
Robust local testability of tensor products of LDPC

codes?

Irit Dinur1, Madhu Sudan2, and Avi Wigderson3

1 Hebrew University, Jerusalem, Israel. dinuri@cs.huji.ac.il
2 Massachusetts Institute of Technology, Cambridge, MA. madhu@mit.edu

3 Institute for Advanced Study, Princeton, NJ. avi@ias.edu

Abstract. Given two binary linear codes R and C, their tensor product R⊗C consists of all matrices
with rows in R and columns in C. We analyze the “robustness” of the following test for this code
(suggested by Ben-Sasson and Sudan [6]): Pick a random row (or column) and check if the received
word is in R (or C). Robustness of the test implies that if a matrix M is far from R ⊗ C, then a
significant fraction of the rows (or columns) of M are far from codewords of R (or C).
We show that this test is robust, provided one of the codes is what we refer to as smooth. We show
that expander codes and locally-testable codes are smooth. This complements recent examples of P.
Valiant [13] and Coppersmith and Rudra [9] of codes whose tensor product is not robustly testable.

1 Introduction

A binary linear code is a linear subspace C ⊆ {0, 1}n. A code is locally testable if given
a word x ∈ {0, 1}n one can verify whether x ∈ C by reading only few (randomly chosen)
bits from x. More precisely such a code has a tester, which is a randomized algorithm with
oracle access to the received word x. The tester reads at most q symbols from x and based
on this “local view” decides if x ∈ C or not. It should accept codewords with probability
one, and reject words that are “far” (in Hamming distance) from the code with “noticeable”
probability.

Locally testable codes (LTCs) are related to probabilistically checkable proofs (PCPs). LTCs
were first explicitly studied by Goldreich and Sudan [12], who describe them as the “combi-
natorial core of PCPs”. They constructed LTCs relying on some of the PCP machinery [11,
2, 1]. Since locally testable codes are simpler than PCPs, it seems natural to seek alternative
constructions for them, possibly departing from the PCP framework.

One of the most interesting challenges in constructing LTCs, is to come up with an LTC
that has constant relative distance and highest possible (maybe linear?) rate. Several steps
in this direction were made in recent years, see [12, 8, 3, 4, 6, 7, 10].

All known efficient constructions of LTCs rely on some form of “composition” of two (or more)
codes. In this paper we focus on composition by tensor product, which is an elementary way
to compose two codes. Given two binary codes R ⊆ {0, 1}m and C ⊆ {0, 1}n, their tensor
product is the code R ⊗ C consisting of all binary n×m matrices whose rows belong to R
and whose columns belong to C.

? Most of the research was done while the authors were visiting Microsoft Research Theory group. Additionally, Irit
Dinur’s work was supported in part by ISF grant 984/04, Madhu Sudan’s work was supported in part by NSF
Award CCR-0514915, and Avi Wigderson’s work was supported in part by NSF Award CCR-0324906.

Ben-Sasson and Sudan [6] suggested using the tensor operation for constructing LTCs. They
introduce the notion of robust LTCs: An LTC is called robust if whenever the received word
is far from the code, then with noticeable probability the local view of the tester is far from
an accepting local view. It is very easy to compose testers for robust LTCs: If it so happens
that restriction of the code to the local view of the tester is itself an LTC, then instead of
reading the entire local view, a tester for the smaller LTC can be invoked thereby saving on
the query complexity of the tester.

Ben-Sasson and Sudan [6] showed that a code obtained by tensoring three or more codes
(i.e. a code of the form C1 ⊗C2 ⊗C3) is robustly testable, and used this result to construct
LTCs. For the tensor product of two codes R and C, they considered the following natural
test, and asked whether it is robust:

Test for R⊗ C: Pick a random row (or column), accept iff it belongs to R (or C).

Rather than providing a general definition of robustness (which can be found in Section 2.2),
let us spell out the meaning of robustness for this particular test. Let x be an n×m matrix.
Let δrow(x) denote the expected distance of a random row of x from R, and let δcol(x) denote
the expected distance of a random column of x from C. Let δR⊗C(x) denote the distance of
x from the tensor product code R ⊗ C. The robustness of the test is the largest value of α
that satisfies

δrow(x) + δcol(x)

2
≥ α · δR⊗C(x)

for every x. We say that the test is robust if its robustness is bounded away from 0.

