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ABSTRACT

We argue that the symmetries of a property being tested play a cen-
tral role in property testing. We support this assertion in the context
of algebraic functions, by examining properties of functions map-
ping a vector space K" over a field K to a subfield F. We consider
(F-)linear properties that are invariant under linear transformations
of the domain and prove that an O(1)-local “characterization” is a
necessary and sufficient condition for O(1)-local testability, when
|K| = O(1). (A local characterization of a property is a definition
of a property in terms of local constraints satisfied by functions
exhibiting a property.) For the subclass of properties that are in-
variant under affine transformations of the domain, we prove that
the existence of a single O(1)-local constraint implies O(1)-local
testability. These results generalize and extend the class of alge-
braic properties, most notably linearity and low-degree-ness, that
were previously known to be testable. In particular, the extensions
include properties satisfied by functions of degree linear in n that
turn out to be O(1)-locally testable.

Our results are proved by introducing a new notion that we term
“formal characterizations”. Roughly this corresponds to character-
izations that are given by a single local constraint and its permu-
tations under linear transformations of the domain. Our main test-
ing result shows that local formal characterizations essentially im-
ply local testability. We then investigate properties that are linear-
invariant and attempt to understand their local formal characteri-
zability. Our results here give coarse upper and lower bounds on
the locality of constraints and characterizations for linear-invariant
properties in terms of some structural parameters of the property we
introduce. The lower bounds rule out any characterization, while
the upper bounds give formal characterizations. Combining the two
gives a test for all linear-invariant properties with local characteri-
zations.

We believe that invariance of properties is a very interesting no-
tion to study in the context of property testing in general and merits
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a systematic study. In particular, the class of linear-invariant and
affine-invariant properties exhibits a rich variety among algebraic
properties and offer better intuition about algebraic properties than
the more limited class of low-degree functions.
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Theory
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1. INTRODUCTION

Property testing considers the task of testing efficiently, by ran-
dom sampling, if a function mapping a finite domain to a finite
range “essentially” satisfies a given property. A property to be
tested can be specified by the family of functions F that possess the
property. A property specified by a family F is k-locally testable
if there exists a randomized test that queries the value of a function
f on k inputs and accepts if f € F and rejects f ¢ F with proba-
bility lower bounded by a quantity proportional to the distance of f
from F. Proximity of functions is measured in terms of its relative
Hamming distance 0(f, g) = Pr.[f(z) # g(z)] when z is chosen
uniformly from the finite domain. A function f is J-close to F if
there exists a g € F such that §(f, g) < ¢ and d-far otherwise.

The study of property testing emerged in the wake of the lin-
earity test of Blum, Luby, and Rubinfeld [4] and was defined for-
mally in Rubinfeld and Sudan [19]. The first substantial investi-
gation of property testing occurred in Goldreich, Goldwasser, and
Ron [10] who focussed on the testing of properties of combinato-
rial objects, in particular of graphs. Subsequent works have lead to
major strides in the testing of graph properties culminating with the
works of Alon et al. and Borgs et al. [1, 6]. The testing of algebraic
properties has also seen significant progress since [4, 19] includ-
ing testing of functions satisfying functional equations [18], and
testing of various algebraic properties leading to error-correcting
codes e.g. testing of Reed-Muller codes [2], generalized Reed-
Muller codes [16, 13], dual-BCH codes [15]. On the negative side,
the works of Bogdanov, Obata, and Trevisan [5] and Ben-Sasson,
Harsha,and Raskhodnikova [3] give properties that are not locally
testable.

In the light of this progress it is natural to ask: What are the
essential features that make a property testable. In the context of



graph-property testing (in the “dense-graph” model) this question
is answered by the works of [1, 6], who show that a certain feature
that they term “regularity” is necessary and sufficient for testing
graph properties. In the algebraic setting, a similar understanding
of properties that lead to local testability is lacking. In this paper
we take some steps to remedy this.

1.1 Invariance and Property Testing:

Our approach to (algebraic) property testing is to attribute testa-
bility to some “invariance” features exhibited by the property. In-
variance features of a family F, especially under permutations of
the domain, seems naturally linked to property testing. For exam-
ple, let us consider the test for “majority” (the property F consist-
ing of all functions f : {1,..., N} — {0, 1} that take the value
1 at least N/2 times). This test is considered uninteresting and we
propose a formal explanation. This test actually uses the symmetry
of the property F, and the symmetry required is the full group of
permutations over the domain. Indeed the test easily extends to any
other “symmetric” property F of Boolean functions, which has the
feature that if f € F and 7 is a permutation on the domain, the
fom(xz) = f(m(x)) is also in F. A formal reason to declare the
test “obvious” may be that the group of invariances needed in F is
so large (qualitatively).

Graph property testing similarly revolves around symmetries.
This setting consider functions A : {1,...,n} x {1,...,n} —
{0, 1}, and properties that are invariant under permutations that
permute rows and columns simultaneously. The groups of sym-
metries thus is somewhat smaller ((v/N)! as opposed to N!, where
N = n? is the domain size). But now one needs some more fea-
tures (monotonicity/heredity) to get property testers [1, 6]. Despite
this natural link between property testing and invariances, this link
does not seem to have been explicit in prior literature. We make it
explicit here. We remark that in independent work, Goldreich and
Sheffet [11], also make this notion explicit, and use it to understand
the randomness complexity needs of property testing.

In this paper we explore invariances of an algebraic kind. To do
so, we consider functions mapping an n-dimensional vector space
over a finite field K to a subfield F of K. Among such functions the
families F we consider satisfy two properties:

1. They are K-linear invariant (or simply linear invariant), i.e.,
for every function f € F, and linear map L : K — K"
(i.e., a function that satisfies «L(x) 4+ BL(y) = L(ax+ By)
for every a, § € K and x,y € K"), it is the case that f o L,
given by (f o L)(x) = f(L(x)), is also in F. If such a
closure holds for all affine maps L from K" to K", then the
property F is said to be affine-invariant.

2. They are F-linear (or simply linear), i.e., for every pair of
functions f,g € F and o, 8 € F it is the case that the func-
tion af + [Bg is also in F. This is the property that typically
leads to linear codes over the alphabet F.

In the algebraic context, linear-invariance over the domain seems
to be a natural class of invariances (though not necessarily the only
class) to consider, and may be viewed as analogous to the choice
of working with “graph-properties”. The linearity of the family 7
(when viewed as a vector space over the range) is an additional
property we impose to derive some testability results (analogous to
the role played by heredity/monotonicity in graph property testing).

For simplicity we suppress the use of the phrase “F-linear” in
this paper, and use the term linear-invariant (affine-invariant) fam-
ily to reflect families which are both linear-invariant (resp. affine-
invariant) and linear. (We stress that this is merely a notational

choice. It maybe quite interesting to study non-linear properties
that are linear-invariant also, but we don’t do so here.)

