
Robust PCPs of Proximity, Shorter PCPs
and Applications to Coding

Eli Ben-Sasson
∗

Oded Goldreich
†

Prahladh Harsha
‡

Madhu Sudan
§

Salil Vadhan
P

ABSTRACT
We continue the study of the trade-off between the length of
PCPs and their query complexity, establishing the following
main results (which refer to proofs of satisfiability of circuits
of size n):

1. We present PCPs of length exp(Õ(log logn)2) · n that
can be verified by making o(log log n) Boolean queries.

2. For every ε > 0, we present PCPs of length exp(logε n)·
n that can be verified by making a constant number
of Boolean queries.

In both cases, false assertions are rejected with constant
probability (which may be set to be arbitrarily close to 1).
The multiplicative overhead on the length of the proof, intro-
duced by transforming a proof into a probabilistically check-
able one, is just quasi-polylogarithmic in the first case (of

query complexity o(log log n)), and 2(log n)ε

, for any ε > 0,
in the second case (of constant query complexity). In con-

trast, previous results required at least 2
√

log n overhead in

the length, even to get query complexity 2
√

log n.

0Part of the work was done while the first, second, fourth and
fifth authors were fellows at the Radcliffe Institute for Advanced
Study of Harvard University.
∗Radcliffe Institute for Advanced Study, Cambridge, MA 02139.
email: eli@eecs.harvard.edu.
†Department of Computer Science and Applied Mathemat-
ics, Weizmann Institute of Science, Rehovot, ISRAEL. email:
oded.goldreich@weizmann.ac.il.
‡Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139. email:
prahladh@mit.edu. Supported in part by NSF Award CCR-
0312575.
§Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139. email:
madhu@mit.edu. Supported in part by NSF Award CCR-0312575.
PDivision of Engineering and Applied Sciences, Harvard Univer-
sity, Cambridge, MA 02138. email: salil@eecs.harvard.edu.
Supported in part by NSF grant CCR-0133096 and a Sloan Re-
search Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

Our techniques include the introduction of a new variant
of PCPs that we call “Robust PCPs of proximity”. These
new PCPs facilitate proof composition, which is a central
ingredient in construction of PCP systems. (A related no-
tion and its composition properties were discovered indepen-
dently by Dinur and Reingold.) Our main technical contri-
bution is a construction of a “length-efficient” Robust PCP
of proximity. While the new construction uses many of the
standard techniques in PCPs, it does differ from previous
constructions in fundamental ways, and in particular does
not use the “parallelization” step of Arora et. al.. The al-
ternative approach may be of independent interest.

We also obtain analogous quantitative results for locally
testable codes. In addition, we introduce a relaxed notion of
locally decodable codes, and present such codes mapping k
information bits to codewords of length k1+ε, for any ε > 0.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems, Complexity
of Proof Procedures; E.4 [Data]: Coding and Information
Theory

General Terms
Theory

Keywords
Probabilistically Checkable Proofs, PCP, Locally Testable
Codes, Locally Decodable Codes, Property Testing.

1. INTRODUCTION
Probabilistically Checkable Proofs [13, 2, 1] (a.k.a. Holo-

graphic Proofs [3]) are NP witnesses that allow efficient
probabilistic verification based on probing few bits of the
NP witness. The celebrated PCP Theorem [2, 1] asserts
that probing a constant number of bits suffices, and it turned
out that three bits suffice for rejecting false assertions with
probability almost 1/2 (cf. [21, 19]).

Optimizing the query complexity of PCPs has attracted
a lot of attention (see, for example, [5, 4, 21, 19, 27]), but
these works only guarantee that the new NP witness (i.e.,
the PCP) is of length that is upper-bounded by a polynomial
in the length of the original NP witness.1 The length of the

1We stress that in all the above works as well as in the current
work, the new NP witness can be computed in polynomial-time
from the original NP witness.



new NP witness was the focus of [3, 24, 20, 18, 8], and in
this work we continue the latter research direction.