Paul Valiant [13] showed a surprising example of two linear codes R and C for which the test
above is not robust, by exhibiting a word x that is far from R ⊗ C but such that the rows
of x are very close to being in R (i.e. δrow(x) is small) and the columns of x are very close
to being in C (i.e. δcol(x) is small). An additional example of [9] gives a code whose tensor
product with itself is not robust, and a similar result is shown for some non-linear code.

Results. Despite these examples, in this paper we show that the test above is robust for two
important classes of Low Density Parity Check (LDPC) codes: Expander codes, and LTCs
(see Proposition 1). We note that these are almost disjoint classes, as [5] prove that random
expander LDPC codes are not locally testable.

We do this by introducing smooth codes which are a class of low density parity check codes.
The smoothness property captures how badly the code is affected if some of the parity checks
are removed from it.

We first show that if either R or C are smooth, then R⊗C has the following property. Any
given word x that has small δrow(x) and small δcol(x), must have a large sub-matrix that
completely agrees with some word in R⊗C (so x is close to R⊗C). This implies that R⊗C
is robust. We then argue that both LTCs and expander codes are smooth.

2 Notation, Definitions, and Results

All codes we consider will be binary linear codes. A binary linear code is a linear subspace
C ⊆ {0, 1}n, whose dimension is denoted by dim(C). Every member of C is called a codeword.

We define the distance between two words x, y ∈ {0, 1}n to be δ(x, y) = Pri[xi 6= yi]. We also
define the weight of a string to be wt(x) = δ(x,0). The distance of a code is denoted δ(C),
and defined to be the minimal value of δ(x, y) for two distinct codewords x, y ∈ C. Clearly
the distance of a linear code is equal to weight of the minimal-weight non-zero codeword.

Let In = {0, 1}n denote the trivial code. For x ∈ In and C ⊆ In, let δC(x) = min{y∈C}{δ(x, y)}
denote the distance of x from the code C.

2.1 Tensor Products of Codes

For x ∈ Im and y ∈ In we let x ⊗ y denote the tensor product of x and y (i.e., the n ×m
matrix xyT).

Let R ⊆ Im and C ⊆ In be linear codes. We define the tensor product code R ⊗ C to be
the linear subspace spanned by words r ⊗ c ∈ {0, 1}n×m for r ∈ R and c ∈ C. The following
facts are immediate:

– The code R⊗C consists of all n×m matrices whose rows belong to R and whose columns
belong to C.

– dim(R⊗ C) = dim(R) · dim(C)
– δ(R⊗ C) = δ(R) · δ(C).

Fix R ⊆ Im and C ⊆ In of distance δR and δC respectively for the rest of the manuscript.

Let M ∈ Im ⊗ In and let δ(M) = δR⊗C(M). Let δrow(M) = δR⊗In(M) denote its distance
from the space of matrices whose rows are codewords of R. This is the expected distance of
a random row in x from R. Similarly let δcol(M) = δIm⊗C(M).

2.2 Robust Locally Testable Codes

Locally testable codes, as described in the introduction, are codes for which one can test
whether a given word x is in the code by reading only few (randomly chosen) symbols from
x. We discuss here only non adaptive and bi-regular testers. Non adaptive means that which
queries are read is determined before any query is made, and bi-regular means that every
test queries the same number of bits, and every bit is queried by the same number of tests. It
would be interesting to extend our result for locally testable codes without these restrictions.

Definition 1 ((Non adaptive, bi-regular) Locally Testable Code). We say that a
code C ⊆ In is (d, δ, ε, ρ)-locally-testable if δ(C) ≥ δ and there is a randomized algorithm
(called a tester) T , which selects d indices from [n], and for any given word x ∈ In, T reads
the bits of x in these locations, satisfying:

– If x ∈ C then Pr[T x accepts] = 1.
– If δC(x) ≥ ρ then Pr[T x rejects] > ε.

Moreover, the probability that a given index is chosen to be read by T is the same for all
indices in [n].

A somewhat stronger notion of LTCs is that of robust-LTCs. Such a code has a stronger
soundness requirement: Whenever x 6∈ C the local view of the tester is far (in expecta-
tion) from an accepting view. For a formal definition let us introduce a little notation.
The tester algorithm T has two inputs: the random string r, and the word x that is be-
ing tested. The tester reads the string r and computes a predicate Tr and a d-tuple of
indices i1, . . . , id in which it queries the word x. It accepts iff Tr(x[i1], . . . , x[id]) = 1. Let

acc(Tr) =
{

w ∈ {0, 1}d
∣∣∣ Tr(w) = 1

}
be the set of local-views on which the tester accepts.