The resulting collection of families unify most previously con-
sidered in algebraic settings. They include the class of linear func-
tions, low-degree polynomials (and thus generalized Reed-Muller
codes), as well as the dual-BCH codes. But they also include other
families such as homogenous polynomials of any given degree and
linearized polynomials. They satisfy nice closure properties e.g., if
Fi1 and F are linear-invariant, then so are F; N F2 and F1 + Fo,
the family that consists of the sum of functions from F; and F>.
Finally, we remark that the group of symmetries required by linear-
invariance is relatively tiny, and only quasipolynomial in the do-
main size, compared to the exponential sizes relied upon in the
symmetric properties as well as in graph properties.

Our principal results are to show necessary and sufficient con-
ditions for testing linear-invariant families mapping K" to F. The
results hold for all choices of K and IF as n — oo, but are specially
strong when |K| = O(1). We describe our results, and approach,
below.

1.2 Constraints, Characterizations,
Formal Characterizations, Testing:

To understand necessary conditions for local testability, we start
by recalling the some basic notions in this context, namely those of
“constraints” and “characterizations”.

We say that a family F satisfies a constraint C = (x1,...,Zk;
S) where z1,...,xx € K™ and S C F* if every member f € F
satisfies (f(z1),..., f(zx)) € S. We refer to this constraint as a
k-local constraint. In order for a property to be k-locally testable,
with one-sided error, it must be the case that functions in the fam-
ily satisfy some k-local “constraint” (since every rejected function
must be rejected with a proof of non-membership in the family).
Local constraints also essential for a family of functions to be local-
correctible and indeed it turns out that all function families we an-
alyze are locally correctable.

Testable properties where every non-member is rejected with
positive probability (as required by our definition of a local test)
actually need to show even more structure. Specifically, it must be
that there is some set of local constraints that completely charac-
terize the family, i.e., f € F if and only if it satisfies every one of
the given set of k-local constraints. (See Definition 2.1 for a formal
definition.) In this paper we will consider all function families that
are linear invariant and have a local characterization and show that
they are testable.

To derive this result we examine the source of the local charac-
terizability of a family. Local characterizability of a family requires
that a family be specified by several local constraints. In examin-
ing the features that lead to property testing it is natural to ask for
an explanation for this abundance of local constraints. One way to
explain them is via the invariance features of the family. If a family
satisfies one local constraint, then every “permutation” of the do-
main that preserves membership in the family yields a potentially
new local constraint. In our case, thus the abundance of constraints
can be explained by the linear invariance of the family. Every lin-
ear transformation of a constraint, leads to another valid constraint,
and together this set can be quite large. Motivated by this, we in-
troduce the notion of a formal characterization, which requires that
the family be specified by a single constraint and its “orbit”, i.e., all
the other constraints obtained by linear transformations of the given
one, characterize the family. (The actual definition allows a slightly
broader class of characterizations, see Definition 2.3.) Modulo the
formal definitions of these objects, we can state our first theorem
informally as follows:



Main Theorem 1 (Informal): If a family F is linear-invariant
and has a k-local formal characterization, which satisfies some ad-
ditional restrictions, then it is k-locally testable. (See Theorem 2.9
for a formal statement.)

The requirement that a single constraint and its orbit characterize
a family may seem overly restrictive, but known characterizations
of most algebraic functions including those from [4, 19, 2, 16, 13]
are actually formal and satisfy the (thus far unspecified) additional
restrictions (see Proposition 2.7). As a result Theorem 2.9 already
subsumes many of the algebraic testing results. Moreover, as dis-
cussed later in this section, the proof is actually somewhat simpler
and unifies the different proofs presented in the literature for the
different cases.

Our other main results show that the above theorem actually
gives testers for all linear-invariant families provided the family is
locally characterizable, a clear necessary condition. For the spe-
cial case of affine-invariant families, we show that the existence of
a single local constraint suffices to establish testability. Again we
describe these theorems informally below.

Main Theorem 2 (Informal): If a family F is affine-invariant
and has a k-local constraint, then it has a prly“KD-localformal
characterization which satisfies the additional restrictions
mentioned in Main Theorem 1 (Informal). Hence F is fePoly (KD
locally testable. (See Theorem 2.10 for a formal statement.)

Thus when |K| = O(1), the above pins down the local testability
to with polynomial factors. Moving to the case of linear-invariant
families, here we do get local formal characterizations, but they
do not satisfy the additional restrictions described in Theorem 2.9.
However, we still manage to use the theorem to give a local tester
for all such families.

Main Theorem 3 (Informal): If a family F is linear-invariant
and has a k-local characterization, then it has a kP°Y UKD Jocal
formal characterization (which need not satisfy the additional re-
strictions mentioned in Main Theorem 1 (Informal)). Furthermore,
Fis kPoYURD jocally testable. (See Theorem 2.11 for a formal
statement.)

1.3 Significance of results:

The significance of the results depend on the “novelty” of the
class of properties that are linear-invariant, and have local con-
straints or characterizations. At first look it may appear that linear-
invariance is just a rephrasing of the notion of being low-degree
polynomials'. Indeed we even prove that when K = F = Z, is a
prime field then the only affine-invariant families are polynomials
of a given bound on their degree. However each restriction, K = T,
F = Z, and the affine-invariance of F (as opposed to mere linear-
invariance), when relaxed leads to a broader set of properties.

For instance, when K = [ and F is not a prime field, then the
class of “linearized polynomials” lead to an interesting collection
of “high-degree” polynomials that are affine-invariant, but testable
with much greater locality than their degree would suggest. (Lin-
earized polynomials over the field F of cardinality p® for prime p
and s > 1 are functions of the form Zf;ol ciz?".) In the full ver-
sion of this paper [17], we give a generalization of this result to
multivariate polynomials of p-degree greater than 1, giving a mod-
erately broad class of functions that are very locally testable using

"We remark that it is not possible to deny that every property from
K" to F is a property of “polynomials”, since every function is
from K™ to F is a polynomial. However this is no more interesting
than saying that some property is |K|"-locally testable! What we
claim here, and show later in the paper, is that the class of properties
showing linear-invariance is not just polynomials of a given upper
bound on the degree.
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Figure 1: Informal summary of the notions and results in this
paper.
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Theorem 2.9.

Moving to the case where K # T, a priori it is not even clear that
it is good to think of them as polynomials over K (though as noted
earlier, every function from K" to K, and hence from K" to IF, is a
polynomial with coefficients from K). Every non-constant function
takes on a constant value 1/|F| fraction of the times and so must be
a very high degree polynomial over K (of degree at least | K|/|F|).
Yet they can be locally testable with O(1) locality, again suggesting
that the “degree” of polynomials in the set is not a good way to
measure their testability. This class of functions are interesting in
that they capture the “dual-BCH” codes studied (in the context of
property testing) by Kaufman and Litsyn [15]. In the full version
of this paper [17], we give some basic structural results about such
functions which allows us to get some weak, but general, results
about testing multivariate versions of such functions.