How short can a PCP be? The answer may depend on
the number of bits we are willing to read in order to reject
false assertions (say) with probability at least 1/2. It is
implicit in the work of Polishchuk and Spielman [24] that,
for proofs of satisfiability of circuits of size n, if we are willing
to read n0.01 bits then the length of the new NP witness
may be Õ(n). That is, stretching the NP witness by only a
poly-logarithmic amount, allows to dramatically reduce the
number of bits read (from n to n0.01). More precisely:2

Theorem 1.1. (implicit in [24]) Satisfiability of circuits
of size n can be probabilistically verified by probing an NP
witness of length poly(logn)·n in no(1) bit locations. In fact,
for any value of a parameter m ≤ logn, there is a PCP hav-
ing randomness complexity (1−m−1) log2 n+O(log logn)+

O(m logm) and query complexity O(poly(logn) · n1/m).

Recall that the proof length of a PCP is at most 2r · q,
where r is the randomness complexity and q is the query
complexity of the PCP. Thus, the first part of the above
theorem follows by setting m = log logn/ log log logn in the
second part.

Our results show that the query complexity can be re-
duced dramatically if we are willing to increase the length
of the proof slightly. First, with a quasi-polylogarithmic
stretch, the query complexity can be made double-logarithmic:

Theorem 1.2. Satisfiability of circuits of size n can be
probabilistically verified by probing an NP witness of length
exp(Õ(log log n)2) · n in o(log log n) bit-locations. In fact, it
has a PCP having randomness complexity log2 n+(log logn)2·
poly(log log logn) and query complexity
O(log logn/ log log logn).

Prior to our work, reducing the query complexity below
exp(
√

logn) required stretching the NP witness by at least a
exp(
√

logn) factor. With approximately such a stretch fac-
tor, previous works actually achieved constant query com-
plexity (cf. [18, 8]). Thus, Theorem 1.2 represents a vast
improvement in the query complexity of PCPs that use very
short proofs (i.e., in the range between exp(Õ(log logn)2) ·n
and exp(

√
logn) · n). On the other hand, considering NP

witnesses that allow probabilistic verification by a constant
number of queries, we reduce the best known stretch factor
from exp(log0.5+ε n) (established in [18, 8]) to exp(logε n),
for any ε > 0. That is:

Theorem 1.3. For every constant ε > 0, satisfiability of
circuits of size n can be probabilistically verified by probing
an NP witness of length exp(logε n) ·n in a constant number
of bit-locations. In fact, it has a PCP having randomness
complexity log2 n+ logε n and query complexity O(1/ε).

It may indeed be the case that the trade-off (between length
blow-up factors and query complexity) offered by Theorems 1.1–
1.3 merely reflects our (incomplete) state of knowledge. In
particular, we wonder whether circuit satisfiability can be
probabilistically verified by a PCP having proof-length n ·
poly(logn) and constant query complexity.

2All logarithms in this work are to based 2, but in some places we
choose to emphasize this fact by using the notation log2 rather
than log.

1.1 New notions and main techniques
A natural approach to reducing the query complexity in

Theorem 1.1 is via the “proof composition” paradigm of [2].
However, that PCP, as constructed in [24], does not seem
amenable to composition (when the parameter m is non-
constant). Thus, we begin by giving a new PCP construc-
tion whose parameters match those in Theorem 1.1, but is
suitable for composition. As we will see, we cannot afford
the standard proof composition techniques, and thus also
introduce a new, more efficient composition paradigm.

The initial PCP. Our new proof of Theorem 1.1 modifies
the constructions of Polishchuk and Spielman [24] and Har-
sha and Sudan [20]. The latter construction was already im-

proved in [18, 8] to reduce the length of PCPs to n·2Õ(
√

log n).
Our results go further by re-examining the “low-degree test”
(query-efficient tests that verify if a given function is close
to being a low-degree polynomial) and first observing that
the small-bias sample sets of [8] give an even more signif-
icant savings on the randomness complexity of low-degree
tests than noticed in their work. However, exploiting this
advantage takes a significant effort in modifying known PCP
modules, and redefining the ingredients in “proof composi-
tion”.

For starters, PCP constructions tend to use many (i.e.,
a super-constant number of) functions and need to test if
each is a low-degree polynomial. In prior results, this was
performed efficiently by combining the many different func-
tions on, say m variables, into a single new one on m + 1
variables, where the extra variable provides an index into the
many different old functions. Testing if the new function is
of low-degree, implicitly tests all the old functions. Such
tricks, which involve introducing a few extra variables, turn
out to be too expensive in our context. Furthermore, for
similar reasons, we can not use other “parallelization” tech-
niques [14, 23, 1, 17, 25], which were instrumental to the
proof composition technique of [2]. In turn, this forces us to
introduce a new variant of the proof composition method,
which is much more flexible than the one of [2]. Going back
to the PCP derived in Theorem 1.1, we adapt it for our new
composition method by introducing a “bundling” technique
that offers a randomness efficient alternative to paralleliza-
tion.

