of Σ, then they would
have to differ on at least cL(n − k + 1) bits rather
than just n − k + 1, and this is a positive fraction
of Ln.

What we are asking for is an encoding of the
binary sequences of length � as sequences of length
L in such a way that no two codewords are closer
than cL to each other. But we know, from the pre-
vious section, that such an encoding exists, pro-
vided that L and c satisfy appropriate conditions:
for instance, it is possible to find an encoding func-
tion that works with L � 10� and c � 1

10 .
So how do we use this? We start with a binary

sequence m of length �k. As above, we associate

with this a sequence of length k in the alphabet Σ.
We then encode this sequence using the Reed–
Solomon code, obtaining a sequence of length n in
the alphabet Σ. Next, we convert each term of this
sequence into a binary sequence of length �. And,
finally, we encode each of these n binary sequences
as a sequence of length L using a good encoding
function, obtaining as a result a binary sequence
of length Ln. We then pass this sequence through
the channel, where errors may be introduced. The
receiver then breaks the received sequence up into
n blocks of length L, decodes each block to work
out what binary sequence of length � gave rise to it,
and interprets that binary sequence as an element
of Σ. This results in a sequence of n elements of Σ.
It then uses the Reed–Solomon decoding algorithm
to decode this sequence, producing a sequence of k
elements of Σ. Finally, this can be converted into
a binary sequence of length �k.

We have said nothing about the efficiency of
the encoding and decoding procedures that con-
vert binary sequences of length � into ones of length
L and back again, stating merely that they exist.
Since efficiency is supposed to be our priority, this
may seem rather strange: do we not now face
exactly the same problem that we were trying to
solve in the first place? Luckily we do not, because
although these encoding and decoding procedures
may take exponentially long, they take exponen-
tially long as a function of L, and L is much much
smaller than n. Indeed, L is proportional to log n,
from which it follows that 2L is bounded above by
a polynomial function of n. This is a useful princi-
ple: one can afford procedures of exponential com-
plexity provided that one only ever applies them
to very short strings.

Thus even though we have not managed to
specify the code explicitly, we have demonstrated
that there is an encoding and decoding algorithm
that runs in polynomial time and that corrects a
constant fraction of errors. To complete this sec-
tion, let us address the question of the probabil-
ity of decoding error, which we have not yet dis-
cussed. The technique described above, of compos-
ing encoding functions (and decoding functions),
can also be used to improve the above code so that
the encoding and decoding still take place in poly-
nomial time, but now the decoding error probabil-
ity is exponentially small on the binary symmetric
channel with parameter p, and the rate is arbi-

Princeton Companion to Mathematics Proof 9

trarily close to the Shannon capacity, which is the
theoretical maximum. (The idea is to compose a
Reed–Solomon code that has rate close to 1 with
a random inner code, and then to show that with
random errors most of the inner decoding steps
decode correctly. One then uses the outer decod-
ing step to convert the “mostly correct decoding”
to a “fully correct decoding.”)

5 Impact on Communication and
Storage

The mathematical theory of error-correcting codes
has made a deep impact on the technologies for
storage and communication of information, and we
elaborate a little on this below.

Storage of information on digital media is prob-
ably the biggest success story for error-correcting
codes. Most known forms of storage media, and in
particular standards for audio and data CDs and
DVDs, prescribe error-correcting codes based on
Reed–Solomon codes. Specifically, they are based
on a code that maps F

223
256 to F

255
256, where F256 is the

finite field with 256 elements. In audio CDs, codes
are use to protect from minor scratches, though
more serious scratches do lead to audible errors.
In data CDs the error correction is stronger (with
more redundancies), so that even serious scratches
do not lead to loss of data. In all cases (CDs and
DVDs) the readers for these devices use fast algo-
rithms for decoding when reading the information
on the media. Typically, these algorithms are based
on the idea of the previous section, but are much
faster implementations (in particular, an algorithm
due to E. Berlekamp is widely used). Indeed, sev-
eral CD readers owe their faster reading speed to
faster decoding algorithms. Similarly, the increased
storage capacity of DVDs (compared with CDs) is
attributed in part to better error-correcting codes.
Indeed error-correction technology played a crucial
role in establishing the dominance of audio CDs,
which store music digitally, over the classical, and
now almost extinct, gramophone records, which
store music in continuous forms. Thus, mathemati-
cal advances in coding theory have played an influ-
ential role in this technology.