The strongest contrast from low-degree polynomials however
comes when studying linear-invariant (as opposed to affine-
invariant) families. In the previous cases, it was the structure within
the field K that played a central role in differentiating the proper-
ties under consideration from the class of low-degree polynomials.
While this distinction led to some nice examples, the “coarseness”
of our general results (Informal Theorems 2 and 3 above) is weak
to capture this distinction. In the case of linear-invariant families,
homogenous polynomials start to play a special role and this role
is quantitatively much more significant. For example consider the
set of n-variate polynomials over Zs supported on monomials of
odd degree or monomials of degree at most 10. It can be verified
that this a linear-invariant family. On the one hand this set includes
polynomials of degree upto 2n — 1, and indeed the supporting set
of monomials has cardinality at least 2". However, it turns out that
this family is testable with O(1)-locality independent of n Indeed
Lemma 5.11 gives a broad generalization of this example to a rich
collection of non-low-degree polynomials that are locally testable.

We remark that linear-invariance also leads to other rich effects.
As mentioned above, the class of homogenous polynomials of de-
gree d is linear-invariant and O(d)-locally testable. Also if F7 and
JF> are linear-invariant, then so is F; + Fo2. It follows that if both
are locally testable then so is F1 + F2 (see the full version [17]).

In summary, we assert that the class of linear-invariant proper-
ties mapping K" to F form a rich enhancement of the class of low-
degree polynomials and our results here show how to extend some
of the property testing results to the enhanced collection of proper-
ties.

1.4 Techniques:

Our techniques belong into three different categories.
Unification of previous testing results by Tensor product of codes.
Our testing result (Informal Theorem 1) unifies, simplifies and gen-



eralizes the proof of the robustness result from several prior works
[4, 19, 2, 16, 13]. The later works in this sequence built on the
proof structure developed in [4], but then needed to find new ways
to address the many variants of a common technical problem that
arose in all the proofs. Our insight in this work is to notice that
all these problems were hovering around the concept of “tensor
products” of linear spaces (or codes). By extracting this element
explicitly (see proofs of Lemmas 3.1 and 3.3) we are able to find a
single proof (not much more complicated than the first) that simul-
taneously solves all the problems. We remark that this proof does
not specialize to any of the previous proofs, not even in the case of
[4]. Previous proofs were more “efficient” in terms of the tradeoff
between the rejection probability of the test and the distance from
the family F. By sacrificing this efficiency we are able to unearth
some of the underlying reasons for why testing works. Given the
central role of linearity and low-degree testing in complexity the-
ory, we hope that the additional understanding will be of technical
benefit in the future.

Structural theorems for linear invariant families. Our structural
theorems about linear-invariant families (Informal Theorems 2 and
3) are based on a careful analysis of polynomials mapping K" to
F. Recalling that every function from K" to IF can be viewed as a
n-variate polynomial over K, we ask questions of the form, what
does a linear invariant family F containing a single function (poly-
nomial) f look like? We present some very simple but broadly
useful lemmas in this context, which we describe first for the sim-
ple case when K = F. We give a “monomial extraction lemma”,
Lemma 4.2, which shows that every monomial appearing in the
support of f is also in F (where we view the monomial also as a
function from F” to F). For example, any linear-invariant family
containing the polynomial z* + zy? + y* also contains the func-
tion zy?. This turns our attention to linear invariant families 7 that
contain some given monomial m. We show a “monomial spreading
lemma”, Lemma 4.3, which describes many other monomials that
should be contained in F as well. For example a family containing
the monomial 22> over a field of characteristic greater than 5 also
contains the monomials z° and zy* etc. We show a similar (more
general) variant for affine-invariant families also. These lemmas,
though simple, forge the path for a better understanding of linear-
invariant and affine-invariant families. In particular they say that
these families are completely characterized by the monomials in
the families. In the case of affine-invariant families, the maximum
degree of the monomials in the family forms a good, though crude,
bound on the locality of the characterizations/tests of the family,
and this leads to the Informal Theorem 2 above.

For linear-invariant families however, the degree turns out to
be the wrong measure to estimate the locality of characterizations
or tests. Instead we introduce a new parameter that we call the
linear-invariance degree of a family. For example, for the earlier-
mentioned example of the family mapping Z3 to Zs supported on
all monomials of odd degree and on other monomials of degree
upto 10, the linear-invariance degree turns out to be 10. We show
that this invariance degree bounds, again crudely, the locality of the
characterization/tests of any family and this leads to the Informal
Theorem 3 above, in the case of K = F.

Systematic study of functions from a field K to a subfield F. Fi-
nally we extend the results to the case of function families mapping
K" to some subfield F of K. Thus, our work provides the first sys-
tematic study of testability of functions from a field to its subfield.
In this case we describe a basis for functions mapping K" to F,
which itself seems new. This basis generalizes in a common way
the well-studied “trace” and “norm” functions, both of which map
K to F. These functions, that we refer to as “Traces of monomi-

als”, satisfy similar properties to the monomials in the simpler case
of functions from F™ to F. Viewed as a polynomial over K, if a
function f has a support on a monomial m, then the trace of the
monomial m is itself a function in any linear-invariant family con-
taining f. Furthermore, the presence of one monomial implies the
presence of many others in the family, leading to upper and lower
bounds on the characterizations/tests of the family.

Organization of this paper:

In Section 2 we introduce some basic definitions needed to present
our main results and we provide formal statements of our main re-
sults. In Section 3 we prove our main result (Theorem 2.9) on
testing linear-invariant families that admit nice formal characteri-
zations. In Sections 4 and 5 we present necessary and sufficient
conditions for affine- and linear-invariant families to admit nice for-
mal characterizations, and give outlines of the proofs, for the case
when K = F. Specifically Section 4 presents some general struc-
tural properties of linear-invariant families, which are then turned
into bounds on the locality of characterizations in Section 5. In
Section 6 we discuss conclusions from our work and some future
work.

Due to lack of space, all proofs are omitted from Sections 4 and 5
and may be found in the full version of this paper [17]. The full
version also includes the study of functions from general fields K
to subfields IF, as also examples of some families that possess non-
trivially local formal characterizations.

2. DEFINITIONS AND STATEMENT OF RE-
SULTS

We start with some common notation we use. We use Z to refer
to the integers. We use [n] to denote the set {1, ...,n}. Through-
out we work with finite fields F of cardinality ¢ = p® and K of
cardinality Q@ = ¢'. F* and K* will denote the non-zero ele-
ments of the fields. For an integer vector d = (d1,...,dy) with
0 < di < Qandc € K*, we let ¢ - x? denote the monomial
c- T, x1. We use K[x] to denote polynomials in x with coef-
ficients from K. We use L to denote the space of linear functions
from K™ — K™ and A to denote the set of affine functions.

2.1 Robust local tests

We start with the formal definitions of constraints, characteriza-
tions and formal characterizations.

DEFINITION 2.1
A k-local constraint C' is given by k points X1, ...,x, € K" and
a set S C F*. We say that a family F satisfies a k-local constraint
C=(x1,...,%x;8) if (f(x1),-.., f(xx)) € S forevery f € F.
We say that a family F has a k-local characterization if there exists
a collection C of k-local constraints such that f € F if and only if
f satisfies all constraints C € C.