Our new “proof composition” method refers to two new
notions: the notion of a PCP of proximity and the notion
of a robust PCP. Our method is related to the method dis-
covered independently by Dinur and Reingold [11]. (There
are significant differences between the two methods; as ex-
plained in Section 1.2.)

PCPs of Proximity. Recall that a standard PCP is
given an explicit input (which is supposedly in some NP
language) as well as access to an oracle that is supposed
to encode a “probabilistically verifiable” NP witness. The
PCP verifier uses oracle queries (which are counted) in or-
der to probabilistically verify whether the input, which is
explicitly given to it, is in the language. In contrast, a PCP
of proximity is given access to two oracles, one representing
an input (supposedly in the language) and the other being a
redundant encoding of an NP-witness (as in a PCP). Indeed,
the verifier may query both the input oracle and the proof
oracle, but its queries to the input oracle are also counted
in its query complexity. As usual we focus on verifiers hav-
ing very low query complexity, certainly smaller than the



length of the input. Needless to say, such a constrained ver-
ifier cannot hope to distinguish inputs in the language from
inputs out of the language, but it is not required to do so.
A verifier for a PCP of proximity is only required to accept
inputs that are in the language and reject inputs that are
far from the language (i.e., far in Hamming distance from
any input in the language). (PCPs of proximity are related
to holographic proofs [3] and to “PCP spot-checkers” [12];
see further discussion in Section 1.2.)

Robust PCPs. To discuss robust PCPs, let us recall
the soundness guarantee of standard (non-adaptive) PCPs.
The corresponding verifier can be thought of as determin-
ing, based on its coin tosses, a sequence of oracle positions
and a predicate such that evaluating this predicate on the
indicated oracle bits always accepts if the input is in the lan-
guage and rejects with high probability otherwise. That is,
in the latter case, we require that the assignment of oracle
bits to the predicate does satisfy the predicate. In a robust
PCP we strengthen the latter requirement. We require that
the said assignment (of oracle bits) not only fails to satisfy
the predicate but rather is far from any assignment that
does satisfy the predicate.

Proof Composition. The key observation is that “proof
composition” works very smoothly when we compose an
outer “robust PCP” with an inner “PCP of proximity”. We
need neither worry about how many queries the outer “ro-
bust PCP” makes nor care about what coding the inner
“PCP of proximity” uses in its proof oracle (much less ap-
ply the same encoding to the outer answers). All that we
should make sure is that the lengths of the objects match
and that the distance parameter in the robustness condi-
tion (of the outer verifier) is at least as big as the distance
parameter in the proximity condition (of the inner verifier).

Indeed, Theorems 1.2 and 1.3 are proved by first extend-
ing Theorem 1.1 to provide a robust PCP of proximity of
similar complexities, and then applying the new “proof com-
position” method. We stress that our contribution is in pro-
viding a proof of Theorem 1.1 that lends itself to a modifica-
tion that satisfies the robustness property, and in establish-
ing the latter property. In particular, the aforementioned
“bundling” is applied in order to establish the robustness
property. Some care is also due when deriving Theorem 1.2
using a non-constant number of “proof compositions”. In
particular, Theorem 1.2 (resp., Theorem 1.3) is derived in
a way that guarantees that the query complexity is linear
rather than exponential in the number of “proof composi-
tions”, where the latter is o(log log n) (resp., 1/ε).

We stress that the flexibility in composing robust PCPs
of proximity plays an important role in our ability to derive
quantitatively stronger results regarding PCPs. We believe
that robust PCPs of proximity may play a similar role in
other quantitative studies of PCPs. We note that the stan-
dard PCP Theorem of [2, 1] can be easily derived using a
much weaker and simpler variant of our basic robust PCP of
proximity, and the said construction seems easier than the
basic PCPs used in the proof composition of [2, 1].

