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Abstract. A basic goal in Property Testing is to identify a minimal
set of features that make a property testable. For the case when the
property to be tested is membership in a binary linear error-correcting
code, Alon, Kaufman, Krivelevich, Litsyn and Ron (Transactions on
Information Theory, 2005) had conjectured that the presence of a single
low weight codeword in the dual, and “2-transitivity” of the code (i.e.,
the code being invariant under a 2-transitive group of permutations on
the coordinates of the code) suffice to get local testability. We refute
this conjecture by giving a family of error correcting codes where the
coordinates of the codewords form a large field of characteristic two, and
the code is invariant under affine transformations of the domain. This
class of properties was introduced by Kaufman and Sudan (STOC, 2008)
as a setting where many results in algebraic property testing generalize.
Our result shows a complementary virtue: This family also can be useful
in producing counterexamples to natural conjectures.
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1. Introduction

Property testing deals with the task of testing, in very little time, if a huge
function f : D → R satisfies some property P . A property P is usually specified
by the family of functions F which satisfy P . The goal is to design probabilistic
tests which, given oracle access to f , accept if f ∈ F while rejecting with
constant probability if f is far from F . In addition, it is desirable that the
tests make a constant number of queries (independent of |D|) into f , in which
case they are called local, and hence the properties they can decide are locally
testable.

The first modern-day property test was given by Blum, Luby and Rubin-
feld (Blum et al. 1993). (One can count the classical polls as folklore tests for
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the “majority is in favor” property.) Property testing also played a central role
in results on multiprover interactive proofs Babai et al. (1991a,b); Feige et al.
(1996) and PCPs Arora et al. (1998); Arora & Safra (1998), etc. Property test-
ing was formalized in Rubinfeld & Sudan (1996). Most early properties were
algebraic in nature and led to tests for membership in “error-correcting codes”.
A systematic study of property testing was started by Goldreich, Goldwasser,
and Ron (Goldreich et al. 1998) who expanded its scope to combinatorial and
graph-theoretic properties. Today a vast collection of properties are known to
be locally testable very efficiently. In particular, the class of properties that
can be tested with constant number of queries in the dense graph model is now
almost fully understood Alon et al. (2009); Borgs et al. (2006).

In terms of testing membership in error-correcting codes however, the knowl-
edge is not very complete. Some attempts to remedy this were proposed by
Alon et al. (2005) who suggested that properties that satisfy sufficiently rich
“invariance” conditions (along with some other obviously necessary conditions)
may be testable. In particular Alon et al. (2005) made a formal conjecture
(which we call the AKKLR-conjecture) that the property of membership in a
“binary error-correcting code that is 2-transitive and has a small weight vector
in its dual” may be testable with O(1) locality. (We formalize their statement
below). In their work Alon et al. (2005) they supported this conjecture by show-
ing that it holds for the particular case of families of small degree polynomials
over finite fields.

In this work, we refute the AKKLR conjecture. We show a family of error-
correcting codes that satisfy nice invariance properties (and in particular 2-
transitivity) and yet do not have very local tests. (See Conjecture 2.4 and
Theorem 2.5 below.)

Our counterexample comes from the family of “affine-invariant” properties,
whose study was introduced by Kaufman & Sudan (2008). Affine-invariant
families form natural generalizations of the class of low-degree multivariate
polynomials over finite fields. It is shown in Kaufman & Sudan (2008) that this
class of families were locally testable for some choices of the parameters giving
some weak confirmation of the AKKLR-conjecture. In this work we use other
settings of parameters to give a counterexample to the AKKLR conjecture,
thus complementing the results of Kaufman & Sudan (2008). Together these
works highlight the power of affine-invariant families in illustrating the power
and limitations of property testing in an algebraic/coding-theoretic context.
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2. Preliminaries and Results

We will use Fq to denote the finite field of cardinality q. For a finite set D,
x←D will denote a random variable distributed uniformly over D. We will
mostly be interested in Boolean functions over D. We will use F2 (the finite
field on 2 elements) to denote the range. We use {D → F2} to denote the set of
all functions from the set D to F2. We will use the notation 〈vi〉i∈U to denote
a vector indexed by elements of some finite universe U . The notation k < ∞
means that k is finite.

2.1. Distance, Local Testability, Constraints, and Characterizations.
For a finite set D and functions f, g : D → F2, we define the (normalized
Hamming) distance between f and g, denoted δ(f, g), to be Prx←D[f(x) 6=
g(x)]. For a function f : D → F2 we let the weight of f , denoted wt(f), be the
number of x ∈ D such that f(x) 6= 0. For a family of functions F ⊆ {D → F2},
define δ(f,F) to be ming∈F{δ(f, g)}. We say f is δ-far from F if δ(f,F) > δ
and f is δ-close otherwise.

The central goal of this paper is to analyze the local testability of the
property of membership in a given ensemble of families F = {Fn}n with Fn ⊆
{Dn → F2}, where |Dn| → ∞ as n→∞. We will sometimes call Fn a property
and F = {Fn}n an ensemble of properties.