Define the robustness of T on x to be

ρT (x) = Er[δ((x[i1], . . . , x[id]) , acc(Tr))] ,

which is the expected distance of the local view from an accepting one. The robustness of T
is the minimal ratio between the robustness of T on x, and the distance of x from the code:

ρT = min
x 6∈C

ρT (x)

δC(x)
.

Definition 2 (Robust Code). We say that a code C ⊆ In is α-robust if there is a tester
T that accepts every word in C with probability 1, such that ρT ≥ α.

2.3 Low Density Parity Check (LDPC) Codes

A bipartite graph ([n], [m], E) is a parity check graph for a code C ⊆ In if the following
holds (let Γ (j) denote the neighbors of j in the graph):

x ∈ C ⇐⇒ ∀j ∈ [m]
∑

i∈Γ (j)

xi = 0 mod 2

In other words, every right-hand-side vertex j ∈ [m] corresponds to a parity constraint, and
a word is in the code if and only if it satisfies all of the constraints.

A code is referred to as an LDPC code if it has a “low-density” parity check graph, e.g. a
graph with constant4 average degree.

We first remark that LTCs are low density parity check codes, since a parity check graph
can be constructed from the tester algorithm. Moreover, since our LTCs are bi-regular, so is
their parity check graph.

Proposition 1. Every (d, δ, ε, ρ)-LTC C with ρ < δ has a parity check graph with right
degree d and such that for every word x, if δC(x) ≥ ρ then it violates at least ε fraction of
the parity checks.

Proof. Let T be a tester for C. The predicates computed by T are parity checks (perhaps
redundant) of C, since the code is linear. The construction of a parity graph (L, R, E) from
T is immediate, with the nodes of R corresponding to the enumeration of the random strings
of T .
4 Implicit throughout this manuscript is the notion that we are working with infinite families of codes/graphs, where

the parameters such as the degree or the distance do not change with the length of the code/graph etc.

Another important class of LDPC codes is that of expander codes.

Definition 3 ((c, d)-regular (γ, δ)-expander). Let c, d ∈ N and let γ, δ ∈ (0, 1). Define
a (c, d)-regular (γ, δ)-expander to be a bipartite graph (L, R, E) with vertex sets L, R such
that all vertices in L have degree c, and all vertices in R have degree d; and the additional
property that every set of vertices L′ ⊂ L, such that |L′| ≤ δ |L|, has at least (1 − γ)c |L′|
neighbors.

We say that a code C is an (c, d, γ, δ)-expander code if it has a parity check graph that is a
(c, d)-regular (γ, δ)-expander.

The following is an important (and straightforward) property of expander codes,

Proposition 2. If C is a (c, d, γ, δ)-expander code and γ < 1
2
, then δ(C) ≥ δ.

Proof. We prove that every non-zero word in C must have weight more than δn. Indeed let
(L, R, E) be a parity check graph of C that is a (c, d)-regular (γ, δ)-expander. The proposition
follows by examining the unique neighbor structure of the graph. Let x ∈ C be a non-zero
codeword, and let L′ ⊆ L be the set of indices in which x is 1. If |L′| ≤ δn then L′ has at
least (1−γ)c |L′| > c

2
|L′| neighbors in R. At least one of these sees only one element of L′, so

the parity of its neighbors is one, violating the corresponding constraint and contradicting
x ∈ C.

2.4 Results

Let R,C be codes. We study the robustness of the following test (described also in the
introduction) for a given word M ∈ Im ⊗ In.

Test T for R⊗ C:

1. Select b ∈ {0, 1} at random.

2. If b = 0 select i ∈ [n] at random, and accept iff the i-th row of M is in R.

3. If b = 1 select j ∈ [m] at random, and accept iff the j-th column of M is in C.

Obviously, T accepts every word of R⊗C with probability 1. We are interested in studying
the robustness of T which we sometimes refer to as ρ instead of ρT .