In addition to their role in our “proof composition” method,
PCPs of proximity provide also a good starting point for de-
riving improved locally testable codes (see discussion in Sec-
tion 1.3). The relation of PCPs of proximity to “property
testing” is further discussed in Section 1.4.

1.2 Related work

As mentioned above, the notion of a PCP of proximity
is related to notions that have appeared in the literature.
Firstly, the notion of a PCP of proximity generalizes the
notion of holographic proofs set forward by Babai, Fortnow,
Levin, and Szegedy [3]. In both cases, the verifier is given
oracle access to the input, and we count its probes to the
input in its query complexity. The key issue is that holo-
graphic proofs refer to inputs that are presented in an error-
correcting format (e.g., one aims to verify that a graph that
is represented by an error-correcting encoding of its adja-
cency matrix (or incidence list) is 3-colorable). In contrast,
a PCP of proximity refers to inputs that are presented in
any format but makes assertions only about their proxim-
ity to acceptable inputs (e.g., one is interested in whether
a graph, represented by its adjacency matrix (or incidence
list), is 3-colorable or is far from being 3-colorable).

PCP of proximity are implicit in the low-degree testers
that utilize auxiliary oracles (e.g., an oracle that provides the
polynomial representing the value of the function restricted
to a queried line); cf. [2, 1].

PCPs of proximity are a special case of the “PCP spot-
checkers” defined by Ergün, Kumar and Rubinfeld [12]. On
the other hand, PCPs of proximity extend “property test-
ing” [26, 15] by providing the tester with oracle access to a
proof (on top of the ordinary input-oracle to which it has
access). Thus, the relation of PCPs of proximity to property
testing is analogous to the relation of NP to BPP (or RP).
Put differently, while property testing provides a notion of
approximation for decision procedures, PCP of proximity
provides a notion of approximation for (probabilistic) verifi-
cation procedures. In both cases, approximation means that
inputs in the language should be accepted (when accompa-
nied with suitable proofs) while inputs that are far from the
language should be rejected (no matter what false proof is
provided).

As stated above, our “proof composition” method is re-
lated to the method discovered independently by Dinur and
Reingold [11]. Both methods use the same notion of PCPs
of proximity, but while our method refers to the new notion
of robustness (i.e., to the robustness of the outer verifier)
the method of Dinur and Reingold refers to the number of
(non-Boolean) queries (made by the outer verifier). Indeed,
the method of Dinur and Reingold uses a (new) paralleliza-
tion procedure (which reduces the number of queries by a
constant factor), whereas we avoid parallelization altogether
(but rather use a related “bundling” of queries into a non-
constant number of “bundles” such that robustness is satis-
fied at the bundle-level).3 We stress that we cannot afford
the cost of any known parallelization procedure, because at
the very least these procedures increase the length of the

3The main part of the bundling technique takes place at the level
of analysis, without modifying the proof system at all. Specifi-
cally, we show that the answers read by the verifier can be parti-
tioned into a non-constant number of (a-priori fixed) “bundles” so
that on any no instance, with high probability a constant fraction
of the bundles read should be modified to make the verifier ac-
cept. We stress that the fact that certain sets of queries (namely
those in each bundle) are always made together is a feature that
our particular proof system happens to have (or rather it was
somewhat massaged to have). Once “robust soundness” is estab-
lished at the “bundle level,” we may just modify the proof system
so that the bundles become queries and the answers are placed in
(any) good error-correcting format, which implies robustness at
the bit level.



proof by a factor related to the answer length, which is far
too large in the context of Theorem 1.1 (which in turn serves
as the starting point for all the other results in this work).
We comment that the parallelization procedure of [11] is
combinatorial (albeit inapplicable in our context), whereas
our “bundling” relies on the algebraic structure of our proof
system.

1.3 Applications to coding problems
The flexibility of PCPs of proximity makes them rela-

tively easy to use towards obtaining results regarding lo-
cally testable and decodable codes. In particular, using a
suitable PCP of proximity, we obtain an improvement in
the rate of locally testable codes (improving over the results
of [18, 8]). Loosely speaking, a codeword test (for a code C)
is a randomized oracle machine that is given oracle access
to a string. The tester may query the oracle at a constant
number of bit-locations and is required to (always) accept
every codeword and reject with (relatively) high probability
every string that is “far” from the code. The locally testable
codes of [18, 8] used codewords of length exp(log0.5+ε k)·k in
order to encode k bits of information, for any constant ε > 0.
Here we reduce the length of the codewords to exp(logε k)·k.
That is:

Theorem 1.4. ( loosely stated): For every constant ε >
0, there exists locally testable codes that use codewords of
length exp(logε k)·k in order to encode k bits of information.