Definition 2.1 (k-local test). For integer k and reals 0 ≤ ε1 < ε2 and δ > 0, a
(k, ε1, ε2, δ)-local test for a property F ′ ⊆ {D → F2} is a probabilistic algorithm
that, given oracle access to a function f ∈ {D → F2}, queries f on k locations
(probabilistically, possibly adaptively), and accepts f ∈ F ′ with probability at
least 1− ε1, while accepting functions f that are δ-far from F ′ with probability
at most 1 − ε2. Property F ′ is called (k, ε1, ε2, δ)- locally testable if it has a
(k, ε1, ε2, δ)-local test.

Given an ensemble of families F = {Fn}n, we say F is k-locally testable if
there exist 0 ≤ ε1 < ε2 and δ > 0 such that for every n, Fn is (k, ε1 + o(1), ε2−
o(1), δ)-locally testable (where the o(1) term goes to zero as n→∞).

While eventually our main theorem gives an ensemble of properties that is
not testable according to the definition above, our proof first rules out a more
restrictive class of local tests, called “non-adaptive”, “perfect” tests. We define
these notions next. A tester is non-adaptive if the sequence of queries it makes
is independent of the function f that is being tested (and depends only on the
randomness of the tester). A tester for a property F ⊂ {D → F2} is perfect if
it accepts every function f ∈ F with probability 1.
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For a special class of properties called “linear” properties, the existence of
a k-local test implies the existence of a non-adaptive, perfect k-local test as
shown by Ben-Sasson et al. (2005). We describe this result next.

Theorem 2.2 (Ben-Sasson et al. 2005, Theorem 3.3). Let F = {Fn}n be an
ensemble of linear properties that is k-locally testable. Then F is k-locally
testable by a non-adaptive, perfect tester. Specifically, if Fn is (k, ε1, ε2, δ)-
locally testable, then Fn is (k, 0, ε2 − ε1, δ)-locally testable by a non-adaptive
tester.

Theorem 2.2 will be very useful in presenting our counterexample to the
AKKLR conjecture.

2.2. Linear Codes, Duals, 2-Transitivity and the Conjecture. We now
move towards describing the conjecture by Alon et al. (2005) on the testability
of a certain class of properties. The properties considered in Alon et al. (2005)
are for membership in linear codes, and so we define these next.

A property given by a family of functions F ⊆ {D → F2} is linear if for every
f, g ∈ F it is the case that f + g ∈ F . A natural way to test linear properties
is through “low-weight” functions in their “dual”. To define this notion, we let
f ·g =

∑
x∈D f(x)·g(x) denote the inner product of f and g. (Here and later the

summation and product are done over the field F2.) For a linear property F , its
dual, denoted F⊥, is the family of functions {g : D → F2 | g · f = 0,∀f ∈ F}.
One way (and by the results of Ben-Sasson et al. (2005), essentially the only
way) to test a linear property is to pick a function g ∈ F⊥ of weight at most
k and verify that f · g = 0. It is thus natural to examine the structure of the
dual F⊥ to study the testability of F .

Definition 2.3 (2-Transitivity). The automorphism group of a family F ⊆
{D → F2}, denoted Aut(F), is the set

{π : D → D | π is a permutation and f ∈ F ⇒ f ◦ π ∈ F}.

(It is easy to verify that this set is a group under composition of functions.)
A group G of permutations mapping D to D is 2-transitive if for every

x, x′, y, y′ ∈ D such that x 6= y and x′ 6= y′, there exists π ∈ G such that
π(x) = x′ and π(y) = y′.

Abusing notation slightly, we say that F is 2-transitive if Aut(F) is 2-
transitive.

We are now ready to state the AKKLR-conjecture
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Conjecture 2.4 (Alon et al. 2005). For every d ∈ N, there exists k = k(d) <
∞ such that the following holds: Let F = {Fn}n be an ensemble of properties
such that for every n,

(i) F⊥n has a non-zero function of weight at most d, and

(ii) Fn is 2-transitive.

Then F is k-locally testable.

We refute this conjecture here.

Theorem 2.5. For every k <∞, there is an ensemble of domains {Dn}n and
an ensemble of properties F = {Fn}n such that the following hold:

(i) For every n, F⊥n has a non-zero function of weight at most 8.

(ii) For every n, Fn is 2-transitive.

(iii) F is not k-locally testable.

As pointed out earlier, we plan to prove this theorem by ruling out a restric-
tive class of tests that are non-adaptive and perfect and then using Theorem 2.2.
However to use their theorem we need to ensure that our property is linear.
The following theorem gives the more technical result that we show.

Theorem 2.6. For every k <∞, there is an ensemble of domains {Dn}n and
an ensemble of properties F = {Fn}n such that the following hold:

(i) F is linear.

(ii) For every n, F⊥n has a non-zero function of weight at most 8.

(iii) For every n, Fn is 2-transitive.

(iv) F is not k-locally testable by a non-adaptive, perfect tester.