Similarly, error-correcting codes have had a pro-
found effect on communication. Since the late
1960s, error-correcting codes (and decoding) have
been used for communication from satellites to

their base stations on Earth. Of late, error-
correcting codes are also being used in cellular
phone communications, and modems. Again, the
most commonly used code at the time of the
writing of this article is the Reed–Solomon code,
though this situation has been changing rapidly
since the discovery of a new class of codes called
“turbo codes.” This new family of codes seems to
offer significant resilience to random errors (more
so than that offered by methods based on Reed–
Solomon codes) and uses a simple and quick algo-
rithm, even when the codes used have small block
length. These codes and the corresponding decod-
ing algorithm have led to a resurgence of inter-
est in codes constructed with the help of insights
from graph theory (see Graphs on page ??). Many
of the good properties of turbo codes have been
observed only empirically: that is, the codes seem
to work very well in practice but it has not yet
been proved rigorously that they do. Nevertheless,
the observations have been so compelling that new
standards for communication are starting to pre-
scribe these codes.

Finally, it must be stressed that while many of
the codes used are based on ones that are studied
in the mathematical literature, this should not be
taken to mean that they can be deployed imme-
diately without further design. For example, the
Mariner spacecraft used not a Reed–Muller code
but a variant of it designed to allow for syn-
chronization between blocks. Similarly, the Reed–
Solomon codes used in storage devices are carefully
spread out over the disc, so as to allow the physi-
cal device to resemble more closely the model of a
code over a large alphabet. Note that errors due to
a scratch on the disc surface tend to ruin a large
collection of bits in a small localized part of the
disc. If all the data from a block were sitting in
such a neighborhood, the entire block would be
lost. So each block of 255 bytes of information is
spread out all over the disc. On the other hand,
the bytes themselves, which are elements of F256,
are written as eight bits in close proximity. So a
scratch corrupting one bit out of these eight is also
likely to corrupt others in the neighborhood. How-
ever, this is all right from the perspective of the
model that views the entire collection of eight bits
as a single element. In general, working out the
right way to apply the theory of error correction
to a given scenario is a major challenge, and many

10 Princeton Companion to Mathematics Proof

success stories would not have been success stories
had it not been for some careful design choices.

Mathematics and engineering continue to feed
each other in this arena. Mathematical suc-
cesses, such as new algorithms for decoding Reed–
Solomon codes, raise the challenge of how to adapt
technology to exploit new algorithms. Engineering
successes, such as the discovery of turbo codes that
perform extremely well, challenge mathematicians
to come up with a formal model and analysis that
can explain this success. And if such a model and
analysis emerges, it is likely to lead to the discovery
of new codes that might surpass the performance
of turbo codes and lead to a new set of standards!

6 Bibliographic Notes

The theory of reliable communication and storage
of information owes much to the seminal works
of Shannon (1948) and Hamming (1950), which
formed the basis for much of this article. The
Reed–Solomon codes of Section 4.1 are from Reed
and Solomon (1960). Their decoding algorithm
originates in the work of Peterson (1960), though
the algorithm given here is significantly simplified.
The technique of composing codes is due to Forney
(1966).

Over the years, coding theory has amassed a
wide variety of results. Some of these give better
constructions of codes with faster algorithms. Oth-
ers provide theoretical upper limits on how well
codes can perform. The theory uses an enormous
variety of mathematical tools, many of them more
advanced than the ones described in this article.
Most notable among them are algebraic geometry
and graph theory, which are used to construct very
good codes, and the theory of orthogonal poly-
nomials (see title of article as-yet unde-

cided on page ??), which is used to prove limits
on parameters of codes, such as their rate and reli-
ability. Most of the highlights of this vast literature
are covered in Pless and Huffman (1998).

Further Reading

Hamming, R. W. 1950. Error detecting and error cor-
recting codes. Bell System Technical Journal 29:147–
160.

Forney Jr, G. D. 1966. Concatenated Codes. Cam-
bridge, MA: MIT Press.

Peterson, W. W. 1960. Encoding and error-correction
procedures for Bose–Chaudhuri codes. IEEE Trans-
actions on Information Theory 6:459–470.

Pless, V. S. and W. C. Huffman (eds). 1998. Hand-
book of Coding Theory (two volumes). Amsterdam:
North-Holland.

Reed, I. S. and G. Solomon. 1960. Polynomial codes
over certain finite fields. SIAM Journal of Applied
Mathematics 8:300–304.

Shannon, C. E. 1948. A mathematical theory of com-
munication. Bell System Technical Journal 27:379–
423, 623–656.