We also introduce a relaxed notion of locally decodable codes,
and show how to construct such codes using any PCP of
proximity (and ours in particular). Loosely speaking, a code
is said to be locally decodable if whenever relatively few lo-
cation are corrupted, the decoder is able to recover each
information-bit, with high probability, based on a constant
number of queries to the (corrupted) codeword. This no-
tion was formally defined by Katz and Trevisan [22] and the
best known locally decodable code has codeword of length
that is sub-exponential in the number of information bits.
We relax the definition of locally decodable codes by requir-
ing that, whenever few location are corrupted, the decoder
should be able to recover most of the individual information-
bits (based on few queries) and for the rest of the locations,
the decoder may output a fail symbol (but not the wrong
value). That is, the decoder must still avoid errors (with
high probability), but is allowed to say “don’t know” on a
few bit-locations. We show that this relaxed notion of local
decodability can be supported by codes that have codewords
of length that is almost-linear in the number of information
bits. That is:

Theorem 1.5. (loosely stated): For every ε > 0, there
exists relaxed locally decodable codes that use codewords of
length k1+ε in order to encode k bits of information.

1.4 Relation to Property Testing
Following Ergün et. al. [12], we view PCPs of proximity as

an extension of property testing [26, 15]. Loosely speaking,
a property tester is given oracle access to an input and is
required to distinguish the case in which the input has the
property from the case in which it is far (say in Hamming
distance) from any input having the property. Typically,
the interest is in testers that query their input on few bit-
locations (or at the very least on a sub-linear number of such

locations). In a PCP of proximity such a tester (now called
a verifier) is also given oracle access to an alleged proof.

We comment that PCPs of proximity are provably stronger
than property testers; that is, there are (natural) separations
between property testers and PCPs of proximity (which may
be viewed as the “approximation” versions of BPP and NP).
For further discussions, refer to Section 2.2

1.5 Organization
Theorems 1.2 and 1.3, which are the work’s main results,

are proved by constructing and using a Robust PCP of Prox-
imity that achieves a very good trade-off between random-
ness and query complexity. Thus, this Robust PCP of Prox-
imity is the main building block that underlies our work.
Unfortunately, the construction of a very efficient Robust
PCP of Proximity is quite involved, and is thus deferred to
the full version of the paper [6]. In Section 2 we provide a ba-
sic definitional treatment of PCPs of proximity and robust
PCPS. The basic definitions as well as some observations
and useful transformations are presented in Section 2. Most
importantly, we analyze the natural composition of an outer
robust PCP with an inner PCP of proximity. In Section 3 we
provide an overview of our main construct, a Robust PCP
of Proximity that achieves a very good trade-off between
randomness and query complexity (whose construction is
deferred to the full-version of the paper). This construction
is then composed with itself to derive Theorems 1.2 and 1.3.

2. PCPS AND VARIANTS: DEFINITIONS
AND COMPOSITION

Notation: The size of a circuit is the number of gates.
We will refer to the following languages associated with cir-
cuits: the P-complete language Circuit Value, defined as
CktVal = {(C,w) : C(w) = 1} and the NP-complete Cir-
cuit Satisfiability, defined as CktSAT = {C : ∃wC(w) =
1}.

We will extensively refer to the relative distance between
strings/sequences over some alphabet Σ: For u, v ∈ Σ`, we
denote by ∆(u, v) the fraction of locations on which u and v

differ (i.e., ∆(u, v) , |{i : ui 6= vi}|/`, where u = u1 · · ·u` ∈
Σ` and v = v1 · · · v` ∈ Σ`). We say that u is δ-close to v
(resp., δ-far from v) if ∆(u, v) ≤ δ (resp., ∆(u, v) > δ). The
relative distance of a string to a set of strings is defined in
the natural manner; that is, ∆(u, S) , minv∈S{∆(u, v)}.
Organization of this section: After recalling the stan-
dard definition of PCP (in Section 2.1), we present the def-
initions of PCPs of Proximity and Robust PCPs (in Sec-
tions 2.2 and 2.3, respectively). We then turn to discuss (in
Section 2.4) the composition of a Robust PCP with a PCP
of Proximity.