When the property being tested is F-linear, it is well-known [3]
that the set S might as well be an F-linear proper subspace of F*.
In what follows we often use the letter V' to denote such a subspace
(instead of S).

We now introduce the notion of a k-local formal characteriza-
tion. We start with a strong and elegant definition, though we will
soon switch to a slightly weaker (but more cumbersome) definition
that is easier to work with. The strong definition formalizes char-
acterizations derived from linear, or affine, translations of a single
k-local constraint.

DEFINITION 2.2 (STRONG FORMAL CHARACTERIZATION).
A family of functions F C {K"™ — T} has a strong k-local formal

(k-LOCAL CONSTRAINT/CHARACTERIZATION).



characterization it there exists a constraint C' = (X1,...,Xk;V C
IF'“) such that f € F if and only if for every linear function L :
K" — K" it is the case that (f (L(x1)), ..., f(L(xx))) € V.

Characterizations such as the above are common in property test-
ing. For instance the class of linear functions from Zj to Z,,
for prime p and n > 2 can be described by the constraint C' =
(a,b,a+ b; V) where a = (1,0,...,0), b = (0,1,0,...,0),
and V = {{«, 8, a + B)|c, B € Zp}. Similarly, the class of de-
gree d polynomials mapping Zj, to Z;, for d < p and n > 2 can
be described by the constraint C = (a,a+b,a+2b,...,a+(d+
1)b; V) where V = {{v, . .., ag41) € F2| Zfiol(fl)l(djl)
a; = 0}. More complex expressions can be found for functions
mapping polynomials over any (esp. a non-prime) field to itself.
However all these definitions do restrict n to be at least 2, which is
somewhat artificial. Also for technical reasons we will use a “dual”
(and weaker) notion of a “formal” constraint.

In the above version, a formal characterization may be viewed as
being given by a collection of constraints: one for every linear map
from K™ to K". In the “dual” version below, we will consider a col-
lection of constraints which are parametrized by a constant number
of variables taking values in K". The “variables” of a constraint,
i.e., locations examined by the constraint, are linear functions of
the parameters. As usual the constraint requires that the vector of
function values at the specified locations come from the set .S.

DEFINITION 2.3 ((WEAK) k-FORMAL CHARACTERIZATION).
A family F has a (weak) k-local formal characterization if there ex-
ists an integer m; k linear functions 1, . .., 0, : (K)™ — K; and
a linear subspace V. C F* such that f € F if and only if for ev-
ery yi,...,ym € K", we have (f(z1),..., f(zr)) € V, where
zi = Li(y1,...,Ym). (Here we interpret the linear function £; as
a map from (K™)™ — K" in the natural way.)

The following proposition establishes a fairly close connection
between strong and weak formal characterizations.

PROPOSITION 2.4. A family F C {K" — F} has a weak k-
local formal characterization if is it has a strong k-local formal
characterization. If n > k then the converse also holds.

PROOF. Let C' = (x1,...,Xk; V) give a strong formal charac-
terization of F. Renumber x1, ..., Xy so that the vectors x1, ...,
Xy, are linearly independent and x; = > 7" | Ag;x; for j € {m +
1,...,k}. Now let £1,...,£¢; : K™ — K be defined as ¢;(z1,
.. .,Zm) = Zj lfj S m and Ej(zl, .. .,Zm) = Z;’il /\ijzi for
j€{m+1,...,k}. Thenitcan be easily seen that ¢1, ..., ¢ and
V' give a weak formal characterization of F.

In the other direction, suppose {1, . .., {5 : K™ — Kand V give
a weak formal characterization of F. Let a1, . .., am € K™ be lin-
early independent vectors in K™. (Note such a collection exist since
m < k < n.) Let x1,...,x; be given by x; = £;(a1,...,Qm).
Then it can be verified that the constraint (x1, ..., xx; V') gives a
strong formal characterization of F. |

Henceforth whenever we refer to formal characterizations, we
mean weak ones. The formal version of the Informal Theorems 1,
2, and 3 rely on some restricted classes of formal characterizations
that we specify below.

DEFINITION 2.5 (2-ARY INDEPENDENT). A k-local formal
characterization ({1, . ..,Ly; V') is 2-ary independent if £1 and {;
are linearly independent for every j € {2,...,k}. If all the {;’s
are of the form y1 + [i(yg, .oy Ym), Where [Z ’s are non-zero, then
we say that the characterization is an affine characterization. (Note
that every affine characterization is also 2-ary independent.)

In the propositions below, we mention some general results on
the existence of formal local characterizations. The first gives a
general transformation, which may be quite weak for large K, but
is quite useful for small K. The second summarizes known (quite
strong) characterizations in our terms. Both proofs are omitted.

PROPOSITION 2.6. For every K there exists a function g =
gx : Z — Z such that if F has a k-local characterization, then
it has a g(k)-local formal characterization.

PROPOSITION 2.7 (FOLLOWS FROM [7, 16]). The set Fy, a
of n-variate polynomials of degree at most d over [F (so here K =
F) of cardinality ¢ = p®, have a d + 2-local formal characteriza-
tion, ifd < q—q/p, and a g @C=1PN jocal formal character-
ization if d > d(1 — 1/p). In both cases, the formal characteriza-
tions are affine.

A much wider class of properties (other than just the class of low-
degree polynomials) have local characterizations. We discuss this
in detail shortly, but first we describe a natural test for properties
with local formal characterizations.

DEFINITION 2.8 (LINEAR-INVARIANT TEST). For family F
that has a formal local characterization given by ({1, ..., 4y; V),
the linear-invariant test is defined to be: “Pick x1,...,Tm € K"
at random and accept if and only if {(f (y1), - .., f(yx)) € V, where
Yi = éi(:pl, ey a:m).”

We can now state our main theorem, which formalizes the In-
formal Theorem 1 of Section 1, for testing linear-invariant families
with local formal characterization.

THEOREM 2.9. If F is a (linear invariant) family of functions
mapping K" to T, with a 2-ary independent k-local formal char-
acterization, then it is k-locally testable. Specifically, the linear-
invariant test accepts all members of F, while a function f that is

o-far from F is rejected with probability min {%, m }

We prove the local testing part of this Theorem in Section 3. In
particular, note that in all cases the rejection probability is indepen-
dent of n and K. So if & = O(1), then the rejection probability is
Q(9).

For well-known linear-invariant families such as linear functions
[4], and Reed-Muller codes [19, 2, 16, 13], the theorem above pro-
duces local tests with the same locality as in the previous works,
though the rejection probability may be slightly smaller in our case.
The rest of this section describes property tests that we can derive
that are not already captured by previous results.

To do so we study invariance properties of functions mapping K™
to IF. All functions from K" to F are polynomials. So the principal
questions we study here are: “Which subsets of polynomials are
linear (or affine) invariant?” and “Which of these families have
k-local formal characterizations?”

