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Abstract

Probabilistically checkable proofs are proofs that can checked probabilistically by reading
very few bits of the proof. Roughly ten years back it was shown that proofs could be made
probabilistically checkable with a modest increase in their size. While the initial proofs were a
little too complex, a recent proof due to Irit Dinur gives a dramatically simple (and radically
new) construction of probabilistically checkable proofs. This article explains the notion, presents
the formal definition and then introduces the reader to Dinur’s work and explains some of the
context (but does not reproduce Dinur’s proof).

1 Introduction

As advances in mathematics continue at the current rate, editors of mathematical journals in-
creasingly face the challenge of reviewing increasingly long, and often wrong, “proofs” of classical
conjectures. Often, even when it is a good guess that a given submission is erroneous, it takes
excessive amounts of effort on the editor/reviewer’s part to find a specific error one can point to.
Most reviewers assume this is an inevitable consequence of the notion of verifying submissions; and
expect the complexity of the verification procedure to grow with the length of the submission. The
purpose of this article is to point out that this is actually not the case: There does exist a format in
which we can ask for proofs of theorems to be written. This format allows for perfectly valid proofs
of correct theorems, while any purported proof of an incorrect assertion will be “evidently wrong”
(in a manner to be clarified below). We refer to this format of writing proofs as Probabilistically
Checkable Proofs (PCPs).

In order to formalize the notion of a probabilistically checkable proof, we start with a bare-bones
(computationally simplified) view of logic. A system of logic is described by a collection of axioms
which include some “atomic axioms” and some derivation rules. An assertion is a sentence, which
is simply a sequence of letters over the underlying alphabet. A proof of a given assertion is a
sequence of sentences ending with the assertion, where each sentence is either one of the axioms or
is obtained by applying the derivation rules to the previous sentences in the proof. An assertion
which has a proof is a theorem. We will use the phrase argument to refer to sequence of sentences
(which may be offered as “proofs” of “assertions” but whose correctness has not been verified).
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While systems of logic come in many flavors and allow varying degrees of power in their inference
rules and the nature of intermediate sentences that they would allow, the “computational perspec-
tive” unifies all of these by using the following abstraction: It suggests that a system of logic is
given by a computationally efficient algorithm called the verifier. The inputs to a verifier is a pair
of sequences over some finite alphabet, an assertion T and evidence Π and accepts this pair if and
only if Π forms a proof of T in its system of logic. Such verifiers certainly capture all known systems
of logic. Indeed without the computational efficiency restriction, it would be impossible to capture
the spirit that theorems are often hard to prove, but once their proofs are given, they are easy to
verify. For our purposes, we associate the word “efficient” with the feature that the algorithm runs
in time polynomial in the length of its inputs. (As an aside, we note that this distinction between
the proving theorems and verifying proofs is currently a conjecture, and is exactly the question
examined under the label “Is P=NP?”.)

The notion that a verifier can perform any polynomial time computation enriches the class of
theorems and proofs considerably and starts to offer highly non-trivial methods of proving theorems.
(One immediate consequence is that we can assume theorems/proofs/assertions/arguments are
binary sequences and we will do so henceforth.) For instance, suppose we have an assertion A (say
the Riemann Hypothesis), and say we believe that it has proof which would fit within a 10,000 page
article. The computational perspective says that given A and this bound (10,000 pages), one can
efficiently compute three positive integers N,L,U with L ≤ U ≤ N such that A is true if and only
if N has a divisor between L and U . The integers N , L, and U will be quite long (maybe writing
them would take a million pages), yet they can be produced extremely efficiently (in less than the
amount of time it would take a printer to print out all these integers, which is certainly at most a
day or two). (This example is based on a result due to Joe Kilian, personal communication.) The
theory of NP-completeness could be viewed as an enormous accumulation of many other equivalent
formats for writing theorems and proofs. Depending on one’s perspective, this may or may not be
a better format for writing theorems and proofs. What is important for us is that despite the fact
that it differ radically from our mental picture of theorems/proofs - this is as valid a method as
any. Every theorem has a valid proof, and this proof in only polynomially larger than the proof
in any other system of logic, a notion referred to as “completeness”. Conversely, no false assertion
has a proof, a notion referred to as “soundness”.

The ability to perform such non-trivial manipulations to formats in which theorems and proofs
are presented raises the possibility that we may specify formats that allow for other features (that
one does not expect from classical proofs). The notion of PCPs emerges from this study. Here we
consider verifiers that vary in two senses: (1) The verifiers are probabilistic — they have access
to a sequence of unbiased independent coins (i.e., random variables taking on values from the set
{0, 1}); and (2) The verifiers have “oracle” access to the proof. I.e., to read any specific bit of the
proof the verifier is allowed direct access to this bit and charged one “query” for this access. (This
is in contrast to the classical notion of the Turing machine where all information is stored on tapes
and accessing the ith bit takes i units of time and implies access to all the first i bits of the proof.)
However, we will restrict the number of random bits that the verifier has access to. We will also
restrict the number of queries the verifier is allowed to make. The latter is definitely a restriction
on the power of the verifier (classical verifiers accessed every bit of the proof). The former does not
enhance the power of the verifier unless the verifier is allowed to err. So we will allow the verifier to
err and consider the question: It must be stressed at this point that we require the error probability
is bounded away from 1 for every false assertion and every supporting argument. (It would not
make any sense, given the motivation above to assume some random distribution over theorems
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and proofs, and this is not being done.) What is the tradeoff between the query complexity and
the error incurred by the verifier?

Theoretical computer scientists started to examine this tradeoff starting 1990 and have made some
remarkable progress to date. We review this history below. (We remark that this is just a history
of results; the notion of a probabilistically checkable proof itself evolved slowly over a long sequence
of works [17, 6, 9, 15, 4, 14, 3], but we will not describe the evolution of this notion here.) Results
constructing PCP verifiers typically restrict the number of random bits to be logarithmic in the
size of the probabilistically checkable proof. Note that this is an absolute minimum limit, or else
a verifier making few queries does not have a positive probability of accessing most of the bits of
the proof. They then asked the question: How small the can the PCP be (relative to the classical
proof) and how many bits needed to be queried? The first sequence of results [5, 4, 14] quickly
established that the number of queries could be exponentially smaller than the length of the proof
(e.g., in a proof of length n, the number of queries may be as small as say log2 n), while getting
nearly polynomial sized proofs (in fact, [4] obtained nearly linear sized PCPs.) The second short
sequence [3, 2] established what is now referred to as “The PCP Theorem” which showed that the
number of bits queried could be reduced to an absolute constant(!) independent of the length of the
theorem or the proof (given just the length of the proof), with PCPs of length just a polynomial in
the classical proof. This immediately raised the question: What is this universal constant — the
number of queries that suffices to verify proofs probabilistically. It turns out there is yet another
tradeoff hidden here. It is always possible to reduce the number of queries to three bits, if the verifier
is allowed to err with probability very close to (but bounded away from) one. So to examine this
question, one needs to fix the error probability. So, say we insist that arguments for incorrect
assertions are accepted with probability (close to) half, while proofs of valid theorems are accepted
with probability one. In such a case, the number of queries made by the verifier of [2] has been
estimated at around 106 bits - not a dramatically small constant, though a constant all right! The
third phase in the construction of PCPs [8, 7] attempted to reduce this constant and culminated
in yet another surprise. Hastad [18] shows that the query complexity could be essentially reduced
to just three bits to get the above error probabilities. Subsequent work in this area has focussed
on the question of the size of the PCP relative to the size of the classical proofs and shown that
these could be reduced to extremely blow-ups. (Classical proofs of length n are converted to PCPs
of length n · (log n)O(1) in the work of Dinur [12].)