Note that Theorem 2.5 follows immediately by combining Theorem 2.6 and
Theorem 2.2. So, in the rest of the paper, we focus on Theorem 2.6.

2.3. The Counterexample. Our counterexample family comes from a broad
class of properties introduced by Kaufman & Sudan (2008). These are the class
of “affine-invariant” families defined below.

Let F be some finite field and let K be a finite extension field of F. For
integer m, let F be a property of functions from Km to F. Then F is said to
be affine-invariant if for every K-affine map A : Km → Km and every f ∈ F ,
it is the case that f ◦ A ∈ F .
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Proposition 2.7. For every field K and integer n, the set of affine permuta-
tions from Km → Km is 2-transitive.

Proof. It suffices to prove that for every x1, x2, y1, y2 ∈ Km with x1 6= x2 and
y1 6= y2, there exists an affine permutation A : Km → Km such that A(x1) = y1
and A(x2) = y2. Let A be given by A(x) = Mx + b where M ∈ Km×m and
b ∈ Km. The condition that it be a permutation implies M should be non-
singular, and satisfy M(x1 − x2) = y1 − y2, while b = y1 −Mx1. It is easy to
see that a non-singular M satisfying M(x1 − x2) = y1 − y2 exists. �

It follows that every affine-invariant family is 2-transitive. This gives a rich
family of families to examine and to seek sufficient conditions for testability.
Of particular interest to us are functions formed by applying the Trace map
from K to F, defined below.

Definition 2.8. Let F = Fq and K = Fqn be finite fields. Then the Trace
function Trace = TraceK,F : K→ F is given by Trace(x) = x+xq+xq

2
+· · · xqn−1

.

A fairly rich class of affine-invariant families can be constructed by starting
with a carefully chosen set of monomials over m variables with coefficients
from K, and then taking their Trace and then closure under addition and affine
transformations.

We get our family similarly. We will work with the fields F = F2 and
K = F2n and we fix m to 1. We then consider monomials of the form x2

i+1 and
take a moderate sized subset of these and take their traces and affine closures.
The resulting family is described below.

The Counterexample For positive integers k < n, let

F∗k,n =

{
f : F2n → F2 | ∃β, β0, . . . , βk ∈ F2n s.t.

f(x) = Trace(β + β0x+
∑k

i=1 βix
2i+1)

}
.

In the following section we confirm that for every k, n, the family F∗k,n is
affine-invariant (and hence 2-transitive) — see Lemma 3.2. We also show the
basic property that F∗k,n ⊆ F∗k+1,n. We also show that this containment is strict
if k < bn/2c. Both properties are straightforward to show.

We then use an alternate definition of the most common definition of Reed-
Muller functions of order 2 (denoted RM(2, n)) (see for instance Alon et al.
(2005)) to show that RM(2, n) contains F∗k,n for every k. The duals of these
RM(2, n) families always contain functions of weight 8. As a result we get
that the families F∗k,n satisfy the low-dual-weight condition of the AKKLR
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conjecture. We also note that these functions have large pairwise distance, i.e.,
for every f 6= g ∈ RM(2, n), δ(f, g) ≥ 1/7.

This leads us to the central question: Do these families have local testers?
We show that this is not the case. This part of our analysis is novel. We show
that any function in the dual of F∗k,n of weight at most k is also a word in the
dual of RM(2, n). We then use this to conclude that F∗k,n has no k-local tests
(Lemma 3.11).

Putting these results together we immediately get a proof of Theorem 2.6
(see Section 3.4).

3. Proof of Main Theorem

3.1. Basic properties of F∗k,n. We start with the simple claim that F∗k,n is
linear.

Lemma 3.1. For every k, n, F∗k,n is linear.

Proof. Follows from the definition of F∗k,n and the fact that the Trace func-
tion is linear, i.e., Trace(x+ y) = Trace(x) + Trace(y). �

Next we show the affine invariance of F∗k,n.

Lemma 3.2. For every k, n, F∗k,n is affine-invariant.

Proof. Fix an affine transformation A : F2n → F2n given by A(x) = ax+ b
for a, b ∈ F2n . Fix also f ∈ F∗k,n given by f(x) = Trace(c+ b0x+

∑k
i=1 bix

2i+1)
for some bi, c ∈ F2n , 0 ≤ i ≤ k. We need to show that f ◦ A ∈ F∗k,n.

Note that (f ◦A)(x) = f(ax+b) = Trace(c+b0(ax+b)+
∑k

i=1 bi(ax+b)2
i+1).

By the linearity of the Trace function, we have (f ◦ A)(x) = Trace(c) +
Trace(b0(ax+b))+

∑k
i=1 Trace(bi(ax+b)2

i+1). By the linearity of F∗k,n (Lemma 3.1),
it suffices to prove that each individual summand is in F∗k,n.