We differentiate our results into two categories: those for affine-
invariant families and those for linear-invariant families. In both
cases, as argued earlier there is a rich variety of function families
that are not “merely” low-degree polynomials. However in the case
of affine-invariant families, the maximum degree of functions in the
family does give a crude bound on the locality of characterizations
and tests for the family. On the one hand families that contain even
a single high-degree function cannot satisfy any local constraint;
and on the other hand families with only low-degree functions have
local formal characterizations (see Lemmas 5.5 and 5.6 for the case
when K = F and the full version [17] for the general case). For



affine-invariant families, the characterizations can be converted to
affine-invariant, and hence 2-ary independent ones, one can now
apply Theorem 2.9 to get a testing result as well. This leads us to
the following theorem, which formalizes Informal Theorem 2.

THEOREM 2.10. . For fields F C K with |F| = q and |K| =
Q, let F C {K" — F} be an affine-invariant family with a k-

local constraint. Then F has a k' = (QZk)Q2 -local formal affine
characterization. Furthermore F is k'-locally testable, where the
test accepts members of F with probability 1 and rejects functions

that are d-far with probability min {g, WM .

Theorem 2.10 is proved in the full version [17], though the sim-
pler case where K = IF is proved in Section 5.

The gap between the upper and lower bounds in the above the-
orem is quite weak. Partly, this is because the degree of the poly-
nomial in a family is only a weak estimator of the locality of char-
acterizations. In the full version of this paper [17], we give an
example of a family mapping F" to F where the degree is larger
than the locality of the characterization by a factor of about ¢/p.
This example is interesting in its own right in that it shows some of
the ways in which affine-invariant families differ from families of
low-degree polynomials.

In the case of linear-invariant families, the degree is no longer
even a crude estimator of the locality of characterizations. In Sec-
tion 5 we introduce the notion of the linear-invariance degree of a
family (for the case K = ) and use this parameter to derive up-
per bounds on the locality of formal characterizations, while also
deriving lower bounds on the locality of (any) characterization (see
Lemmas 5.4 and 5.7). Extensions of the notion of linear-invariance
degree and the bounds on characterizations for the case of general
K and F are presented in the full version of this paper [17].

The characterizations in the upper bound, unfortunately, are not
2-ary independent. However we manage to reduce the testing of
linear-invariant families to some related families that do have 2-ary
independent characterizations. This allows us to use Theorem 2.9,
in a slightly more involved way, to get local tests for linear-invariant
families as well. The following theorem, which formalizes Infor-
mal Theorem 3, summarizes this investigation.

THEOREM 2.11. . Forfields F C K with |F| = gand |[K| = Q,
let F C {K"™ — F} be an linear-invariant family with a k-local
characterization. Then F has a k' = (Q2k)Q2 -local formal char-
acterization. Furthermore F is ko-locally testable, for ko = 2QFk’

where the test accepts members of F with probability 1 and rejects
2

. . e . 5
functions that are 6-far with probability min 1 5, TR0 T |-

Again, the full version of Theorem 2.11 is proved in the full ver-
sion, though the simpler case where K = F is proved in Section 5.

3. LOCAL TESTING FROM LOCAL FOR-
MAL CHARACTERIZATIONS

In this section we prove Theorem 2.9 which asserts that a linear-
invariant family F with a 2-ary independent k-local formal charac-
terization is k-locally testable, by the linear-invariant test for F.

In particular, the theorem implies that every affine-invariant fam-
ily F with a k-local formal characterization is testable.

Recall the linear-invariant test picks x1,...,z,» € K" at ran-
dom and accepts if and only if (f(y1),..., f(yx)) € V, where
Yi = f¢($1, ey mm) fori € [k]

Let €(f) denote the probability that the linear-invariant test re-
jects a function f. It is clear that if f € F then ¢(f) = 0. So to

prove Theorem 2.9 for the case of 2-ary independent formal char-
acterizations, it suffices to show that if €(f) then
8(f, F) < 2¢(f).

We start by making some notational simplifications. For i &€
[k] and j € [m], let ¢;; € K be such that £;(z1,...,2m) =
Z;.n:l cijxj. Without loss of generality, we assume that the first
m linear functions simply project on to the first m coordinates; i.e.,
li(z1,...,xm) = x; for i € [m]. (This can be achieved by a
linear transformation of the variable x1,...,z,, and by permut-
ing the ¢;’s.) Furthermore, we assume the remaining coordinates
are linearly independent of x; and so for every i # 1, the vector
<C~;2, ey Cim> ;é 0.

Fix a function f with e(f) < 1/((2k + 1)(k — 1)). As in
[4], we now describe a function g : K® — T that is close to f,
that will turn out to be a member of F. For any choice of values
Qa,...,ar € F notice that there is at most one o € I such that
(o, 2, ..., ar) € V. Define DECODE(az, . . ., ) to be this « if
it exists (and a special symbol L denoting error otherwise). For x €
K" and let Sc’ (z;x2,...,%m) = DECODE(f(y2),..., f(yx))
where y; = ;(z, 22, ..., Zm). Note that €(f) equals the probabil-
ity that f(z) # Sc” (z; 2, ..., Tm), when x, 2, . . ., L., are cho-
sen uniformly and independently from K". In particular f(z) =
Sl (z; 2, ..., xm) forevery @, xa, . . ., 2., if and only if f € F.

Finally, we are ready to define the function g, which we claim to
be the function close to f that is in F. For z € K", let g(z) =
plurality ., ¢ gnym—1 Scf (z, ).

We now follow the same sequence of steps as in [4]. It is straight-
forward to show that f is close to g and we do so in Lemma 3.2.
But before we do so, we move to the crucial step, which is to prove
that the plurality above is really an overwhelming majority for ev-
ery x. We show this first in Lemma 3.1. Finally, a proof similar to
that of Lemma 3.1 shows that g must be a member of F and we do
so in Lemma 3.3. Theorem 2.9 follows easily from these lemmas.

1
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LEMMA 3.1. For every z € K", Pry ,[(Sc/ (z,y) # Scf (x,
z))] < 2(k — 1)e(f). Hence, for every x € K", Pry[g(x) #
Sc! (z,y)] < 2(k = 1)e(f)-

PROOF. Let e = ¢(f). We build two k X k matrices M, N with
M;; € K" and N;; € F and use properties of these matrices to
prove the lemma.

For i, j € [m] pickv;; € K™ as follows. Let y11 = x, y1; = ¥;
i1 = Z;, and y;; be chosen independently and uniformly at ran-
dom from K" otherwise. (Note every ~y;; except y11 is thus drawn
uniformly at random from K™.) Now for ¢ € [k] and j € [m],
let M;; = £i(y1j,---,7vmj). (In particular, we have M;; = ~;;
for 4,j € [m].) Finally for i € [k] and j € [k], let M;; =
L;(M;1, ..., Mim). The second matrix IV;; is defined to be f(M;;)
except when ¢ = j = 1, in which case we define N1; = Scf (z,y).