A somewhat orthogonal goal of research in PCPs has been to find simple reasons why proofs ought
to be probabilistically checkable. Unfortunately, much of the above results did not help in this
regard. The results from the first sequence achieved the effect by a relatively straightforward but
striking algebraic transformation (by encoding information into values of algebraic functions over
finite fields). Later results built on this style of reasoning but got even more complex (see e.g., [25,
Page 12] for a look at the ingredients needed to get the PCP theorem of [18]). Recently, Dinur
and Reingold [13] proposed a novel, if somewhat ambitious, iterative approach to constructing
PCPs, which was radically different than prior work. While the idea was appealing, the specific
implementation was still hard, and did not lead to a satisfactory alternative construction of PCPs.
Subsequently, Dinur [12] finally made remarkable progress on this question deriving the right in-
gredients to give a dramatically simple proof of the PCP theorem.

This work of Dinur is the focus of the rest of this article. Our intent, however, is not to give Dinur’s
proof of the PCP theorem. This is already done quite satisfactorily in her work [12]. Instead we
will try to outline her approach and provide context to the steps taken in Dinur which may provide
further insight into her work (and highlight the novelty of the approach as well as the new technical
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ingredients developed in her work). The hope is that a reader, after reading this article, would be
motivated to read the original work, and upon doing so, appreciate the developments in her paper.

In what follows, we will start by formally describing PCPs and the PCP theorem. Readers uncom-
fortable with boring formalisms could skip this section. Next we describe a duality between PCP
verifiers and “approximations to combinatorial optimization problems”. We will use this duality to
switch our language from the “logical” theme of theorems and proofs, to a more “combinatorial”
theme. (A reader who chooses to skip this section would be lost thereafter.) In Section 4 we
then describe the high-level approach in Dinur’s paper and contrast it with the earlier approaches.
Dinur’s approach repeatedly applies two transformations to a “current verifier”, starting from a
classical (non-probabilistic) verifier of proofs. The end result is a probabilisitic verifier of proofs.
In Sections 5 and 6 we describe the two transformations in greater detail providing background
on these (in particular, we describe some simpler transformations one may consider, and why they
don’t work).

2 Definitions and formal statement of results

We start by recalling the notion of a classical verifier and introducing some notation.

First some general notation for the paper. Below R will denote the reals, Z the set of all integers,
and Z+ the set of positive integers. For x ∈ R, we let bxc denote the largest integer less than or
equal to x. For x ∈ R, let log x denote the quantity dlog2 xe where log2 denotes the logarithm of x
to base 2.

By {0, 1}∗ we denote the set of all finite length binary sequences. (We refer to such sequences
as strings.) For a string x ∈ {0, 1}∗, let |x| denote its length. For random variable X taking on
values in domain D and event E : D ∈ {true, false}, we let PrX [E(X)] denote the probability of the
event E over the random choice of X. We often use the shorthand “f(n)” to denote the function
n 7→ f(n). (In particular, it will be common to use “n” to denote the argument of the function,
without explicitly specifying so.) Examples include the functions n2, log n etc.

Later in the writeup we will need to resort to some “graph theory”. By a graph we refer to
symmetric pairwise relationships on some finite set. Formally a graph G is given by a pair (V,E)
with V being a finite set and E ⊂ V ×V is a symmetric relationship. If (u, v) ∈ E, then we refer to
v as being adjacent to u, or being a neighbor of u. The number of vertices adjacent to u is called
the degree of u. We say a graph has degree D if every vertex has degree D. A walk in a graph is
a finite sequence of vertices v0, . . . , v` such that vi−1 and vi are adjacent for every i ∈ {1, . . . , `}.
The distance between u and v is the length ` of the shortest walk v0, . . . , v` satisfying v0 = u and
v` = v.

We now move to notions related to proof verification. A verifier is a polynomial time algorithm
computing a function V : {0, 1}∗ × {0, 1}∗ → {0, 1}, with the association that V (T,Π) = 1 implies
that the assertion T is a theorem with Π being a proof. (Recall that a function is said to be
polynomial time computable if there exists an algorithm running in time bounded by a fixed
polynomial in the total length of its inputs to compute the function.) Given a polynomial p : Z+ →
Z+ and verifier V , let LV,p denote the set of theorems with “short” proofs of length at most p(n).
I.e., LV,p = {T ∈ {0, 1}∗|∃Π ∈ {0, 1}p(|T |) s.t. V(T,Π) = 1}. The class NP is the set of all such sets
{LV,p|V is a verifier and p is a polynomial }.
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As mentioned earlier, we are going to enhance classical algorithms by endowing them with access
to random strings and oracles. We will denote random strings just like other strings. A oracle will
just be a function O : Q → A where Q is a countable set and A is finite. The most common version
is with Q = Z+ and A = {0, 1}. Algorithms are allowed to compute various queries q1, . . . , qt and
obtain answers O[q1], . . . , O[qt] to the queries. The number of queries made (t) is termed the query
complexity of the algorithm. Thus the computation of a probabilistic oracle algorithm A on input
x, random string R ∈ {0, 1}∗ and access to oracle O will be denoted AO(x;R). Notice that we
will always be interested in the distribution of this random variable AO(x;R) when R is chosen
uniformly from set {0, 1}` (while x and O will be fixed). With this notation in hand we are ready
to define PCP verifiers and the complexity class PCP.

Definition 1 For functions r, q : Z+ → Z+ an (r, q, a)-restricted PCP verifier is a probabilistic
oracle algorithm V that on input x ∈ {0, 1}n, expects a random string R ∈ {0, 1}r(n) and queries an
oracle Π : Z+ → {0, 1}a(n) at most q(n) times and computes a “Boolean verdict” V Π(x;R) ∈ {0, 1}.

Definition 2 For functions c, s : Z+ → [0, 1] with 0 ≤ s(n) < c(n) ≤ 1 for every n ∈ Z+, we
say that an (r, q, a)-restricted PCP verifier V accepts a set L ⊆ {0, 1}∗ with completeness c and
soundness s if for every x ∈ {0, 1}n the following hold:

Completeness: If x ∈ L then there exists a Π : Z+ → {0, 1}a(n) such that PrR[V Π(x : R) = 1] ≥
c(n).

Soundness: If x 6∈ L then for every Π : Z+ → {0, 1}a(n) it is the case that PrR[V Π(x : R) = 1] ≤
s(n). By PCPc,s[r, q, a] we denote the class of all sets L such that there exists an (r, q, a)
restricted PCP verifier accepting L with completeness c and soundness s.

Throughout this article we will assume that the queries of the PCP verifiers are made “non-
adaptively”. I.e., the exact location of questions does not depend on the responses to other ques-
tions. The responses only affect the accept/reject predicate of the verifier.