2.1 Standard PCPs
We begin by recalling the formalism of a PCP verifier.

Throughout this work, we restrict our attention to non-
adaptive verifiers, both for simplicity and because one of
our variants (namely robust PCPs) only makes sense for
nonadaptive verifiers.



Definition 2.1 (PCP verifiers).

• A verifier is a probabilistic polynomial-time algorithm
V that, on an input x of length n, tosses r = r(n)
random coins R and generates a sequence of q = q(n)
queries I = (i1, . . . , iq) and a circuit D : {0, 1}q →
{0, 1} of size at most d(n).

We think of V as representing a probabilistic oracle
machine that queries its oracle π for the positions in
I, receives the q answer bits π|I , (πi1 , . . . , πiq ), and
accepts iff D(π|I) = 1.

• We write (I,D)
R←V (x) to denote the queries and cir-

cuit generated by V on input x and random coin tosses,
and (I,D) = V (x;R) if we wish to specify the coin
tosses R.

• We call r the randomness complexity, q the query com-
plexity, and d the decision complexity of V .

For simplicity in these definitions, we treat the parameters
r, q, and d above (and other parameters below) as functions
of only the input length n. However, at times we may also
allow them to depend on other parameters, which should
be understood as being given to the verifier together with
the input. We now present the standard notion of PCPs,
restricted to perfect completeness for simplicity.

Definition 2.2 (standard PCPs). For a function s :
Z+ → [0, 1], a verifier V is a probabilistically checkable proof
system for a language L with soundness error s if the follow-
ing two conditions hold for every string x:

Completeness: If x ∈ L then there exists π such that V (x)
accepts oracle π with probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D(π|I) = 1] = 1.

Soundness: If x 6∈ L then for every oracle π, the veri-
fier V (x) accepts π with probability strictly less than s.
Formally,

∀π Pr
(I,D)

R←V (x)

[D(π|I) = 1] < s(|x|).

If s is not specified, then it is assumed to be a constant in
(0, 1).

Our main goal in this work is to construct short PCPs
that use very few queries. Recalling that the length of a
(nonadaptive) PCP is upper-bounded by 2r(n) · q(n), we fo-
cus on optimizing the (trade-off between) randomness and
query complexities.

2.2 PCPs of Proximity
We now present a relaxation of PCPs that only verify

that the input is close to an element of the language. The
advantage of this relaxation is that it allows the possibility
that the verifier may read only a small number of bits from
the input. Actually, for greater generality, we will divide the
input into two parts (x, y), giving the verifier x explicitly
and y as an oracle, and we only count the verifier’s queries
to the latter. Thus we consider languages consisting of pairs
of strings, which we refer to as a pair language. One pair
language to keep in mind is the Circuit Value problem:

CktVal = {(C,w) : C(w) = 1}. For a pair language L, we
define L(x) = {y : (x, y) ∈ L}. For example, CktVal(C)
is the set of satisfying assignments to C. It will be useful
below to treat the two oracles to which the verifier has access
as a single oracle, thus for oracles π0 and π1, we define the
concatenated oracle π = π0 ◦ π1 as πb,i = πb

i .

Definition 2.3 (PCPs of proximity (PCPPs)). For
functions s, δ : Z+ → [0, 1], a verifier V is a probabilistically
checkable proof of proximity (PCPP) system for a pair lan-
guage L with proximity parameter δ and soundness error s if
the following two conditions hold for every pair of strings
(x, y):

Completeness: If (x, y) ∈ L, then there exists π such that
V (x) accepts oracle y ◦ π with probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] = 1.

Soundness: If y is δ(|x|)-far from L(x), then for every π,
the verifier V (x) accepts oracle y ◦ π with probability
strictly less than s(|x|). Formally,

∀π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] < s(|x|).

If s and δ are not specified, then both are assumed to be
constants in (0, 1).

Note that the parameters (soundness, randomness, etc.) of
a PCPP are measured as a function of the length of x, the
explicit portion of the input.