This is verified easily for Trace(c) as well as Trace(b0(ax+b)) = Trace(b0ax)+
Trace(b0b). We thus turn to the term Trace(bi(ax+ b)2

i+1). We have

Trace(bi(ax+ b)2
i+1)

= Trace(bi(ax+ b)2
i

(ax+ b))

= Trace(bi(a
2ix2

i

+ b2
i

)(ax+ b))

= Trace(bi(a
2i+1x2

i+1 + a2
i

bx2
i

+ ab2
i

x+ b2
i+1))

= Trace(bia
2i+1x2

i+1) + Trace(bia
2ibx2

i

)

+Trace(biab
2ix) + Trace(bib

2i+1))
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The first, third, and fourth terms in the final expression above are again
syntactically in the class F∗k,n. For the second term, note that it is of the form

Trace(βx2
i
) = Trace(β2x2

i+1
) = · · · = Trace(β2n−i

x2
n
) = Trace(β2n−i

x) and
thus Trace(βx2

i
) ∈ F∗k,n also. Using the linearity of F∗k,n we thus conclude that

Trace(bi(ax+ b)2
i+1) ∈ F∗k,n and this suffices to conclude that f ◦ A ∈ F∗k,n. �

Lemma 3.3. For every k < n − 1, F∗k,n ⊆ F∗k+1,n. If k < bn/2c then F∗k,n (
F∗k+1,n.

Proof. The proof of the first containment follows from the definition. The
second part can be derived from, for instance, (MacWilliams & Sloane 1981,
Chapter 9, Theorem 7). For the sake of completeness we include a proof here.

We claim that for distinct 1 ≤ i, j < n/2, the functions Trace(x2
i+1) and

Trace(x2
j+1) have disjoint support, when viewed as polynomials of degree at

most 2n − 1. This suffices, since it implies that the function Trace(x2
k+1) 6∈

F∗k−1,n. We prove the claim below.

Note that the function Trace(x2
i+1) has support on the monomials xd for

d = 2i+` + 2` (mod 2n − 1) and similarly Trace(x2
j+1) is supported by the

monomials xd for d = 2j+m + 2m (mod 2n − 1) (here we use the phrase mod
non-conventionally to refer to the unique integer in [2n−1] from the equivalence
class). Suppose for contradiction that 2i+`+2` = 2j+m+2m (mod 2n−1). Then,
by multiplying both sides by 2s−` and reducing modulo 2n − 1, we see that we
have 2i + 1 = 2j+m′ + 2m′ (mod 2n − 1) (where m′ = m− `). Now we consider
two cases: If m′ ≤ n/2, then the unique integer between 1 and 2n − 1 equal
to 2j+m′ + 2m′ (mod 2n − 1) is 2j+m′ + 2m′ . But then 2j+m′ + 2m′ 6= 2i + 1
unless m′ = 0 and i = j (violating distinctness of i and j). In the other case, if
m′ > n/2, then the unique integer in [2n−1] equal to 2m′+2j+m′ > 2n/2 > 2i+1.
So again the modular equivalence can not hold. This proves the claim, and thus
the lemma. �

3.2. Reed-Muller of Order 2 Family. As already discussed, the coun-
terexample family defined above is included in RM codes of order 2. This is
not immediately obvious from the usual definition of RM codes as low degree
polynomials.

Definition 3.4.

RM(d, n) =
{
f : Fn

2 → F2|f =
∑

ad1,d2,...,dnx
d1
1 x

d2
2 . . . xdnn , ai ∈ F2, with

∑
di ≤ d

}
.
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Notice that it is enough to consider di ∈ {0, 1}, since over F2 x
i = x for

i ≥ 2. Also, for positive integer d denote by wt(d) the number of non-zeros in
the binary representation of d. We use an alternate definition of RM codes:

Definition 3.5.

C(d, n) =
{
f : F2n → F2|f(x) = Trace(

∑
bix

di), bi ∈ F2n , with wt(di) ≤ d.
}

Lemma 3.6. Definition 3.4 and 3.5 are equivalent. Specifically, for any integer
n > 0, there exists a bijection π : Fn

2 → F2n such that for every integer d ≥ 0,
f ∈ C(d, n) if and only if f ◦ π ∈ RM(d, n).

Lemma 3.6 is a standard result in coding theory and we refer to Ben-Sasson
et al. (2011a) for a simple proof.

The following is now a straightforward consequence of Lemma 3.6.

Proposition 3.7. For every k < n, F∗k,n ⊆ RM(2, n).

It is a well-known fact that RM(2, n) has weight 8 functions in its dual. We
will include a proof here for completeness. We will further need the following
notation. For points x0, x1, . . . , x` ∈ F2n , define A(x0;x1, . . . , x`) to be the
affine subspace generated by x1, . . . , x` through x0. I.e., A(x0;x1, . . . , x`) =
{x0 +

∑`
i=1 aixi|a1, . . . , a` ∈ F2}.

Proposition 3.8. For n ≥ 3, RM(2, n)⊥ contains weight 8 functions.