Below we show that all the rows of IV are codewords of V' (with
high probability), and that all the columns except possibly the first
are also codewords of V. This allows us to conclude that the first
column is also a codeword of V' and this in turn yields the lemma.

We start by examining the properties of M and N. We claim that
every row and every column of M corresponds to the queries of a
potential test by our tester. We start with the rows. Fix ¢ € [k] and
note that the entries of the ith row correspond to queries of the test
with randomness M1, ..., My, (corresponding to queries of the
test “Does f(M;1) = Scf (Mi1; Mia, . .., Mim)?”). Notice fur-
ther that for ¢ # 1 the values M;1, ..., My, are drawn uniformly
and independently at random from K™ (independent of x). To see
this, suppose c;; # 0 for some j € {2,...,m}. Then note that
there is a one to one correspondence between (~;1,...,V;jm) and
(M1, . .., Mim) for any fixed choice of {vix }ix;,5. Thus choos-



ing (vj1,...,7v;m) uniformly at random makes (M;1, ..., Mim)
uniform over (K™)™ independent of v11 = x. We conclude that
the probability that f(M;1) # Scf(M“; M;a, ..., M) is at most
e. In other words, the probability that the ith row of N is not a
codeword of V' is at most € for ¢ # 1.

Next we move to the columns of M and N. Note that the con-
struction of M was asymmetric in that every row was defined to
form a “query" pattern of our test. However, we note that the same
matrix could have been defined by constructing the first m rows
first, and then defining each column to be a “query pattern” of the
test. To see this recall that £;(21,...,2m) = > 7", cijz;. Thus
we have

Mij = K]‘(Mﬂ,...

i =1

1
m
= cii’Mi’j
/=1

= fi(Mu, .. .,Mmj).

By a similar argument to the previous paragraph we now have that
the probability that the jth column of IV is not a codeword is at
most € for j # 1.

Thus, by the union bound, we have that with probability at most
2(k — 1)e there exists a row (other than the first) or a column (other
than the first) such that /N restricted to the row or the column is not
a codeword of V. We now use this to show that the first row of N
and the first column of N are also codewords of V. Here we use
the properties of tensor products of codes. Recall that the tensor
product of V' with itself, denoted V' ® V is the code consisting of
all k£ x k matrices over I all of whose rows are codewords of V'
and all of whose columns are codewords of V. It is well known
that if V' has distance d then its tensor product with itself has the
following “erasure-correcting” property: Given the projection of
any matrix B = A|gsxr to a subset S of the rows and a subset 7'
of the columns with |S|, |T'| > k — d + 1, B can be extended to a
(unique) codeword A of V' ® V' if and only if for every row s € S,
the sth row of B is consistent with (the projection to 7" of) some
codeword of V/, and for every column ¢ € T, the tth column of B
is consistent with (the projection to .S of) some codeword of V.

In our case, the code V' has distance at least 2 and we know the
projection of N onto all columns except the first and all rows except
the first are consistent with V. Thus the extension to N to a code-
word of V' ® V' is unique and this is the unique value which satis-
fies N11 = DECODE(Ni2,. .., N1x) = DECODE(Na1, . .., Nk1).
We conclude that with probability at least 1 — 2(k — 1)e, we have
Pry,z[Scf(ny) 7£ Scf(x, Z)] < Q(k - 1)6(f)

The consequence to g follows from the fact when drawing sam-
ples from a distribution, the probability of a collision is no more
than the probability of the most likely element. |

We now revert to the task of proving that f is close to g and that
g is a member of the family F. We start with the former task which
we show in exactly the same way as in [4, 19].

LEMMA 3.2. 6(f,g9) < 2e(f).

PROOF. Let B = {z € K"|Pra[f(z) # Sc/ (z,a)] > 3}
Notice that €(f) > 5 Prz[z € B]. On the other hand, if z ¢ B,
then f(x) = plurality [Sc’ (z, @)]. The lemma follows. |

Next we show that the proof technique of Lemma 3.1 can be
adapted to prove also that g € F. This modification is similar to
those in the early papers [4, 19].

LEMMA 3.3. Let f be a function with () < and
let g be its self-corrected version. Then g € F.

1
k1) (k—1)

PROOF. It suffices to show that for every x1, ..., T, € K" the
vector (g(y1),-..,9(yx)) € V, where y; = £;i(z1,...,2Zm). Fix
such a sequence Z1,...,Tm € K" and let y; = £;(21,...,Zm).

for i € [k]. As in the proof of Lemma 3.1, we will construct a
matrix M € (K™)¥** whose first row will be y1, . . ., yr,. We will
then define a related matrix N and show that all rows of N, except
possibly the first, and all columns are codewords of V. We will
then conclude that its first row must be a codeword of V' and this
will imply the lemma.

For i,j € [m], pick ~;; as follows. v1; = x; and ;5 is drawn
uniformly and independently from K" for all other 4, j pairs. For
i’ € [k] and j € [m], define M;/; = £y (Y15, - -, Ymj). Finally,
for i',j' € [k], define My ;1 = £/ (Myn,..., My,,). Now let
N;; = g(M;;) if i = 1 and f(M,;) otherwise.

As in the proof of Lemma 3.1 we have that all the rows of M
except the first represent the queries of a random test, and in par-
ticular the queried points are independent of y1, ..., yr. Thus we
have that the probability that the i'th row of N is not a codeword
of V is at most ¢, for i’ # 1.

Next we turn to the columns of N. Note that once again we
have M;; = ¢;(Mj, ..., Mm;). Now for every j, the jth column
of M represents the queries of a random test through y;. Thus
we have that the probability that the jth column of N is not a
codeword of V' is given by the probability of the event g(y;) #
Scf (y;; Maj, . .., Myn;) and by Lemma 3.1 the probability of this
event is at most 2(k — 1)e.

Taking the union of all the “bad events” and deducting them, we
have that with probability at least 1 — (2k 4+ 1)(k — 1)e we have
that all the rows of IV except the first, and all the columns of N are
codewords of V. We conclude (as in the proof of Lemma 3.1) that
the first row of N, i.e., the vector (g(y1), - - ., g(yx)) is a codeword
of V. Since 1 — (2k + 1)(k — 1)e(f) > 0, we have with positive
probability {g(y1),...,9(yk)) € V. Butyi,...,y, were chosen
deterministically and so the probability of this event is either zero
or one, yielding that this event must happen with probability one.

Finally, we can prove our main testing theorem, namely that lo-
cally (formally) characterized function families are locally testable.

PROOF OF THEOREM 2.9. >From Lemma 3.2, we have §(f, g)
2¢(f). and by Lemma 3.3, we have g € F andso 6(f) < 2¢e(f).

-\

4. STRUCTURE OF AFFINE-/LINEAR
-INVARIANT FAMILIES

In this section we study structural properties of linear-invariant
and affine-invariant families of functions mapping F" to F. (We
extend this study to functions from K" to IF in the full version [17].)
Before launching into the section we first introduce some notation
and definitions that apply generally to functions mapping K" — F.