Recall our notation δ(M) = δR⊗C(M) and our definition of δrow(M) = δR⊗In(M) and
δcol(M) = δIm⊗C(M). In other words δrow(M) equals the average distance of a row of M
from R, and similarly δcol(M) equals the average distance of a column of M from C. The
following proposition is immediate:

Proposition 3. The robustness of T on input M is ρ(M) = δrow(M)+δcol(M)
2

. ut

In order to establish robustness for T , say ρT ≥ α > 0, we must be able to prove for all M

that (δrow(M)+δcol(M))/2
δ(M)

≥ α.

As already mentioned in the introduction, for general codes R and C this is false. Paul
Valiant [13] described a pair of codes R and C and a word M that is very far from R ⊗ C,
yet both δrow(M) and δcol(M) are very small.

Nevertheless, we observe that if C (or R) is somewhat “nice”, then such a bound can be
proven.

Theorem 1 (Tensoring Expander-codes). Let R ⊂ Im be a code of distance at least
δR > 0. Let C ⊂ In be a (c, d, γ, δ)-expander code for some c, d ∈ N, δ > 0, and 0 < γ < 1/6.
Then

ρT ≥
(1

3
− 2γ)δδR

4d
.

Theorem 2 (Tensoring LTCs). Let R ⊂ Im and C ⊂ In be codes of relative distance at
least δR, δC respectively. Furthermore, let C be a (d, δC , ε, ρ)-LTC, with ρ ≤ δC

16
. Then,

ρT ≥ min

{
εδR

2d2
,
δRδC

16

}
.

3 Smooth codes

We prove the two theorems by a common technique, where we show that the tensor product
has nice testing properties if the underlying codes are nice in a certain sense that we refer
to as “smooth”. To motivate this notion, consider a code C ⊆ In given by a (possibly
redundant5) parity check graph B = (L, R, E), where every vertex of R has degree d.

We consider how badly the code is affected if we remove some constraints R0 ⊆ R. Let
C(R0) denote the resulting code. C(R0) clearly contains C, but may now contain codewords
of lesser weight. For instance we may remove all the neighbors of some vertex u ∈ L (for
the vertex u of minimum degree, this only requires us to remove a d/|L| fraction of the
right vertices), and now u is unconstrained, leading to a code of distance one. However if
we delete the uth coordinate of C(R0) one may hope that the resulting code still has large
distance. More generally, we may hope that the negative effect of deleting some subset R0

of the constraints may be recovered by dropping some subset L0 of the coordinate vertices.
If a code exhibits such a property, we call it smooth, defined quantitatively below.

For a set S ⊂ [n] we always denote S = [n] − S. For a code C ⊆ In and L0 ⊆ L = [n] let
C|L0 be the projection of the codewords of C to the coordinates of L0. (Such a code is called
a punctured code. For reasons that will be evident later, it is nicer to highlight the set of
coordinates that are being deleted.)

For a code C defined by a bipartite graph B = (L, R, E), let C(R0) denote the “supercode”
given by the parity check graph B′ = (L = [n], R−R0, E

′ = E ∩ (L× (R−R0))).

5 A parity check graph is redundant if removing a node from the right still results in a parity check graph for the
same code.

Definition 4 (Smooth Code). A code C ⊆ In is (d, α, β, δ)-smooth if it has a parity check
graph B = (L, R, E) where all the right vertices R have degree d, the left vertices have degree
c = d|R|/|L|, and for every set R0 ⊆ R such that |R0| ≤ α|R|, there exists a set L0 ⊆ L,
|L0| ≤ β|L| such that the code C(R0)|L0 has distance at least δ.

We next turn to prove that the test T described in the previous section is robust when one
of the codes being tensored is smooth. More specifically we prove that for any word M , if
ρ(M) = (δrow(M) + δcol(M))/2 is small then δ(M) is proportionally small.

Lemma 1 (Main Lemma). Let R ⊆ Im and C ⊆ In be codes of distance δR and δC.
Let C be (d, α, δC

2
, δC

2
)-smooth, and let M ∈ Im ⊗ In. If ρ(M) ≤ min

{
α δR

2d2 ,
δRδC

8

}
then

δ(M) ≤ 8ρ(M).

Proof. For row i ∈ [n], let ri ∈ R denote the codeword of R closest to the ith row of M . For
column j ∈ [m], let c(j) ∈ C denote the codeword of C closest to the jth column of M . Let
MR denote the n×m matrix whose ith row is ri, and let MC denote the matrix whose jth
column is c(j). Let E = MR −MC .