Proof. Using the linearity of the Trace function (Trace(x+y) = Trace(x)+
Trace(y)) we note that it suffices to show that every f ∈ {Trace(β),Trace(β0x),
Trace(β1x

21+1), . . . ,Trace(βkx
2k+1)} satisfies the “RM(2, n)” constraint of weight

8:
∑

z∈A(x0;x1,x2,x3)
f(z) = 0 for every x0, x1, x2, x3 ∈ F2n .

For f = Trace(β) and f = Trace(β0x) this is straightforward, since f(x +
y) = f(x) + f(y) and so the

∑
z∈A(x0;x1,x2,x3)

f(z) = 8f(x0) + 4f(x1) + 4f(x2) +

4f(x3) = 0 (since we are performing the arithmetic modulo 2).

Now consider Trace(βx2
i+1). We will show that

∑
z∈A(x0;x1,...,x3)

z2
i+1 = 0.

It then follows that
∑

z Trace(βz2
i+1) = Trace(β(

∑
z z

2i+1)) = Trace(0) = 0.

Note further that (x+y)2
i+1 = x2

i+1 +y2
i+1 +x2

i
y+y2

i
x. Using this expansion
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we have: ∑
z∈A(x0;x1,...,x3)

z2
i+1

=
∑

w∈A(x0;x1,x2)

w2i+1 + (w + x3)
2i+1

=
∑

w∈A(x0;x1,x2)

(wx2
i

3 + w2ix3 + x2
i+1

3 )

= x2
i

3

∑
w∈A(x0;x1,x2)

w + x3
∑

w∈A(x0;x1,x2)

w2i + 0

= x2
i

3 (4x0 + 2x1 + 2x2) + x3(4x
2i

0 + 2x2
i

1 + 2x2
i

2 )

= 0

�

Corollary 3.9. For every n > 3 and k < n, F∗⊥k,n contains weight 8 code-
words.

Proof. By Proposition 3.7 Fk,n ⊂ RM(2, n) and so RM(2, n)⊥ ⊂ F⊥k,n.
Proposition 3.8 finishes the proof. �

Finally we show that members of the Reed-Muller family are far apart from
each other. While a careful examination would probably yield a better bound
on this distance, here we get a weaker bound, with a simpler argument.

Proposition 3.10. For every f 6= g ∈ RM(2, n), δ(f, g) ≥ 1/7.

Proof. Consider any function f ∈ RM(2, n) and let h be such that δ(f, h) <
1/14. We claim that h uniquely specifies f : In particular the algorithm: Pick
x1, x2, x3 at random and output

∑
z∈A(x;x1,x2,x3)−{x} h(z), outputs f(x) with

probability at least 1− 7δ(f, h) > 1/2 and thus defines f uniquely.

We thus conclude that there can not exist f, g ∈ RM(2, n) such that
δ(f, g) < 1/7. �

3.3. Key Lemma. Finally we move to the main lemma of the paper. The
goal of this section is to prove the following lemma.
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Lemma 3.11 (Main Lemma). Suppose g ∈ (F∗k,n)⊥ has weight t ≤ k. Then

g ∈ RM(2, n)⊥.

To prove this lemma we first state three useful sub-lemmas, which yield the
main lemma easily. We prove the sub-lemmas later.

The sub-lemmas refer to a positive integer m and the set U = {(i, j)|0 ≤
i < j ≤ m or i = j = 0}. Note that |U | = 1 +

(
m+1
2

)
. We also use b0 to denote

the zero of F2n .

Lemma 3.12. Let a1, . . . , at ∈ F2n be such that
∑t

i=1 f(ai) = 0 for every
f ∈ F∗k,n. Further, suppose there exists g ∈ RM(2, n) such that

∑t
i=1 g(ai) 6= 0.

Then there exists m ≤ t, F2-linearly independent elements b1, . . . , bm ∈ F2n ,
and a non-zero vector 〈λij〉(i,j)∈U ∈ F|U |2 such that

∑
(i,j)∈U λijf(bi + bj) = 0, for

every f ∈ F∗k,n.

Lemma 3.13. Suppose b1, . . . , bm ∈ F2n are F2-linearly independent elements,
and 〈λij〉(i,j)∈U ∈ F|U |2 is a non-zero vector such that

∑
(i,j)∈U λijf(bi+bj) = 0 for

every f ∈ F∗k,n. Then there exists a non-empty set E ⊆ {(i, j)|1 ≤ i < j ≤ m}
such that for every d ∈ [k] it is the case that

∑
(i,j)∈E

(
b2

d

i bj + b2
d

j bi

)
= 0.

Finally we show that the conclusion of the previous lemma implies that
m > k + 1.

Lemma 3.14. Suppose b1, . . . , bm ∈ F2n are F2-linearly independent elements
and suppose E ⊆ {(i, j)|1 ≤ i < j ≤ m} is a non-empty set such that for every

d ∈ [k],
∑

(i,j)∈E

(
b2

d

i bj + b2
d

j bi

)
= 0. Then m > k + 1.

We first show that Lemma 3.11 follows from the three sublemmas.