As described above the class PCP is significantly over parametrized. These different parameters
are useful when describing various (steps in) constructions of PCPs, but for now they are likely to
burden the reader. So lets discard a few to derive a simpler collection: All early PCP results were
phrased in terms of verifiers that achieved perfect completeness c(n) = 1; and soundness s(n) ≤ 1

2 .
They also fixed a(n) = 1 — i.e., oracles responded with one bit per query. Letting PCP[r, q]
denote the class of languages with such restrictions, the early results [5, 4, 14] could be described as
showing that there exist polynomials p1, p2 : Z+ → Z+ such that NP ⊆ PCP[p1(log n), p2(log n)].
The PCP Theorem, whose new proof we hope to outline later, may now be stated formally as.

Theorem 3 ([3, 2]) There exist a constant q such that NP = ∪c∈Z+PCP[c log n, q].

Finally, the state of the art result along these lines is that of H̊astad [18], which shows that for
every ε > 0, NP = ∪c∈Z+PCP1−ε, 1

2
+ε[c log n, 3].

One aspect we do not dwell on explicitly is the size of the “new proof”. It is easy to convert an
(r, q)-PCP verifier into one that runs in time 2r(n) × 2q(n), whose queries are always in the range
{1, . . . , 2r(n)+q(n)}. In other words one can assume “w.l.o.g.” that the proof is a string of size at
most 2r(n)+q(n). So in particular if the randomness and query complexity are bounded by O(log n),
then the PCP proofs are still polynomial sized, and so we won’t worry about the size explicitly.
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3 Optimization and approximation

As alluded to earlier, one of the principal motivations for studying proofs from a computational
perspective is that they shed light on the tractability of many computational tasks. For instance,
the theory of NP-completeness says that a vast collection of combinatorial optimization problems,
such as the “Travelling Salesman Problem” (TSP), (given an n× n matrix of distances between n
cities, find the smallest tour that visits all n cities), the “Independent Set Problem” (given a set
of n elements and a list of incompatible pairs, find the largest subcollection that consists no pair
of incompatible elements) or the “Knapsack Problem” (given the weights and values of n elements
and a bound C, find a subset of elements whose weight sums to less than C, while maximizing
the sum of their values), the theory of NP-completeness shows that finding optimal solutions is as
hard as finding “proofs” for generic theorems. Formally, given any assertion and a bound on the
length B of its proof, one can construct an instance of the NP complete problem, say TSP, and an
integer B′, such that any solution to the TSP of length at most B′ implies that the given assertion
is true and has a proof of length at most B. Thus an algorithm to find optimal tours is a generic
theorem prover which needs to only know the length of the proof to generate the proof. Indeed
much of the strength for the belief that P 6= NP may be attributed to the belief that we don’t
expect theorem-proving to be automated.

In this context it may make sense that a “probabilistic” notion of checking proofs may lead to some
further insight on the complexity of solving combinatorial optimization problems. This guess turns
out be true, and it turns out that the existence of PCP verifiers implies that for many of these
optimization problems finding “nearly optimal” solutions is as hard as finding optimal solutions.
This connection was first made by Feige et al. [14], who showed that the PCP theorem (then still a
conjecture) would imply that the independent set size could not be approximated to within constant
factors. Subsequently, many other optimization problems were shown to be hard to approximate
using the PCP theorem (cf. [2, 21]).

Remarkably, Irit Dinur’s proof uses a “folklore” reverse connection which shows that “reductions”
showing hardness of approximating some optimization problems can a folklore one) that shows that
“hardness of approximating yield PCP verifiers. We describe the optimization problem, used in
her proof next, and then explain why the inapproximability of this problem yields a PCP verifier
next.

Definition 4 (Constraint Satisfaction Problem (Max k-CSP-Σ)) For a finite set Σ and in-
teger k, an input to the problem Max k-CSP-Σ consists of m constraints C1, . . . , Cm on n vari-
ables X1, . . . , Xn, where a constraint Cj consists of a function fj : Σk → {0, 1} and k indices
i1(j), . . . , ik(j) ∈ {1, . . . , n}. An assignment 〈X1, . . . , Xn〉 ← 〈a1, . . . , an〉 ∈ Σn satisfies the con-
straint Cj if fj(α1, . . . , αk) = 1 where α` = ai`(j). The goal is to compute an assignment, given
C1, . . . , Cm, that maximizes the number of constraints that are satisfied.

Since Max k-CSP-Σ occupies a central role in this article, let us introduce some notation that will
be useful later. We often use φ to denote instances of Max k-CSP-Σ and ~a ∈ Σn to denote an
assignment to the n variables. For a pair φ,~a as above, we use the notation φ(~a) to denote the
number of constraints of φ satisfied by ~a. An instance φ of Max k-CSP-Σ is said to be satisfiable
if there exists an assignment satisfying all constraints. The unsatisfiability of the instance φ,
denoted UNSAT(φ), is the quantity min~a{1 − φ(~a)/m} i.e., the minimum fraction of constraints
left unsatisfied by any assignment.
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Max k-CSP-Σ problems arise naturally in the theory of NP completeness. The classical 3SAT
problem is easily captured as an instance of Max3-CSP-{0, 1} where the goal is to distinguish sat-
isfiable instances from instances that are not satisfiable. Similarly, the classical 3-coloring problem
(given a graph on n vertices, determine if it is possible to color the vertices with three colors
{R,G,B} such that no edge of the graph is monochromatic), can also be expressed as an instance
of Max2-CSP-{R,G,B}. Indeed it is a classical result [16] that for every k ≥ 2 and every Σ with
|Σ| ≥ 2, it is NP-hard to find optimal solutions to Max k-CSP-Σ.

However, the classical result does not say anything about solving the problem near-optimally. In
particular, the state of knowledge prior to the PCP theorem allowed for the possibility that some
polynomial algorithm could, on input φ for which there exists an assignment satisfying t out of m
constraints, always produce an assignment satisfying t(1− o(1)) constraints! Indeed this may be a
good point to introduce the notion of an approximation algorithm.

Definition 5 For α ≥ 1 An algorithm A that takes as input an instance φ and in polynomial time
outputs an assignments ~a ∈ Σn such that φ(~a) ≥ φ(~a′)/α for every other assignment ~a′ ∈ Σn is
called an α-approximation algorithm for Max k-CSP-Σ.

The PCP theorem rules out the possibility of α-approximation algorithms for Max k-CSP-Σ, unless
NP=P. The following proposition gives a weak version of this result.

Proposition 6 Let q be the constant from Theorem 3. If there is a (2−ε)-approximation algorithm
for Maxq-CSP-{0, 1} for any ε > 0, then P=NP.

Proof of Sketch: Let A be a 2 − ε approximation algorithm for Maxq-CSP-{0, 1}. Let L be
a language in NP we wish to decide. Let V = VL be the (r(n) = O(log n), q)-PCP verifier for
this language as guaranteed by Theorem 3. Now consider a string x ∈ {0, 1}n for which we wish
to know if x ∈ L or not. Let ` ≤ 2r(n)+q denote the size of the PCP proof that V queries
to check membership of x ∈ L. Denote by X1, . . . , X` the Boolean variables representing the
oracle responses to the verifiers queries. Now for each random string R ∈ {0, 1}r(n) create a q-ary
constraint CR as follows: Let i1, . . . , iq be the q queries made by V on input x and random string R.
Furthermore, let f = f(A1, . . . , Aq) denote the verifier’s acceptance predicate on responses At to
query it. Let CR = (f, (i1, . . . , iq)) be the Rth constraint. Let φ = 〈CR〉R∈{0,1}r(n) be the instance
of Maxq-CSP-{0, 1} thus obtained.