In what follows the matrices MR, MC and (especially) E will be the central objects of atten-
tion. We refer to E as the error matrix. Note that δ(M, MR) = δrow(M) and δ(M, MC) =
δcol(M) and so

wt(E) = δ(MR, MC) ≤ δ(M, MR) + δ(M, MC) = δrow(M) + δcol(M) = 2ρ(M) . (1)

Our proof strategy is to show that the error matrix E is actually very structured. We do
this in two steps. First we show (Proposition 4) that its columns satisfy most constraints of
the column code. Then we show (Proposition 5) that E contains a large submatrix which is
all zeroes. Finally using this structure of E we show (Proposition 6) that M is close to some
codeword of R ⊗ C. Proposition 4 is the crux of our analysis (while Proposition 5 follows
more or less in a straightforward way from the definition of smoothness, and Proposition 6
is a standard property of tensor product codes).

Proposition 4. Let {i1, . . . , id} be a constraint of C (i.e., every codeword of y ∈ C satisfies
yi1 + . . . + yid = 0). Let ei denote the ith row of E. Suppose wt(eij) < δR/d for every j ∈ [d].
Then ei1 + · · ·+ eid = 0.

Proof. Let ci denote the i-th row of the matrix MC . (Recall that these rows are not necessarily
codewords of any nice code - it is only the columns of MC that are codewords of C). For
every column j, we have (ci1)j + · · ·+ (cid)j = 0 (since the columns of MC are codewords of
C). Thus we conclude that ci1 + · · ·+ cid = 0 as a vector.

Now consider ri1 + · · ·+ rid (recall that ri is the i-th row of MR). Since each one of the ri’s
is a codeword of R, we have ri1 + · · ·+ rid ∈ R. But this implies

ei1+· · ·+eid = (ri1−ci1)+· · ·+(rid−cid) = (ri1+· · ·+rid)−(ci1+· · ·+cid) = (ri1+· · ·+rid)−0 ∈ R

Now we use the fact that the eis have small weight. This implies that wt(ei1 + · · · + eid) ≤∑
j wt(eij) < δR. But R is an error-correcting code of minimum distance δR so the only word

of weight less than δR in it is the zero codeword, yielding ei1 + · · ·+ eid = 0.

Combined with the smoothness of C, the above proposition gives us sufficient structure to
show that E has a large clean submatrix. We argue this below.

Proposition 5. There exist subsets U ⊆ [m] and V ⊆ [n] with |U |/m < δR/2 and |V |/n <
δC/2 such that E(i, j) 6= 0 implies i ∈ V or j ∈ U .

Proof. First, we consider the rows of E that have weight above δR/d. Let

V1 = {i ∈ [n] | wt(ei) ≥ δR/d} .

We use δrow(M) ≤ 2ρ(M) ≤ αδR

d2 and Markov’s inequality to deduce |V1|/n ≤ 2ρ(M)
δR/d

≤ α
d
.

Next, we consider every constraint of C that involves an index in V1. Recall that the code C
is (d, α, δC

2
, δC

2
)-smooth, and let B = ([n], [`], F) be the corresponding parity check graph of

C (with right degree d and left degree c = d`
n
). Viewing V1 as a subset of the left vertices of B,

let W ⊆ [`] be the set of neighbors of V1 in B. First notice that |W | ≤ c |V1| ≤ c ·αn/d = α`.
Next, observe that constraints in [`] −W touch only indices outside V1, i.e., indices j with
w(ej) < δR/d. By Proposition 4, such constraints are satisfied by the rows of E. It is clear
that if an equality holds for row-vectors, it also holds for each column separately. Thus, every
column of the error matrix E, denoted e(j), is contained in the code C(W).

Now we use the smoothness of C to define the sets V and U . Since |W | ≤ α`, there must
be a set V ⊆ [n] of cardinality at most δC

2
n such that the code C(W)|V has distance at

least δC

2
n. Let U be the set of indices corresponding to columns of E that have δC

2
n or more

non-zero elements in the rows outside V . This means that for every j, e(j) is either all zero
on V or has at least δC

2
n non-zero values on V . If also j 6∈ U then e(j) must be zero outside

V . We conclude that if we throw away from the matrix E all the rows corresponding to V
and all the columns corresponding to U , we are left with the zero matrix.