Proof. (of Lemma 3.11) Let h ∈ (F∗k,n)⊥ and suppose h 6∈ RM(2, n)⊥.
We wish to show t > k. (We actually show t > k + 1, but we state the weaker
bound for notational simplicity.)

Let a1, . . . , at ∈ F2n be the points such that h(ai) = 1. By definition
of (F∗k,n)⊥ we have that 0 =

∑
x∈F2n

f(x)h(x) =
∑t

i=1 f(ai). Since h 6∈
RM(2, n)⊥, there must exist a function g ∈ RM(2, n) such that

∑t
i=1 g(ai) 6=

0. Using Lemma 3.12 we get that there exist m ≤ t, linearly independent
points b1, . . . , bm ∈ F2n , and a non-zero vector 〈λij〉(i,j)∈U ∈ F|U |2 such that∑

(i,j)∈U λijf(bi+bj) = 0 for every f ∈ F∗k,n, where b0 = 0. Applying Lemma 3.13

we get that there exists a non-empty set E ⊆ {(i, j)|1 ≤ i < j ≤ m} such that
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for every d ∈ [k] we have
∑

(i,j)∈E

(
b2

d

i bj + b2
d

j bi

)
= 0. Applying Lemma 3.14

we then get that m > k and thus t ≥ m > k as desired. �

We now turn to proving the three sub-lemmas. Again the crucial result
here is Lemma 3.14 and the other two are just to pin the problem down.

Proof. (of Lemma 3.12) Let b1, . . . , bm be the largest linearly independent
subset of points among a1, . . . , at and let g ∈ RM(2, n) be the function satisfying∑t

i=1 g(ai) 6= 0.
We first claim that for every function f ∈ F∗k,n at least one of the following

must hold: (1) f(0) 6= g(0), or (2) there exists i ∈ [m] such that f(bi) 6= g(bi),
or (3) there exist (i, j) ∈ [m] × [m] such that f(bi + bj) 6= g(bi + bj). To see
this claim, assume otherwise, for some f ∈ F∗k,n. Note that we can prove,
by induction on the size of the set S, that for every set S ⊆ [m] we have
f(
∑

i∈S bi) = g(
∑

i∈S bi). Indeed, this is obviously true for |S| ≤ 2. Now
consider a set S = T ∪ {i, j} where i, j 6∈ T . Let b =

∑
`∈T b`. Now note that

f(b+ bi + bj)

= f(0) + f(b) + f(bi) + f(bj) + f(b+ bi)

+ f(b+ bj) + f(bi + bj)

= g(0) + g(b) + g(bi) + g(bj) + g(b+ bi)

+ g(b+ bj) + g(bi + bj)

= g(b+ bi + bj),

where the first and third inequalities follow from the fact that both f, g ∈
RM(2, n) while the middle equality is by induction. But then, we have that f
and g agree on the entire subspace, which contradicts the fact that

∑t
i=1 f(ai) 6=∑t

i=1 g(ai). Hence our claim must be true.
Consider the set V = {〈f(bi + bj)〉(i,j)∈U |f ∈ F∗k,n}. V is a linear subspace

of F|U |2 since F∗k,n is a linear subspace; but V 6= F|U |2 (since in particular 〈g(bi +
bj)〉(i,j)∈U 6∈ V . Thus there must be a non-trivial constraint 〈λij〉(i,j)∈U such
that every vector x ∈ V satisfies

∑
(i,j)∈U λijxij = 0. This yields the lemma. �

Proof. (of Lemma 3.13) We use the basis functions to establish this
lemma. Let b0, b1, . . . , bm and 〈λij〉i,j be as given.

This proof also relies on the linearity of the the Trace function, and the
additional fact that Trace(ax) = 0 for every x ∈ F2n if and only if a = 0. (This
is easily seen since Trace(ax) is a non-zero polynomial of degree 2n−1 in x, if
a 6= 0.)
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First consider the constant function 1 = Trace(β) for some β ∈ F2n . Since
Trace(β) ∈ F∗k,n we have

∑
i,j λij =

∑
i,j λijTrace(β) = 0, and thus λ00 =∑

(i,j)∈U−(0,0) λij.

Next we consider the functions Trace(β0x) ∈ F∗k,n. We have

0 =
∑
i,j

λijTrace(β0(bi + bj))

= Trace

(
β0
∑
i,j

λij(bi + bj)

)
.

Using the aforementioned property of the Trace function, we have that the
above identity holds for every β0 ∈ F2n only if

∑
i,j λi,j(bi + bj) = 0. Let

τi =
∑

j<i λji +
∑

j>i λij. (For simplicity of notation below, we will assume
λij = λji.) Then we have 0 =

∑
i,j λij(bi + bj) =

∑m
i=0 τibi =

∑m
i=1 τibi (where

the last equality follows from b0 = 0). But b1, . . . , bm are linearly independent
over F2 and τi, λij ∈ F2, so the only way

∑m
i=1 τibi = 0 is if τi = 0 for every i.