It is easy to verify that UNSAT(φ) = 1−maxΠ{PrR[V Π(x;R)]}. Thus, if x ∈ L then φ is satisfiable
and if x 6∈ L then UNSAT(φ) ≥ 1

2 . Now consider running A on φ. If x ∈ L, then A(φ) produces
an assignment satisfying m/(2− ε) constraints, where m = 2r(n). On the other hand, if x 6∈ L, no
assignment satisfies more than m/2 constraints. Thus to decide if x ∈ L, all we need to do is to
count the number of assignments satisfied by A(φ) and accept iff this number is more than m/2.
Since the transformation of x to φ takes only polynomial time, and A runs in polynomial time, this
gives a polynomial time algorithm to solve a generic NP language L, thus yielding NP=P.

We use the phrase “inapproximable to within a factor of α” to denote that existence of an α-
approximation algorithm would imply P = NP .

The above proposition and proof only cover the case of Max k-CSP-Σ for some choice of k and Σ.
However standard reductions can then be used to show that Max k-CSP-Σ is inapproximable to
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within some constant α > 1 for every k ≥ 2 and every Σ with |Σ| ≥ 2. We will elaborate on this
later.

The proof above shows that to show that Max k-CSP-Σ is α-inapproximable, it suffices to produce
a reduction of the following form for some NP complete language L: The reduction should map, in
polynomial time, an instance x ∈ {0, 1}n to an instance φ of Max k-CSP-Σ such that φ is satisfiable
if x ∈ L and UNSAT(φ) ≥ 1− 1

α . The following proposition shows that any such reduction implies
the PCP theorem.

Proposition 7 Suppose there is a polynomial time reduction from an NP complete language L to
Max k-CSP-Σ mapping an instance x to φ such that φ is satisfiable if x ∈ L, and UNSAT(φ) ≥ ε
if x 6∈ L. Then L ∈ PCP1,1−ε[O(log n), k, log |Σ|].

Proof of Sketch: The verifier for the assertion “x ∈ L” uses the reduction to produce an instance
φ of Max k-CSP-Σ. It then expects as proof an oracle Π giving the assignment satisfying φ. (So
Π[i] = ai where ~a = 〈a1, . . . , an〉 is the assignment satisfying φ.) To verify the proof, the verifier
picks a random constraint Cj of φ and verifies it is satisfied by Π. Notice thus that the verifier
makes k queries to the proof oracle, getting an element of Σ (which can be encoded by log |Σ| bits)
as response. It can also be verified that the verifier accepts with probability one if x ∈ L and with
probability at most 1− ε if x 6∈ L.

Dinur’s proof directly produces a reduction showing such a hardness. We state her main theorem
below.

Theorem 8 ([12]) There exists an NP complete language L, ε > 0, finite set Σ, and a polynomial
time reduction R, mapping instances x to φ of Max2-CSP-Σ such that φ is satisfiable if x ∈ L and
UNSAT(φ) ≥ ε if x 6∈ L.

Combined with Proposition 7 above, this yields the PCP theorem.

4 Overview of Dinur’s approach

Before moving on to describing Dinur’s approach to proving the PCP theorem, let us briefly describe
the prior approaches. The prior approaches to proving the PCP theorem were typically stated in the
“PCPc,s[r, q, a]” notation, but the effective equivalence with Max k-CSP-Σ allows us to interpret
them in the CSP notation, and we do so below.

One of the principal issues to focus on is the “Gap” in the unsatisfiability achieved by the reduction.
Notice that the reductions we seek achieve a significant gap in the unsatisfiability of the instances
achieved when x ∈ L (which should be 0) and the unsatisfiability when x 6∈ L (which should be
lower bounded by some absolute constant ε > 0). We refer to this quantity as the “Gap” of the
reduction.

Previous approaches were very careful to maintain large gaps in reductions. Since it was unclear
how to create a direct reduction from some NP complete language L to Max k-CSP-Σ for finite k
and Σ with a positive gap, the prior approaches considered allowing k and Σ to grow with n = |x|.
The results of Babai et al. [5, 4] and Feige et al. [14] used algebraic techniques (representing
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information as coefficients of multivariate polynomials and encoding them by their evaluations) to
get reductions from any NP-complete language L to Maxk(n)-CSP-Σ(n) where k(n), log |Σ(n)| ≈
(log n)O(1). Arora and Safra [3], observed an asymmetry in the behavior of the two parameters
k(n) and log |Σ(n)| and in particular observed that one could interpret existing PCP constructions
as techniques that reduce Max k-CSP-Γ(n) to MaxO(k)cspΣ(n) where |Σ(n)| � |Γ(n)|.

This motivated the search for new PCPs which maintained k to be some absolute constant, while
allowing Σ(n) to grow. Arora et al. [2] produced two such reductions, one of which reduced
Max k-CSP-Γ(n) to MaxO(k)-CSP-Σ(n) with log |Σ(n)| ≈ (log log |Γ(n)|)3, and another reduction
reducing Max k-CSP-Σ(n) to MaxO(k)-CSP-{0, 1} (but with the catch that the reduction took
time that was at least Σ(n), so one couldn’t afford to use it on large Σ(n)). Each one of these
reductions reduced the gap by a constant factor, but this was ok since one only needed to apply
these reductions a constant number (thrice in [2]) to reduce the alphabet size Σ(n) to an absolute
constant.

Thus the previous approach could be described as constructing PCPs by “alphabet reduction”,
subject to “gap preservation”. In contrast, Dinur’s approach seems to be quite the opposite. In her
approach, she starts with a reduction from the NP complete language L to Max k-CSP-Σ which has
minimal gap (producing only UNSAT(φ) ≥ 1/m when x 6∈ L), but where k and Σ are finite. She
then applies a sequence of iterations that ensure “gap amplification” while “preserving alphabet
size”. The following lemma, from which the main theorem follows easily describes the properties
of these iterations.

Lemma 9 (Main Lemma) There exists a finite set Σ, a positive constant ε > 0 and a linear
time reduction1 T transforming instances of Max 2-CSP-Σ to instances of the same problem such
that

Completeness φ is satisfiable ⇒ T (φ) is satisfiable.

Soundness UNSAT(φ) ≥ min{2UNSAT(φ), ε}.

The reduction above is totally novel in the PCP literature and already finds other applications
(other than providing alternate proofs of the PCP theorem) in Dinur’s paper (see [12, Section 7]).
Indeed a few iterations (logarithmically many) of the transformation above amplifies the gap of
any reduction from tiny amounts to an absolute constant, and thus yields the PCP theorem. The
following proof argues this formally.

Proof of of Theorem 8: Given an NP complete language L and a string x ∈ {0, 1}n for which
we wish to decide membership, we first transform it to an instance φ0 of Max 2-CSP-Σ such φ0 is
satisfiable if and only if x ∈ L. (Notice such reductions, with effectively trivial gap, are classical.)
Let m denote the number of constraints of φ0. Now iterate the transformation T from Lemma 9
` = log m times, and let φi = T (φi−1). We claim that the reduction that maps x to φ` has the
properties claimed in the theorem.