The fraction of rows thrown away is at most |V |
n
≤ δC/2. The fraction of columns thrown

away is at most δcol(M)
δC/2

≤ 4ρ(M)
δC

≤ δR/2, where we used Markov’s inequality and δcol(M) ≤
2ρ(M) ≤ δCδR

4
.

We now use a standard property of tensor products to claim MR (and MC and M) is close
to a codeword of R× C. Recall that M ∈ {0, 1}n×m and that δ(MC , MR) ≤ 2ρ(M).

Proposition 6. Assume there exist sets U ⊆ [m] and V ⊆ [n], |U |/m ≤ δR/2 and |V |/n ≤
δC/2 such that MR(i, j) 6= MC(i, j) implies j ∈ U or i ∈ V . Then δ(M) ≤ 8ρ(M).

Proof. This is a standard proposition. First we note that there exists a matrix N ∈ R ⊗ C
that agrees with MR and MC on V ×U (See [6, Proposition 3]6). Recall also that δ(M, MR) =
δrow(M) ≤ 2ρ(M). So it suffices to show δ(MR, N) ≤ 6ρ(M). We do so in two steps. First we
show that δ(MR, N) ≤ 2ρ(MR). We then show that ρ(MR) ≤ 3ρ(M) concluding the proof.

6 Erase from the matrix MR entries in rows V or columns U . Observe that decoding from erasures first each row
and then each column, must result in the same matrix as decoding first each column and then each row (due to
the distances of the codes).

For the first part we start by noting that MR and N agree on every row in V . This is the case
since both rows are codewords of R which may disagree only on entries from the columns of
U , but the number of such columns is less that δRm/2. Next we claim that for every column
j ∈ [m] the closest codeword of C to the MR(·, j), the jth column of MR, is N(·, j), the
jth column of N . This is true since MR(i, j) 6= N(i, j) implies i ∈ V and so the number of
such i is less than δCn/2. Thus for every j, we have N(·, j) is the (unique) decoding of the
jth column of MR. Averaging over j, we get that δcol(MR) = δ(MR, N). In turn this yields
ρ(MR) ≥ δcol(MR)/2 = δ(MR, N)/2. This yields the first of the two desired inequalities.

Now to bound ρ(MR), note that for any pair of matrices M1 and M2 we have ρ(M1) ≤
ρ(M2)+δ(M1, M2). Indeed it is the case that δrow(M1) ≤ δrow(M2)+δ(M1, M2) and δcol(M1) ≤
δcol(M2) + δ(M1, M2). To see the former, for instance, note that if the ith row of M2 is
within ρi of some codeword of R, then the ith row of M1 is within ρi + δ(M1(i, ·), M2(i, ·))
of the same codeword of R. Averaging over i yields δrow(M1) ≤ δrow(M2) + δ(M1, M2). A
similar argument yields δcol(M1) ≤ δcol(M2) + δ(M1, M2), when combined the two yield
ρ(M1) ≤ ρ(M2) + δ(M1, M2). Applying this inequality to M1 = MR and M2 = M we get
ρ(MR) ≤ ρ(M) + δ(MR, M) ≤ 3ρ(M). This yields the second inequality and thus the proof
of the proposition as well as Lemma 1.

In what follows we will show that expander codes, as well as LTCs are smooth.

4 Expander codes are smooth

Lemma 2. Every (c, d, γ, δ)-expander code C is (d, α, β, δ)-smooth, provided γ < 1
6
, α <

(1
3
− 2γ)δd and β = α

(1
3
−2γ)d

.

Proof. Let B = (L, R, E) be the (c, d) regular (γ, δ)-expanding parity check graph of the
code C. Let R0 ⊆ R of size |R0| ≤ α · |R| be given. We will construct sets L′, R′ satisfying
L′ ⊆ L, |L′| ≤ β|L| and R0 ⊆ R′ ⊆ R such that every subset of L − L′ of size at most δn
expands sufficiently in the induced subgraph on (L−L′)∪ (R−R′). This will suffice to prove
that C(R0)|L′ ⊆ C(R′)|L′ has distance at least δn.