We use {K™ — F} to denote the set of all functions mapping K"
to IF. The central object of our attention is the minimal set of func-
tions containing a specified family of functions that is affine/linear
invariant.

DEFINITION 4.1. For a set of functions F C {K" — F},
SPANK(F) = {3, a;i- filt € ZT,a; € F, f; € F} denotes
the linear span (over F) of F. For a family of functions F C
{K"™ — T} we let the linear span of F, denoted L-SPANg(F),
be the smallest linear-invariant family of functions containing F.
Finally, the affine span of F, denoted A-SPANg(F) is the smallest
affine-invariant family containing F.

When the range F is clear from the context we suppress the
subscript and refer to SPANg(F) as simply SPAN(F). Note that
L-SPAN(F) can be written as SPAN({f(L(x))|f € Fand L :
K™ — K" is alinear function}). Similarly, A-SPAN(F) can be
written as SPAN({f(A(x))|f € F and A : K" — K" is an affine
function}).

Extracting Monomials in Linear-Invariant Families For a poly-
nomial f = >, cax?, we refer to the support of f to be the set
of monomials cqx® with cg4 # 0. For a monomial m = xd,
we denote the degree of the monomial by deg(m) = > 7, d.
Our first lemma asserts that in a linear-invariant family mapping
F" to F, every monomial in the support of a function in the fam-
ily also belongs to the family. The following lemma shows that
linear-invariant families are generated linearly by the pure mono-
mial functions contained in them.

LEMMA 4.2. [Monomial extraction lemma] For every function
f : F" — F, every monomial in the support of f is contained in
L-SPAN(f).

The spread of monomials in linear-/affine-invariant families Next
we present a general lemma that asserts that the presence of a sin-
gle monomial in a family implies the presence of other monomials,
with “smaller” degrees in a somewhat technical sense. We follow
the lemma up with a corollary that describes some of the ways
in which the lemma will be used later. To motivate the (some-
what technical) lemma, we first give an example. Consider the
linear span of the monomial #° € F[x,y]. If the characteris-
tic p of F is greater that 5 (or if p = 3), then L-SPAN(z®) =
SPAN({z®, zy, 23y?, 2%y®, xy*, y°}). On the other hand, if F is
of characteristic 5, the L-SPAN(z°) = SPAN({z°,4°}). If F is of
characteristic 2, then L-sPaN(z®) = SPAN({z®, z*y, zy*,v°}).
The lemma below attempts to capture some of this diversity.

LEMMA 4.3 (MONOMIAL SPREAD LEMMA). Ler d = (d,
cooydn) €40,...,q—1}"and e = (e1,...,e,) € {0,...,q —
1}". Fori € [n]and j € {0,...,s — 1} let d;; and e;; be the
unique integers from {0, ...,p — 1} such that d; = Z;;é dijp’
and e; = Z;;é eijp’. Let m be the monomial xd and let m’ =
x®. Ifforevery j € {0,...,s — 1} it is the case that Y, ei; <
S dij, then the following hold:

=1

1. m' € A-sPAN(m).

2. yf7deg("ﬂ)+deg(m> -m’ € L—SPAN(yf -m) for every non-
negative f.

The following corollary describes some of the many ways in
which this lemma is used in the rest of this paper (and the full ver-
sion [17]).

COROLLARY 4.4. The following statements are true:

1. If e1,...,e, are non-negative integers such that e,_1 +

en < p then the monomial x5* - - - x3" is in the linear span
€n—2 . en—1teén

S
of the monomial 7" --- x5 - =,

2. If q/p < d < qand f is an arbitrary integer then the mono-
mial £¥/Pyt4=9/? s in the linear span of x%y’. and z%/?
is in the affine span of z:%.

3 Ifdi+---+dn > q/pand f > 0, then the monomial
vt 297 s in the linear span of y' x™ - - - 2@ fore = dy+
-+-dn — q/p, and x(f/p is in the affine span ofx‘li1 oo gln,

Finally we present a lemma that gives a simple, but powerful
consequence of the monomial extraction lemmas above.

LEMMA 4.5. Let m € F[x,y] be a monomial of degree d. Let
£=|d/q). ThenT]'_, 29/? is contained in A-SPAN(m), Further-
more, {y™ - m/|m’ € A-spaN([]}_, 29'7) dy + deg(m’) = d
mod (q — 1)} is contained in L-SPAN(m).

5. BOUNDING THE LOCALITY OF CHAR-
ACTERIZATIONS

In this section we outline the proof of Theorems 2.10 and 2.11
for the special case when K = F. In the process we present up-
per and lower bounds on the locality of formal characterizations of
affine-invariant and linear-invariant families, in terms of the degree
patterns of the monomials in their support.

Our (upper bounds on) characterizations are obtained by con-
sidering the values of a given function on some small dimensional
subspace and verifying that these values agree with the values of
some function in the family. Keeping this in mind, we define the
restriction of a function family to a smaller dimension.

DEFINITION 5.1 (PROJECTIONS OF FUNCTION FAMILIES).
For positive integers £ and n, and for a linear-invariant family of
functions F C {K" — F}, the {-dimensional restriction (exten-
sion) of F, denoted F|; is the family F|¢ = {f o L|f € F,L :
K® — K™ linear }.

Note that we don’t insist that £ < n and indeed the definition
above makes sense also in this case. However in all our usage be-
low, we think of £ < n.

For affine-invariant families our characterizations depend sim-
ply on the maximum degree of functions in the family. For linear
invariant functions this is no longer true. For instance, the family
of functions supported on all monomials in z1, . .., x, of degree 3
mod 4 over F5 has a 2-local characterization even though it con-
tains polynomials of degree Q2(n). For linear-invariant families,
the characterizations depend on a more refined parameter that we
define next.

DEFINITION 5.2. For a linear invariant family JF properly con-
tained in {F" — F}, let diin (F), the linear-invariance degree of F,
be the largest integer d such that F contains a monomial m of de-
gree d, while there also exists a monomial ma & F of degree d' for
some d’ > 0withd = d( mod q—1).

5.1 Upper/Lower bounds on locality of char-
acterizations

The next lemma is the crux of our characterizations for linear-
invariant as well as affine-invariant families.



LEMMA 5.3. . Let F C {F™ — [} be a linear-invariant fam-
ily of linear-invariance degree dyin (F) = d. Suppose f : F* — F
is notin F. Then, ifn > 1+ (% (d+ q)) then there exists a
linear function L : F* = — F™ such that f o L & F|n—1.

We can now give a characterization for linear-invariant families.

LEMMA 5.4. Let F be a linear invariant family, properly con-
tained in {F" — F}, of linear-invariance degree diax. Then F
has a q*-local formal characterization for £ = @.

Immediately, we also get a characterization for affine-invariant
families (since every affine invariant family with polynomials of

degree at most dmax is also a linear-invariant family of linear-invariance

degree at most dmax)-

LEMMA 5.5. Let F be a proper subset of {F" — F} and let
dmax denote the maximum degree of any function in F. Then F
has a q°*-local formal characterization for £ < @.