First note that if x ∈ L, then φi is satisfiable for every i ∈ {0, . . . , `} satisfying the “completeness”
condition.

1I.e., there exist absolute constants c, d such that T (φ) takes time at most c|φ|+ d to compute. In particular, this
implies that |T (φ)| ≤ c|φ| + d.
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Next note that if x 6∈ L, then UNSAT(φ0) ≥ 1/m (since φ0 is not satisfiable). By induction (using
the Soundness condition in Lemma 9) we can now see that UNSAT(φi) ≥ min{2i

m , ε}. Thus, since
2` ≥ m, we have UNSAT(φ`) ≥ ε.

Finally, we need to argue that the entire reduction takes polynomial time. To do this it suffices
to argue that the size of the instance φ` is only polynomially larger than x. (The total running
time is then bounded by the time take to produce φ0 plus at most log m times some linear function
in |φ`|.) To argue this we use (in fact, need!) the fact that T is a linear time reduction and so
|T (φ)| ≤ c|φ|+ d. For simplicitly, assume d = 0. Then by induction, we see that |φ`| ≤ c` · |φ0| ≤
O(mlog2 c) · |φ0| ≤ (|φ0|)O(1) ≤ (|x|)O(1) as required.

Thus our focus now shifts to Lemma 9 and we start to peek into its proof. Dinur’s proves this Lemma
by combining two counteracting reductions. The first reduction amplifies the gap by increasing the
alphabet size. Since this is the main novelty in Dinur’s reduction, we will defer its proof to the
end. The second reduction is now in the classical style, which reduces the gap (somewhat), while
reducing the alphabet size. While it is clear that both reductions are opposing in direction, the
level of detail used above leaves it unclear as to what would happen if the two reductions were
applied in sequence. Would this increase the gap or reduce it? Would it increase the alphabet size
or reduce it (or preserve it)?

Part of the insight behind Dinur’s approach is the observation that both these reductions are
especially strong. The first allows gap amplification by any amount, subject to a sufficiently large
explosion in the alphabet size. The second reduction can reduce any alphabet to a fixed small
alphabet, while paying a fixed price in terms of the gap. These terms are articulated in the
assertions below.

Lemma 10 For every constant c <∞ and finite set Σ there exist constant ε1 > 0, finite set Γ and
a linear time reduction T1 from Max 2-CSP-Σ to Max 2-CSP-Γ such that:

Completeness φ is satisfiable ⇒ T1(φ) is satisfiable.

Soundness UNSAT(T1(φ)) ≥ min{c ·UNSAT(φ), ε1}.

(In other words, one can pick any amount to amplify by, and the reduction finds an appropriate
alphabet Γ to reduce to.)

Lemma 11 There exists a constant ε2 > 0, a finite set Σ such that for every finite Γ, there exists
a linear time reduction T2 mapping max 2cspg to max 2csps such that:

Completeness φ is satisfiable ⇒ T2(φ) is satisfiable.

Soundness UNSAT(T2(φ)) ≥ ε2 ·UNSAT(φ).

Notice that ε2 above — the loss in the gap — is independent of alphabet size. We will elaborate
more on this in the next section.

We defer the proofs of the two lemmas to the ensuing sections, but now show how the main lemma
follows from the above two.
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Proof of of Lemma 9: Let Σ, ε2 be as in Lemma 11. Let c = 2 · ε2. Invoking Lemma 10 for
this choice of c and Σ, let ε1, Γ and T2 be as given by Lemma 11. Now invoke Lemma 11 for this
choice of Γ and let T2 be the reduction so obtained.

We claim Lemma 9 holds for Σ, ε = ε1 · ε2 and T being the composition of T2 with T1.

It is clear that T2(T1(·)) maps instances of Max 2-CSP-Σ to instances of the same problem. Since
both T1 and T2 are linear time reductions, it follows that so is T . Also since both preserve satis-
fiability, so does their composition. Finally the unsatisfiability of T (φ) may be lower bounded as
follows.

UNSAT(T2(T1(φ))) ≥ ε2 ·UNSAT(T1(φ)) ≥ min{ε2 · c ·UNSAT(φ), ε2 · ε1} = min{2 ·UNSAT(φ), ε}.

This concludes the proof of Lemma 9.

In the following sections we comment on the proofs of Lemmas 10 and 11. Since the former is the
more novel element, we defer discussion about it to the end. We start with Lemma 11.

5 Alphabet Reduction and Error Correcting Codes

In order to motivate the strength of Lemmas 11 and 10 we first describe some of the more elemen-
tary operations one can use to manipulate the parameters k and Σ. The results in the following
proposition are by now either considered “basic” or at least “standard” in the context of approxi-
mation preserving reductions. The reader is strongly encouraged to think about each individually
before reading the proof sketch, so as to gain some intuition into the assertions and their proofs.

Proposition 12 Fix integers `, k. There exist linear-time, satisfiability preserving reductions A1,
A2, and A3 such that

1. A1 reduces Maxk-CSP-{0, 1}` to Max(k · `)-CSP-{0, 1} with UNSAT(A1(φ)) = UNSAT(φ).

2. A2 reduces Maxk-CSP-{0, 1} to Max3-CSP-{0, 1} with UNSAT(A2(φ)) ≥ 1
2k+2 UNSAT(φ).

3. A3 reduces Maxk-CSP-{0, 1} to Max2-CSP-{0, 1}k with UNSAT(A2(φ)) ≥ 1
kUNSAT(φ).

Proof of Sketch: We consider the items in sequence.

1. For the first part, given a Maxk-CSP-{0, 1}` instance φ with constraints C1, . . . , Cm on
variables X1, . . . , Xn taking values in {0, 1}`, we “encode” each variable Xi by a collec-
tion of ` Boolean variables Yi,j , j ∈ {1, . . . , `}, with the association that an assignment
~a = 〈a1, . . . , a`〉 ∈ {0, 1}` to Xi corresponds to the assignments Yi,j ← aj . A constraint Cj =
f(Xi1 , . . . , Xik) can now be naturally represented as a constraint C ′

j = f ′(Yi1,1, . . . , Yi1,`, . . . , Yik,1, . . . , Yik,`),
where f ′ is satisfied by an assignments to the Yi,j ’s if and only if the corresponding assignment
to the Xi’s satisfies f . It is easy to verify that the assignments to Xi’s are in 1-to-1 corre-
spondence with the assignments to Yi,j ’s with corresponding assignments satisfying exactly
the same number of constraints. This yield the reduction A1.

(The important aspect to note in this reduction is that its performance degrades with `.
Indeed this is one of the principal effects we will aim to remedy later.)
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2. For the second part, we hint that this is essentially similar to the classical reduction from
“SAT” to “3SAT”, whose approximability properties were clarified in [23]. In this reduc-
tion, when transforming an instance φ with constraints C1, . . . , Cm on variables X1, . . . , Xn,
one retains all the original variables, and adds for each constraint Cj = f(Xi1 , . . . , Xik)
a collection of K ≈ 2k “auxiliary” variables Yj,1, . . . , Yj,K and introduce K ternary con-
straints C ′

j,1, . . . , C
′
j,K on variables (Xi1 , . . . , Xik , Yj,1, . . . , Yj,K) such that an assignment to

(Xi1 , . . . , Xik) ← ~a satisfies Cj if and only if there exists an assignment (Yj,1, . . . , Yj,K) ← ~b

such that all the constraints C ′
j,1, . . . , C

′
j,K are satisfied by the assignment (~a,~b). It can be

seen that this reduction has the right properties.