We construct the sets L′ and R′ iteratively. Initially we set L′ = ∅ and R′ = R0. We then
iterate as follows: While there exists a vertex u ∈ L − L′ such that u has more than 1

3
c

neighbors in R′, we add u′ to L′ and add all the neighbors of u′ to R′. We prove below that
this process stops in t ≤ βn steps, and that the induced graph on (L − L′) ∪ (R − R′) is a
(good) expander.

We claim that this process must stop after at most βn steps. To see this, we count the
number of unique neighbors of the set L′ in the graph B. Initially this number is at most
|R0|. At each iteration this number goes up by at most 2

3
c. Assume we have completed some

t ≤ δn iterations (and recall βn < δn). We have |L′| = t. Denote Γunique(L
′) the set of

vertices in R that have exactly one neighbor in L′. So |Γunique(L
′)| ≤ |R0|+ 2

3
ct. Observe that

|Γunique(L
′)| ≥ (1− 2γ)c|L′|, otherwise L′ couldn’t have (1− γ)c |L′| distinct neighbors (here

we use t ≤ δn). Putting these inequalities together we have

(1− 2γ − 2

3
)ct ≤ |Γunique(L

′)| − 2

3
ct ≤ |R0|

and so t ≤ 1
(1
3
−2γ)c

|R0| ≤ α
(1
3
−2γ)c

|R| = α
(1
3
−2γ)d

|L| = βn.

Now we claim that the induced subgraph on (L−L′)∪ (R−R′) is an expander. For this part
consider any set S ⊆ L−L′ with |S| ≤ δn. Let T be the neighborhood of S in the graph B.
Then |T | ≥ (1−γ)c|S|. Now each vertex of S may have upto 1

3
c neighbors in R′. Even allowing

for these neighborhoods to be disjoint, we get |T∩(R−R′)| ≥ (1−γ)c|S|− 1
3
c|S| = (2

3
−γ)c|S|.

Since 2
3
− γ > 1

2
, we have that the induced subgraph on (L−L′)∪ (R−R′) has the property

that every set of size at most δn expands by more than a factor of c/2, thus implying that
C(R′)|L′ is a code of minimum distance at least δn (see Proposition 2). This concludes the
proof.

Proof (Theorem 1). Note that C is a code of distance at least δ (by Proposition 2). By
Lemma 2 it follows that C is (d, α, β, δ)-smooth for any α ≤ (1

3
− 2γ)dδ and β = α

(1
3
−2γ)d

. Set

α = (1
3
− 2γ)dδ/2, and so β = α

(1
3
−2γ)d

= δ/2. The code is certainly (d, α, δ
2
, δ

2
)-smooth.

Fix any M 6∈ R ⊗ C, and let us lower bound ρ(M)
δ(M)

. Set ρ0 = min
{
α δR

2d2 ,
δRδ
8

}
. If ρ(M) ≥ ρ0

then surely ρ(M)
δ(M)

≥ ρ0. Otherwise, we note that the conditions necessary for the application

of Lemma 1 are satisfied, and we get δ(M) ≤ 8ρ(M). All in all, we have proven that

ρT = min
M 6∈R⊗C

ρ(M)

δ(M)
≥ min

{
ρ0,

1

8

}
= ρ0 =

(1
3
− 2γ)δδR

4d

where the last equality follows by plugging the value for α into ρ0 and assuming d ≥ 2.

5 LTCs are smooth

Lemma 3. Every (d, δ, ε, ρ)-LTC code C is (d, ε, δ′, δ′)-smooth, provided ρ ≤ δ′/4 and δ′ ≤
δ/4.

Proof. Let B = (L, R, E) be a parity check graph for C whose right-hand-side corresponds
to the tests of a tester for C (Proposition 1). Fix R0 ⊆ R of size |R0| ≤ ε · |R| and consider
the code C(R0). If all the non-zero words in C(R0) have weight at least δ′ then setting L0 = ∅
satisfies the definition of smoothness and so we have nothing to prove. So we assume C(R0)
has some non-zero words of weight at most δ′. Let {c1, . . . , cm} be the set of all codewords
of C(R0) whose weight is at most 2δ′. Let Si be the set of coordinates where ci is non-zero,
and let L0 = ∪iSi.

If |L0| ≤ δ′n, we claim that C(R0)|L0 has distance at least δ′n as needed. This is true since
every codeword of C(R0) of weight less than 2δ′n is non-zero only on some subset of L0

and so projects to the zero codeword in C(R0)|L0 . On the other hand, codewords of weight
greater than 2δ′n in C(R0) project to words of weight at least δ′n when we delete the δ′n
coordinates corresponding to L0. Thus C(R0)|L0 is a code of weight at least δ′n. Thus it
remains to show below that |L0| ≤ δ′n.