We now describe lower bounds on the locality of constraints
(and thus characterizations) in affine-invariant families. The lower
bound is eventually derived from the study of Generalized Reed-
Muller codes where it is known that the family of polynomials of
degree d has no qLd/‘” -local characterizations [14, 8].

LEMMA 5.6. Let F be an affine invariant family properly con-
tained in {F™ — F} containing a polynomial of degree d. Then F
has no ¢°-local constraints for £ < (d — ¢*)/q*.

In this section we provide lower bounds on the locality of char-
acterizations of linear-invariant families, based on their “linear-
invariance degree” (see Definition 5.2). As shown in Section 5.1,
this parameter also yields upper bounds and thus together we find
that this parameter governs (in some weak sense, since the bounds
are far apart) the locality of characterizations for linear-invariant
families.

LEMMA 5.7. Let F C {IF"‘H — F} be a family of linear in-

variance degree d. Then F has no characterizations of locality
(d—a®)/q*
q .

5.2 Testing Linear Invariant Families

The formal characterization described in Section 5.1 can imme-
diately be turned into an affine invariant characterization for affine-
invariant families. Coupled with Theorem 2.9 this leads immedi-
ately to a tester for affine-invariant families. However the charac-
terization does not immediately lead to a tester for linear-invariant
families, since these characterizations are not necessarily 2-ary in-
dependent. In this section we fix this gap.

We start with a definition that isolates a seemingly problematic
subclass of linear-invariant families, where the characterizations
are necessarily not 2-ary independent.

DEFINITION 5.8. A linear invariant family F C {F™ — F} is
said to be projective if, for every pair of monomials x9 and x® with
S di =31 e; mod (q— 1), it is the case that x% is in the
support of F if and only if X® is in the support of F.

Projective families have a very simple local formal characteriza-
tion, which is unfortunately not 2-ary independent.

Even though projective families do not have a 2-ary independent
linear characterization, they turn out to have a simple local test:
Namely pick a random line L : F — F™ and verify f o L has its

support in .S. We won’t prove the correctness of this test right now
(it will follow from the general case). Instead we turn to showing
that every linear invariant family can be written as the sum of a
nice family (with a 2-ary independent formal characterization) and
a projective family and this ends up leading to a test.

LEMMA 5.9. Let F be a linear-invariant family of linear in-
variance degree d. Then there exists a linear-invariant family F1
containing polynomials of degree at most d, and a projective fam-
ily Fo such that F = F1 4+ Fa. Furthermore given an oracle to
a function f : ™ — T one can construct an oracle for a function
g : F" — F where the oracle for g makes q oracle calls to f, such
thatg € Frif f € Fand 6(f,F) < d(g, Fr).

Finally we use a simple proposition that can be used to give 2-ary
independent localy characterizations for family 7 above.

PROPOSITION 5.10. Let F C F’ have a ki-local formal char-
acterization. Furthermore suppose F' has a 2-ary independent k»-
local formal characterization. Then F has a k1 + kz-local 2-ary
independent formal characterization.

Putting all the ingredients together we get:

LEMMA 5.11. Let F C {F" — F} be a linear-invariant family
of linear-invariance degree d. Thenitis k' = 2q-q2(d+q)/p-locally
testable. Specifically, there is k'-query local test that accepts mem-
bers of F with probability 1 and rejects functions that are §-far

. e . 5 q>
from JF with probability min {5, T [
Combining the lemmas proved in this section (in particular, Lem-
mas 5.5, 5.7,5.4,and 5.11) with Theorem 2.9 we get Theorems 2.10
and Theorems 2.11 for the special case when K = F.

6. CONCLUSIONS: THE ALONET AL. CON-
JECTURE AND FUTURE WORK:

Our work attempts to highlight on the role of invariance in prop-
erty testing. We remark that despite the obvious relationship of this
notion to property testing, it has not been highlighted before. The
only prior mentions seem to be in the works of Alon et al. [2], and
in Goldreich and Sheffet [11].

Our work highlights linear-invariance as a central theme in al-
gebraic property testing. Our results show that this notion yields a
wide class of properties that have local property tests. These results
are strong when the underlying field K is small. However when K
is large, the characterization results (in particular, Theorem 2.10)
becomes quite weak, even for affine-invariant families. In partic-
ular, in the case of the dual-BCH codes (which consider functions
mapping Fo¢ to [F2), our characterizations are completely trivial,
while these codes do have very efficient tests [15]. One way to im-
prove our results would be if Theorem 2.10 could be improved to
have no dependence on ¢. This however is not possible, as shown
in upcoming joint work with Grigorescu [12]. Specifically they ex-
hibit a family of affine-invariant functions mapping F: to [F2 that
have 8-local constraints, but no o(t)-local characterizations. Thus
some dependence on K is necessary in translating constraints to
characterizations.

Our work provides the first systematic study of testing functions
from a field to its subfield. This setting is different than the well
studied case of functions from a field to itself. This difference is
best illustrated by the following example

e For affine invariant function family of the form Fy — Fo
we have : a local constraint imply local characterization and
local testability.



e For affine invariant function family of the form Fon — Fa
we might have (by the work of [12]) a local constraint, but
no local characterization! , and hence rno local testing!

Moreover, our work suggests a method to construct new locally
testable codes by picking the dual code to be a code spanned by
an orbit of a short local constraint (orbit under the group of linear
transformations).

In general, we feel that the class of linear-invariant functions of-
fer a rich variety of properties, sufficiently wide to test out conjec-
tures about the nature of testable properties. For instance, Alon et
al. [2] had conjectured that linear codes of large distance, that have
a small weight codeword in the dual, and have a “2-transitive invari-
ant group” are locally testable. When applied to codes derived from
affine-invariant function families, their conjecture implies that ev-
ery affine-invariant family from K™ — F with a k-local constraint,
must have an fr(k)-local test and in particular, an fr(k)-local char-
acterization. The aforementioned result [12] refutes this conjecture
of [2] by considering affine-invariant families. However, our work
(Theorem 2.10) shows that a weak version of the [2] conjecture
does hold, within the class of linear-invariant codes, by giving an
S (k)-local algebraic characterization and test.

This leaves the possibility that every locally characterized code
with a “2-transitive invariant group” may be locally testable. Again
we feel that this question can and should be examined in the con-
text of affine-invariant families. In general, we feel that for every
missing arrow, or qualitatively weak one, in Figure 1.3 poses an in-
teresting open question that we hope will be investigated in future
work.

This work put in focus object of the following form: [F-linear
subspaces that are invariant under permutations of a group G. In
this work the group G is the group of linear transformations of the
domain. In a future work one may try to understand invariance
under different groups in the following sense.

e Does k-local formal characterization imply local-testing also
when the group of invariances is different than the group of
linear transformations?

e Given a linear subspace that is invariant under permutations
of a group G, when it is the case that k-local formal charac-
terization exists (i.e. when there exists one short orbit that
span the dual space)?
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