3. This reduction, though also simple, is more “recent” than others, having been first brought
out by the work of Fortnow et al. [15]. Here, the idea is to lump together k bit strings
queried in various constraints as new single variables, but then to check their consistency
against the older single bit assignments. Formally, given k-ary constraints C1, . . . , Cm on
Boolean variables X1, . . . , Xn, we create an instance with km constraints {Cj,`} on n + m
variables X ′

1, . . . , X
′
n, Y1, . . . , Ym. If the constraint Cj = f(Xi1 , . . . , Xik), then the constraint

Cj,` applies to variables Yj and X ′
i`

and verifies that the k-bit assignment to f(Yj) = 1, that
X ′

i`
∈ {0k, 0k−11}, and that the last bit of X ′

i`
equals the `th bit of Yj . It is easy to see

that assignments to the X ′ variables can be interpreted as assignments to the X variables
and that the constraints C ′

j,1, . . . , C
′
j,k are all satisfied only if the corresponding assignment

to Xi’s satisfy Cj , which suffices to conclude that this reduction has the desired property.

To summarize, Proposition 12 suggests a number of obvious reductions between constraint satis-
faction problems. The upshot is that large gaps are hard to achieve when k and |Σ| are small. But
as it turns out the two parameters, k and log |Σ| are not totally similar in behavior. On the one
hand, one can tradeoff Σ for a smaller alphabet, by increasing the number of queries. But reversing
this tradeoff does not seem to be as obvious (and more involved results show that we do have to
lose something in the unsatisfiability).

Returning to our goal of Lemma 11, of reducing a large alphabet Γ to some small fixed alphabet
Σ, we see we could do this, if we were allowed to increase the number of queries (but we have to
keep this fixed to 2), or allow the unsatisfiability of the reduced instance to be much smaller than
(such as say 1/|Γ| times) the unsatisfiability of the source instance. But we wish to do better and
lose only a fixed constant.

Turns out the prior work on PCPs, in particular [2, Section 6], addresses precisely this issue (though
it was not conceived to be utilized as many times as in the current proof). The steps in the reduction
resemble the classical one (Proposition 12, Part 1) however each step is significantly different.

Given an instance φ of max 2-CSP-Γ with constraints C1, . . . , Cm on variables X1, . . . , Xn, we first
produce an instance of max 3-CSP-{0, 1} with the following steps:

1. First we “encode” each variable Xi taking values in Γ with a collection of Boolean variables
X ′

i,1, . . . , X
′
i,K (for some large constant K depending only on |Γ|). The classical reduction

did so by representing elements of Γ as binary strings and then using the new variables to
represent these binary strings (see the proof of Proposition 12, Part 1). Unfortunately this
representation is not robust, and loses 1/ log |Γ| factor in the gap simply due to the fact that
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two different elements of Γ may differ in only one bit in their respective binary encodings.
The reduction used to prove Lemma 11 in [12] gets around this loss by representing elements
of Γ in an “error-correcting code”: Specifically, we find a collection S of Γ strings in {0, 1}` for
an appropriate integer ` so that every pair of strings differ in, say, at least `/10 coordinates.
Such codes are well known to exist, though for our purposes it is more convenient to work
with special codes.

2. Next, for a constraint, Cj = f(Xi1 , Xi2), we introduce a new collection of variables {Yj,t}t and
a collection of constraints {C ′

j,t} on the variables {X ′
i1,1, . . . , X

′
i1,K}, {X ′

i2,1, . . . , X
′
i2,K}, {Yj,t}t.

We won’t be able to describe these constraints here, but they “enforce” two conditions: (1)
They enforce that the variables X ′

i1,∗, X ′
i2,∗ are close encoding of some strings in the code

S (e.g., changing fewer than `/5 variables X ′
i1,∗ yields a string in S). (2) They enforce that

the closest members of S correspond to assignments to Xi1 and Xi2 that satisfy Cj . The
special aspect of the new constraints is that even though we have an enormous number of
these constraints (growing with |Γ|), violating either of the conditions (1) or (2) would lead
to a constant (say 3ε2) fraction of the constraints {C ′

j,t}t being violated (whereas classical
reductions only violated a single constraint, when an original constraint was unsatisfied).

Finding the right code S, the number of auxiliary variables Yj,∗ and the right collection
of constraints C ′

j,∗ may be dismissed as a mere a “finite” search problem, if only we could
prove that they exist. Unfortunately, the only proofs that we know that such structures
exist, is the constructive one. And the constructive proof essentially amounts to building
a “finite” PCP-like object (where failure to satisfy some conditions are “visible” to many
local checks). Fortunately, these PCPs can afford to be much larger than the “polynomial
sized” PCPs we seek, and their constructions are significantly simpler. Dinur presents a very
compact such construction (see [12, Section 6]) while earlier constructions (e.g., [2, Section
6]) while being longer are still quite simple and natural. We remark that while the problem
is a very combinatorial one, the construction of these gadgets and their analysis does rely on
“algebraic” results over finite fields ([2]) or Harmonic analysis over the Boolean cube ([12]).

Once one has such a reduction from Max 2-CSP-Γ to Max3-CSP-{0, 1} one can apply a standard
reduction (Proposition 12, Part 3) to now reduce the problem further to max 2-CSP-{0, 1}3 yielding
Lemma 11 for Σ = {0, 1}3. The reader may look at [12, Section 6] for details.

6 Gap amplification

We now move to the technical centerpiece of Dinur’s proof of the PCP theorem. Before getting
into the specifics of this problem, we first describe the context of the result and its proof.

6.1 Background: Recycling Randomness

The underlying problem here, of amplifying gaps, plays a major role in the developing theory of
“randomized computation”. Since every essentially randomized algorithm errs with some positive
probability, a natural question is to investigate whether this error could be reduced.

For instance, consider one of the classical (randomized) algorithms to determine if an n-bit integer
is a prime. The early algorithms (cf. [22]) had the property that they would always declare prime
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inputs to be “prime”, but for any composite input they may declare it also to be “prime” with
probability half. The classical algorithm would need an n-bit long random string to perform this
test. Now, suppose we wish to reduce this error probability (of concluding that composites may be
“prime”) to say 1/128, one only needs to run the basic algorithm 7 times and declare a number to
be prime only if every one of the seven iterations declared it to be prime. One of the drawbacks of
this approach is that this process costs seven times the original cost in terms of randomness, as well
as running time. While the latter may be an affordable cost (esp. for settings other than primality
testing where no polynomial time deterministic algorithm is known), however, the increasing cost
of randomness may prove less affordable. (Unlike the case of processor speeds in computers which
under the empirically observed “Moore’s Law” keep doubling every three years, physical generation
of pure randomness does not seem to be getting easier over the years.) In view of this, one may ask
if there is a more “randomness-efficient” way to get the error probability down to 1/128 without
expending 7n random bits?