Thus we get λ0i =
∑

j 6=0 λji for every i ∈ [m]

Finally we consider Trace(βdx
2d+1) ∈ F∗k,n for d ∈ [k]. We have 0 =∑

i,j λijTrace
(
βd(bi + bj)

2d+1
)

= Trace
(
βd
∑

i,j λij(bi + bj)
2d+1

)
. Again, we

have that the above identity holds for every βd ∈ F2n only if
∑

i,j λi,j(bi +

bj)
2d+1 = 0. Expanding (x+ y)2

d+1 as x2
d+1 + y2

d+1 + x2
d
y + xy2

d
, we get

0 =
∑
i,j

λij

(
b2

d+1
i + b2

d+1
j + b2

d

i bj + bib
2d

j

)
=

m∑
i=1

τib
2d+1
i +

∑
1≤i<j≤m

λij(b
2d

i bj + bib
2d

j )

=
∑

(i,j)∈E

(b2
d

i bj + bib
2d

j ),

where E = {(i, j)|1 ≤ i < j ≤ m s.t. λij 6= 0} as required for the lemma
statement. The only remaining issue is to show that E 6= ∅.

We claim that if E = ∅ we have λij = 0 for every i, j. For i, j ≥ 1
this follows from the definition of E. For i 6= 0 and j = 0 this follows from
the identity above that λ0i =

∑
j 6=0 λji = 0. For i = j = 0, we also have

λ00 =
∑

(i,j)∈U−(0,0) λij = 0. But this contradicts the hypothesis that 〈λij〉 6= 0,

and so we conclude E 6= ∅. �
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Proof. (of Lemma 3.14) This is the crux of our analysis and uses a mix
of linear and polynomial algebra arguments. Assume for contradiction that
m ≤ k + 1.

Recall we are given that for every d ∈ [k]
∑

(i,j)∈E(b2
d

i bj + bibj2
d) = 0. Note

further that we also trivially have this condition for d = 0, since
∑

(i,j)∈E(b2
d

i bj+

bibj2
d) =

∑
(i,j)∈E(bibj + bibj) =

∑
(i,j)∈E 0.

For i ∈ [m], let ρi =
∑
{j|(i,j) or (j,i)∈E} bj. Then we can rewrite

∑
(i,j)∈E(b2

d

i bj+

bibj2
d) as

∑m
i=1 ρib

2d

i and so we have, for every d ∈ {0, 1, . . . , k} as
∑m

i=1 ρib
2d

i =
0.

Consider the m ×m matrix A = (aij) with aij = b2
i−1

j . Then the previous
paragraph implies that A · ρ = 0 for the column vector ρ = 〈ρ1, . . . , ρm〉. (In
particular, we have that the ith entry of A · ρ equals

∑m
j=1 b

2i−1

j ρj which is 0
for every i ∈ {1, . . . , k + 1} ⊇ {1, . . . ,m}.)

Next we note that ρ 6= 0. This is true since for at least one i ∈ [m] the
summation

∑
{j|(i,j) or (j,i)∈E} bj sums over a non-empty set of indices j (since

E 6= ∅). But now the linear independence of b1, . . . , bm over F2 implies that the
summation, and hence ρi, is non-zero.

We conclude that the matrix A is singular. We now use this fact to infer
that A has a non-zero vector in its left kernel, i.e., there exists a non-zero row
vector λ = 〈λ1, . . . , λm〉 such that λA = 0. But now consider the polynomial
Λ(x) =

∑m
i=1 λix

2i−1
. Using this notation, we have λA = 〈Λ(b1), . . . ,Λ(bm)〉.

Thus the condition λA = 0 implies that Λ(bj) = 0 for every j ∈ {1, . . . ,m}.
But now, we have that Λ(x) is a non-zero polynomial (since λ is a non-zero

vector), of degree at most 2m−1. Furthermore Λ is a linearized polynomial and
satisfies Λ(x+y) = Λ(x)+Λ(y). This implies that Λ(bS) = 0 for every S ⊆ [m],
where bS =

∑
i∈S bi. The linear independence of b1, . . . , bm furthermore implies

that the bS’s are all distinct and thus we get that Λ is a non-zero polynomial of
degree at most 2m−1 with 2m distinct roots, yielding the desired contradiction.

�

3.4. Putting it together. We now use the main lemma of the previous
subsection to claim that membership in F∗k,n is not testable with a non-adaptive,
one-sided error, k-local test. This part is more or less standard and follows, for
instance, from the methods in Ben-Sasson et al. (2005). We include the full
details for completeness.

We first summarize our arguments from the previous section in a slightly
more convenient form.
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Lemma 3.15. Fix a1, . . . , at ∈ F2n . For f : F2n → F2 let π(f) = πa1,...,at(f) =
〈f(a1), . . . , f(at)〉 be the projection of f to a1, . . . , at. Let V ⊆ Ft

2 be the set
V = {π(f)|f ∈ F∗k,n}, and let W = {π(f)|f ∈ RM(2, n)}. If t ≤ k, then
V = W .