Assume for contradiction that |L0| > δ′n. We show first that C(R0) must have a codeword
of weight between δ′

4
n and 2δ′n. We then show that this violates the local testability of C.

For the first part, note that if one of the ci’s has weight between δ′

2
n and 2δ′n, then we

are already done. So we may assume each ci has weight less than δ′

2
n. Now pick a subset

{c1, . . . , cj} of the low weight codewords so that δ′

2
n ≤ | ∪j

i=1 Si| ≤ δ′n. This is obviously
possible since the cardinality of this union starts at 0, as j varies from 0 to m, ends at
|L0| > δ′n and goes up by at most δ′

2
n in each step. For this setting of j, consider words of

the form
∑j

i=1 xici where xi ∈ {0, 1}. For every choice of xi’s we get a codeword of C(R0)
of weight at most | ∪j

i=1 Si| ≤ δ′n. The expected weight of such a word, when xi ∈ {0, 1}
are chosen uniformly and independently is 1

2
| ∪j

i=1 Si| ≥ δ′

4
n. Thus the maximum weight

codeword in this set has weight between δ′

4
n and δ′n, as desired.

Now let c1 ∈ C(R0) be a codeword of weight between δ′

4
n and 2δ′n. Since 2δ′ < δ/2 we have

that c1 is a word at distance more than δ′n ≥ ρn from C but is rejected only by the tests
in R0 which form at most ε fraction of all parity checks in B, contradicting the assumption
that C is a (d, δ, ε, ρ)-LTC.

Theorem 2 follows from Lemma 3 analogous to the way Theorem 1 followed from Lemma 2.

Proof (Theorem 2). The code C is a (d, δC , ε, ρ)-LTC, with ρ ≤ δC/16. By Lemma 3, it must

be (d, ε, δC

4
, δC

4
)-smooth. Fix any M 6∈ R⊗ C, and let us lower bound ρ(M)

δ(M)
.

Set ρ0 = min{ εδR

2d2 ,
δRδC

16
}. If ρ(M) ≥ ρ0 then surely ρ(M)

δ(M)
≥ ρ0. Otherwise, we apply Lemma 1

and deduce that ρ(M) < ρ0 implies that δ(M) ≤ 6
max{δR,δC/2}ρ(M).

All in all, we have proven that

ρT = min
M 6∈R⊗C

ρ(M)

δ(M)
≥ min

{
ρ0,

1

8

}
= min

{
εδR

2d2
,
δRδ

16

}
.

References

1. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, May 1998.

2. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the
ACM, 45(1):70–122, January 1998.

3. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust PCPs of proximity,
shorter PCPs and applications to coding. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, page (to appear), 2004.

4. Eli Ben-Sasson, Oded Goldriech, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs verifiable in
polylogarithmic time. In Proceedings of the Twelfth Annual IEEE Conference on Computational Complexity,
pages 120–134, June 12–15 2005.

5. E. Ben-Sasson and P. Harsha and S. Raskhodnikova, Some 3CNF properties are hard to test. In SIAM Journal
on Computing, 35(1):1-21.

6. E. Ben-Sasson and M. Sudan. Robust locally testable codes and products of codes. In Proc. RANDOM: In-
ternational Workshop on Randomization and Approximation Techniques in Computer Science, pages 286–297,
2004.

7. Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query complexity. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing, pages 266–275, 2005.

8. Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness efficient low-degree tests and
short PCPs via ε-biased sets. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 612–621, 2003.

9. D. Coppersmith and A. Rudra. On the robust testability of product of codes. ECCC TR05-104, 2005.
10. Irit Dinur. The PCP theorem by gap amplification. In Proceedings of the 38th Annual ACM Symposium on

Theory of Computing, pages 241–250, 2006.
11. Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario Szegedy. Interactive proofs and the

hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.
12. O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear length. In Proc. 43rd IEEE Symp.

on Foundations of Computer Science, pages 13–22, 2002.
13. P. Valiant. The tensor product of two codes is not necessarily robustly testable. In APPROX-RANDOM, pages

472–481, 2005.