This task has been studied extensively under the label of “recycling randomness” [1, 11, 19] in the CS
literature, which shows that it suffices to use something like n+ ck bits, for some absolute constant
c, to reduce the error to 2−k (though the cost in terms of running time remains a multiplicative
factor of k). The most common technique for such “random-efficient” amplification, is to repeat
the randomized algorithm with related randomness. More formally, suppose A(x;R) denotes the
computation of a randomized algorithm to determine some property of x (e.g., A(x) = 1 if and only
if x is a prime integer). The standard amplification constructs a new algorithm A′(x;R′) where
R′ = (R1, . . . , Rk) is a collection of k independent random strings from {0, 1}n and A′(x;R′) = 1
if and only A(x;R1) = · · · = A(x;Rk) = 0. Now, given that each invocation A(x;Ri) only “leaks”
one bit of information about Ri, using independent random coins is completely inessential for
this process. Indeed it is easy to subsets S ⊆ {{0, 1}n}k of cardinality only 2(O(n+k) such the
performance of A′ where R′ is chosen uniformly from S is almost as good as when drawn from
the entire universe of cardinality 2nk. The computational bottleneck here is to produce such a
distribution/set S efficiently.

One popular approach to producing such a set efficiently uses the technique of “random walks”
on “expander graphs”. Here we create a graph G whose vertices are the space of random strings
of A (i.e., {0, 1}n) with the property that each vertex of G is adjacent to a fixed number, D, of
other vertices in G. For the application of recycling randomness it will be important that one can
enumerate in time polynomial in n all the neighbors of any given vertex R ∈ {0, 1}n, though for
the purpose of the PCP gap amplification it will suffice to be able to compute this in time 2O(n).
The “random walk” technique to recycling randomness produces R′ = (R1, . . . , Rk) by first picking
R1 ∈ {0, 1}n uniformly at random, and then picking R2 to be a random neighbor of R1, and R3 to
be a random neighbor of R2 and so on. In other words R′ is generated by taking a “random walk”
on G.

To understand the randomness implications of this process, we first note that this process takes
n + k log D bits of randomness. So it is efficient if D is small. On the other hand the amplification
property relates to structural properties of the graph. For instance, the reader can see that it
wouldn’t help if the graph had no edges, or were just a collection of 2n/(D + 1) disconnected
complete graphs of size D + 1 each! Indeed for the amplification to work well, the graph needs to
be an extremely well connected graph, or an “expander” as defined next.

Definition 13 For a graph G = (V,E) and subset S ⊆ V , let ES = {(u, v) ∈ E s.t. |{u, v}∩S| = 1}
denote the set of edges crossing from S to its complement. The expansion of the set S, denoted
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e(S), is the quantity
(
|ES |
|E|

)
/

(
|S|
|V |

)
. G is said to be a (γ, D)-expander if every vertex is adjacent

to exactly D other vertices, and every set S with |S| ≤ |V |/2 has expansion e(S) ≥ γ.

It is by now well-known in the CS literature that if R′ if generated by a k-step random walk
on a (γ, D)-expander, that the error probability reduces to 2−δk where δ is a universal constant
depending only on γ and D. (This result was first shown in a specific context by Ajtai et al. [1],
and then noted for its general applicability in [11, 19].) Furthermore, a rich collection of “explicit”
(γ, D)-expanders have been constructed, allowing for widespread application of this result. See [20]
for a survey.

6.2 Amplification of PCPs: Naive approaches

We now return to the issue of amplifying the gap in Max 2-CSP-Σ. The naive approach to this
problem would be to “iterate” the associated PCP verifier twice. The following proposition describes
this operation in the CSP language.

Proposition 14 There exists a quadratic time satisfiability preserving reduction A4 reducing Max 2-CSP-Σ
to Max4-CSP-Σ such that if UNSAT(φ) = ε then UNSAT(A4(φ)) = 1− (1− ε)2.

We leave it to the reader to verify the above proposition. The main aspect to notice is that the
variables of A4(φ) are the same as the variables of φ, while A4(φ) has a constraint C ′

ij for every
pair of constraints Ci, Cj of φ where C ′

ij represents the conjunction of the constraints Ci and Cj .

We move on to the problems with this reduction. First, this reduction takes quadratic time. More
significantly the size of the instance |A4(φ)| is really quadratic in |φ| and this is a price we can not
afford. (Logarithmically many iterations of this process would blow the instance size up from n to
nn, which completely destroys any hope of using this to construct PCPs.)

Fortunately, this is an aspect that is readily amenable to the “random walk on expanders” technique.
Specifically we can consider a better k-fold amplification reduction A5 reducing Max 2-CSP-Σ to
Max(2k)-CSP-Σ as follows: The variables of A5(φ) are the same as the variables of φ. Constraints
of A5(φ) are generated by first picking k constraints of φ by performing a k-step random walk on
a (γ, D)-expander G with m vertices (so the vertices of G correspond to constraints of φ) and then
taking the conjunction of all such constraints. The number of constraints now is only n ·Dk which
is linear in n if k, D are constant. The analysis used in the general setting of recycling randomness
can now be used to prove the following proposition.

Proposition 15 There exists a constant δ > 0 such that for every k, there exists a linear time
satisfiability preserving reduction A5 reducing Max 2-CSP-Σ to Max(2k) − -CSP-Σ such that if
UNSAT(φ) = ε then UNSAT(A4(φ)) = 1− (1− ε)δk.

The amplification effects of the above proposition, as well as the time complexity are now as we
would like. However there is still one, fatal, flaw with both reductions above. They do not reduce
“binary” constraint satisfaction problems to “binary” constraint satisfaction problems. Instead they
reduce them to (2k)-ary constraint satisfaction problems, which is also of no use in the iterative
approach. So we turn to the problem of preserving the “binary” nature of constraints.
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6.3 Background: Parallel Repetition

For this section it is convenient to switch to the PCP language. Consider a PCP verifier V that on
input x and random string R two queries q1(R) and q2(R) to an oracle Π : Z+ → Σ and accepts
if the responses a = Π(q1(R)) and b = Π(q2(R)) satisfy f(R, a, b) = 1 for some fixed predicate f
depending on x.

The naive amplification (corresponding to reduction A4 described earlier) corresponds to the fol-
lowing verifier V ′: V ′ picks two random strings R1, R2 from the space of the randomness of V and
issues queries q1(R1), q2(R1), q1(R2), q2(R2) to Π. If the responses are a1, b2, a2, b2 then V ′ accepts
if f(R1, a1, b1) = 1 and f(R2, a2, b2) = 1. The acceptance probability of the modified verifier V ′

(maximized over Π) is the square of the acceptance probability of V (maximized over Π), which is
good enough for us. However it makes 4 queries and this is the issue we wish to address in this
section.

One natural attempt at reducing the number of queries may be to “combine” queries in some
natural way. This is referred to as parallel repetition of PCPs. In the k-fold parallel repetition we
consider an new verifier V ||⊗k that accesses an oracle Π||⊗k : (Z+)k → Σk (with the association
that the k coordinates in the domain correspond to k queries to Π, and the k coordinates in the
range to the k responses of Π) and functions as follows: V ||⊗k picks k independent random strings
R1, . . . , Rk and queries Π||⊗k with (q1(R1), . . . , q1(Rk)) and (q2(R1), . . . , q2(R2)). If the responses of
Π||⊗k are (a1, . . . , ak) and (b1, . . . , bk) then V ||⊗k accepts if f(Ri, ai, bi) = 1 for every i ∈ {1, . . . , k}.