Proof. We first note that V and W are linear subspaces of Ft
2. This follows

from the fact that F∗k,n and RM(2, n) are linear spaces. Since F∗k,n ( RM(2, n),
it also follows that V ⊆ W . Suppose V 6= W . Then it follows, by linear algebra,
that there exist vectors u,w ∈ Ft

2 such that u · v = 0 for every v ∈ V , u ·w 6= 0
and w ∈ W . Since w ∈ W there exists h ∈ RM(2, n) such that w = π(h). Let
a′1, . . . , a

′
t′ be the subsequence of a1, . . . , at corresponding to indices i such that

ui 6= 0. Then we have
∑t′

i=1 h(a′i) = 1 while
∑t′

i=1 f(a′i) = 0 for every f ∈ F∗k,n.
By Lemma 3.11 we have t ≥ t′ > k.

�

We can now prove Theorem 2.6.

Proof. (of Theorem 2.6) For every n, the domain Dn = F2n . For every
n, the family of functions we work with is Fn = F∗k,n.

First note, by Corollary 3.9 that for every n, Fn has a non-zero function in
its dual of weight 8. Next, by Lemma 3.2 we also have that Fn is affine invariant
and thus (by Proposition 2.7) 2-transitive. It remains to show that F is not
k-locally testable. Assume F is t-locally testable, i.e., for all sufficiently large
n there is a one-sided error, non-adaptive, tester T = Tn that accepts every
member of Fn while rejecting all functions at distance at least, say, 1/7 from
Fn with positive probability. We argue below that this can not happen if t ≤ k
and n > 2k + 1.

Suppose t ≤ k. Fix the coins of T to some string R and let a1, . . . , at ∈ F2n

be the queries of the tester T on random string R. Let π, V and W be as
in the statement of Lemma 3.15. Since the tester makes one-sided error, it
follows that it must accept every pattern in V (i.e., accepts every function f
such that π(f) ∈ V ). By Lemma 3.15 we have V = W and so the tester
accepts every element of RM(2, n) also on random string R. Thus we get
that every element of RM(2, n) is accepted with probability one by the tester
T . Since RM(2, n) 6= F∗k,n for k < bn/2c (Lemma 3.3) there exists a function
h ∈ RM(2, n)−F∗k,n that is accepted with probability one. Furthermore, by the
distance of RM(2, n) (Proposition 3.10) and the fact that F∗k,n ⊆ RM(2, n), we
have that δ(h,F∗k,n) ≥ 1/7. We conclude that the tester T accepts functions at
distance 1/7 from F∗k,n with probability one, violating the requirement above. �
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4. Conclusions

In the context of “sublinear time algorithms” it is natural to ask: How does
the locality lower bound on the test scale with the complexity of the property
being tested? Of course, a related question is: How should one measure the
complexity of a property being tested?

A crude measure of the complexity (though certainly an upper bound) is
the size of the domain. In our case, using k = Ω(n) the lower bound on the
locality of the test for F∗k,n is Ω(n) = Ω(log n) (where 2n is the domain size).

But a more refined measure of the complexity of a property being tested is
the logarithm of the number of functions having a given property. For F∗k,n this
number is kn. For natural and in particular, for linear, properties, it is easy
to see that this measure gives an asymptotic upper bound on the locality of
property testing (and indeed we would argue that this test is really not local).
Compared against this refined measure, our lower bounds are actually within
polynomial factors of the upper bound, which is a more accurate reflection of
the tightness (or looseness) of our analysis.

Moving on to the quest for general understanding of property testing, our
results do not shed as much light on testability as we would hope, but some
of the questions raised in the initial version of this paper were subsequently
settled leading to progress in this direction.

For instance, our work actually rules out even a local “characterizations”
of the family F∗k,n. Informally, a characterization is a definition of a family
in terms of local constraints satisfied by its members. In coding theoretic
parlance a locally characterized property corresponds to a “low density par-
ity check” (LDPC) code. (See (Kaufman & Sudan 2008, Definition 2.1) for a
formal definition.) While this makes our result even more interesting in the
coding theoretic setting, a more interesting property testing question is: Does
2-transitivity and the existence of a local characterization could imply property
tests? This was open at the time of the initial release of this work. In sub-
sequent work Ben-Sasson et al. (2011b) resolve this question in the negative
by exhibiting a family of LDPC codes that is affine-invariant and yet is not
testable.

A different direction suggested as open in the initial version of this paper
was the possibility that there may exist an even simpler counterexample. The
specific family suggested was F?

k,n = {Trace(β+β0x+βkx
2k+1)|β, β0, βk ∈ F2n}.

The family F?
k,n is a “sparse” one, i.e., has 2O(n) codewords and at the time

it seemed plausible that there may exist such sparse properties that are not
testable. In subsequent works, Grigorescu et al. (2009) and then Kaufman
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& Lovett (2011) settled this question by showing all sparse properties over
prime fields are locally testable. In particular, their result rules out F?

k,n as a
potentially simpler counterexample.
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