One may hope that the error in the k-fold parallel repetition goes down exponentially with k.
However, any such hopes are dashed by the following example, which gives a choice of (Σ, f, q1, q2)
such that the error of the k-fold parallel repetition increases exponentially with k.

Example: Let V work with Σ = {0, 1} and the space of random strings R be {0, 1}. Let qi(R) =
i + R and let f(0, a, b) = b, and f(1, a, b) = 1 − a. The reader may verify that for every oracle
Π : {1, 2, 3} → {0, 1} the acceptance probability of V is 1

2 . Furthermore there exist Π||⊗k for which
the acceptance probability of V ||⊗k is 1− 2−k.

The example illustrates some of the many problems with naive hopes one may have from parallel
repetition. In the face of the above example one may wonder if any amplification is possible at all
in this setting. After many works exploring many aspects of this problem, Raz [24] gave a dramatic
positive. He considers restricted verifiers whose “question” spaces (the image of q1(·) and q2(·))
are disjoint, and shows that for such verifiers, error does reduce exponentially with the number
of iterations, with the base of the exponent depending only on the acceptance probability of the
original verifier, and the answer size |Σ|. Furthermore, there exist reductions reducing any verifier
to a restricted verifier only a constant factor in the gap. (The reader may try to see how one such
reduction is implied by Proposition 12, Part 3.) Combined these two steps allow us to amplify the
gap in PCPs — but now we have lost the “linear time property”.

Is it possible to try parallel repetition while recycling randomness? Given the difficulty in analyzing
parallel repetition (Raz’s proof, while essentially elementary, is already one of the most intricate
proofs seen in the PCP setting) the task of combining it with recycling randomness appears for-
bidding. Remarkably enough Dinur [12] manages to combine the two techniques and achieve the
desired gap amplification, and does so with relatively simple proofs. Among other things, Dinur’s
realization is that even an example such as the above may not defeat the purpose. For the purposes
of Lemma 10 it suffices to show that the acceptance probability goes down, provided it was very
high to start with; and that in the remaining cases it remains bounded away from 1 (by say, 2k).

16



Dealing with cases where the acceptance probability is very high (e.g., greater than 1−Σ−k) turns
out be easier than dealing with the other cases. We now describe Dinur’s gap amplification.

6.4 Gap amplification

To describe Dinur’s gap amplification lemma we switch back to the terminology of CSPs. Her main
idea is to consider the graph underlying a Max 2-CSP-Σ instance, and to impose some structure
on the graph on it, and then to generate instances of Max2-CSP-ΣK based on walks of length k on
this graph.

We start by describing the graph Gφ underlying a max 2csps instance φ. Gφ has n vertices cor-
reponding to the n variables of φ and (i, j) is an edge if there is some constraint (among the m
constraints of φ) on the pair of variables Xi, Xj . (As an aside, Dinur’s analysis relies essentially on
the feature that this graph is “undirected” i.e., (i, j) ∈ E ⇔ (j, i) ∈ E, which is in sharp contrast
to Raz’s setting which requires that (i, j) ∈ E implies that (i, i′) 6∈ E and (j, j′) 6∈ E for any i′, j′.)

As a first step, Dinur performs some preprocessing to ensure that Gφ is a (γ, D)-expander. If it
is not, she reduces, in linear time, the instance φ to a different instance φ̃ of Max 2-CSP-Σ so
that UNSAT(φ̃) ≥ ε3 · UNSAT(φ). This preprocessing reduction (from φ to φ̃) is achieved by first
transforming φ to φ1 so that Gφ1 has bounded degree, which also uses expanders in a technique
going back to the work of [23]. Next it transforms φ1 to φ̃ by imposing a collection of vacuous
constraints φ2 (which are always satisfied) such that Gφ2 is an expander. It may be verified that
if Gφ2 is a (2γ, D/2)-expander and Gφ1 has degree D/2, then the union of the two graphs yields a
(γ, D) expander. If one can amplify the gap of the instance φ̃ by c/ε3 factor, then the composition
of the two steps amplifies the gap of φ by a factor c. This (to simplify our notation) below we
assume that Gφ is an expander.

We now move to the crux of Dinur’s amplification. Given φ as above, let k correspond to the
number of repetitions we intend to attempt. For u ∈ V (Gφ), let B(u, k) denote the set of vertices
within a distance of at most k from u. Let K = maxu{|B(u, k)|} ≤

∑k
i=0 Di. Then the new

alphabet Γ = ΣK . The new instance φ′ will continue to have n variables (same as φ), where the
new variable X ′

u will be viewed as assigning an opinion on its value of the assignment to Xv for
every v that is within a distance of k from u in Gφ. (Notice that the number of such v’s for any
fixed u is at most K and so indeed an alphabet of size |Σ|K suffices to represent all these opinions.)
We use X ′

u(v) to denote the opinion of u about v.

Now for the constraints of φ′: For every walk w in Gφ starting at vertex u and ending at v of length
` ∈ [k/2, k] φ′ has Dk−` copies of the constraint F (X ′

u, X ′
v) which imposes the conjunction of all

constraints within balls of radius k of u and v. Specifically, (1) For every u′ ∈ B(u, k) ∩ B(v, k)
it must hold that X ′

u(u′) = X ′
v(u

′). (2) For u′ ∈ B(u, k) ∪ B(v, k) let O(u) = Xu(u′) or Xv(u′)
whichever is defined (notice by (1) that these are consistent). For every u′, v′ such that u′, v′ ∈
B(u, k)∪B(v, k) and f(u′, v′) is a constraint of φ, it must hold that f(O(u′), O(v′)) = 1. Notice that
the many copies of each constraint ensure that a randomly chosen constraint of φ′ will correspond
to a walk whose length is distributed uniformly over the interval k/2, . . . , k.

The above gives the complete description of the reduction essentially used in Dinur’s work. We
won’t be able to give the proof as to why it works here. Even worse, we won’t even be able to
motivate the reasons behind the many delicate choices made in the reduction above. (Why are the
new variables chosen as they are? Why do we create walks of so many different lengths? Why do
we replicate the constraints in this way?) All we can say is that these choices are not necessarily
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the first ones one may consider, but definitely make the proof of the amplification lemma very easy.
The reader is encouraged to followup by reading the original paper.

7 Conclusion

We hope the reader finds the above description to be somewhat useful, and motivating when reading
Dinur’s new approach to consruction of PCPs. We remark that the earlier algebraic approaches,
while technically much more complicated, do have some appealing high level views. The reader is
pointed to the work of Ben-Sasson and this author [10] to get a sense of some of the work in the
older stream.

Moving on beyond the specific proofs, and constructions used to get probabilistically checkable
proofs, we hope that the notion itself is appealing to the reader. The seemingly counterintuitive
properties of probabilistically checkable proofs highlight the fact the “format” in which a proof
is expected is a very powerful tool to aid the person who is verifying proofs. Indeed for many
computer generated proofs of mathematical theorems, this notion may ease verifiability, though in
order to do so, PCPs need to get shorter than they are; and they verification scheme simpler than
it is. Dinur’s work helps in this setting, but much more needs to be done.

And finally, moving beyond the notion of proofs, we also hope this article reminds the reader once
more of a fundamental question in logic, and computation, and indeed for all mathematics: Is
P=NP? Can we really replace every mathematician by a computer? If not, would it not be nice to
have a proof of this fact?
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[5] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.
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