In comparing PCPPs and PCPs, one should note two dif-
ferences that have conflicting effects. On one hand, the
soundness criterion of PCPPs is a relaxation of the sound-
ness of PCPs. Whereas, a PCP is required to reject (with
high probability) every input that is not in the language, a
PCPP is only required to reject input pairs (x, y) in which
the second element (i.e., y) is far from being suitable for the
first element (i.e., y is far from L(x)). That is, in a PCPP,
nothing is required in the case that y is close to L(x) and
yet y 6∈ L(x). On the other hand, the query complexity of
a PCPP is measured more stringently, as it accounts also
for the queries to the input-part y (on top of the standard
queries to the proof π). This should be contrasted with a
standard PCP that has free access to all its input, and is
only charged for access to an auxiliary proof. To summa-
rize, PCPPs are required to do less (i.e., their performance
requirements are more relaxed), but they are charged for
more things (i.e., their complexity is evaluated more strin-
gently). Although it may not be a priori clear, the stringent
complexity requirement prevails. That is, PCPPs tend to be
more difficult to construct than PCPs of the same parame-
ters. For example, while Circuit Value has a trivial PCP
(since it is in P), a PCPP for it implies a PCP for Circuit
Satisfiability:

Proposition 2.4. If Circuit Value has a PCPP, then
Circuit Satisfiability has a PCP with identical param-
eters (randomness, query complexity, decision complexity,
and soundness).

An analogous statement holds for any pair language L
and the corresponding projection on first element L1 , {x :
∃y s.t. (x, y) ∈ L}; that is, if L has a PCPP then L1 has a
PCP with identical parameters.



Proof. A PCP π that C is satisfiable can be taken to
be w ◦ π′, where w is a satisfying assignment to C and π′

is a PCPP that (C,w) ∈ CktVal. This proof π can be
verified using the PCPP verifier. The key observation is
that if C 6∈ Circuit Satisfiability then there exists no w
that is 1-close to Circuit Value(C), because the latter set
is empty.

Note that we only obtain a standard PCP for Circuit
Satisfiability, rather than a PCP of proximity. Indeed,
Circuit Satisfiability is not a pair language, so it does
not even fit syntactically into the definition of a PCPP.

Relation to property testing: Actually, the require-
ments from a PCPP for a pair language L refer only to its
performance on the (“gap”) promise problem Π = (ΠY ,ΠN ),
where ΠY = L and ΠN = {(x, y) : y is δ-far from L(x)}.
That is, this PCPP is only required to (always) accept in-
puts in ΠY and reject (with high probability) inputs in ΠN

(whereas nothing is required with respect to inputs not in
ΠY ∪ ΠN ). Such a gap problem corresponds to the notion
of approximation in property testing [26, 15].4 Indeed, prop-
erty testers are equivalent to PCPP verifiers that have no
access to an auxiliary proof π. Thus the relation between
property testing and PCPPs is analogous to the relation be-
tween BPP and NP (or MA). For example, the problem
of testing Bipartiteness can be cast by the pair language
L = {(n,G) : the n-vertex graph G is bipartite}, where the
first (i.e., explicit) input is only used to specify the length of
the second (i.e., non-explicit) input G, to which the tester
has oracle access (measured in its query complexity). We
comment that the formulation of pair languages allows to
capture more general property testing problems where more
information about the property (to be tested) itself is spec-
ified as part of the input (e.g., by a circuit, as in CktVal).

In both property testers and PCPs of proximity, the inter-
est is in testers/verifiers that query their input (and proof
oracle) in only a small (preferably constant, and certainly
sublinear) number of bit-locations. It turns out that PCPPs
are provably stronger than property testers; that is, there are
(natural) separations between property testers and PCPs of
proximity. (Some of the following examples were pointed out
in [12].) In the adjacency matrix model (cf. [15]), Bipartite-
ness has a PCP of proximity in which the verifier makes
only O(1/δ) queries and rejects any graph that is δ-far from
being bipartite with probability at least 2/3. (The proof-
oracle consists of an assignment of vertices to the two parts,
and the verifier queries the assignment of the end-points of
O(1/δ) random edges. This construction also generalizes
to k-colorability, and in fact any generalized graph partition
property (cf. [15]) with an efficient one-sided tester.) In con-
trast, Bogdanov and Trevisan [10] showed that any tester for
Bipartiteness that rejects graphs that are δ-far from being
bipartite must make Ω(δ−3/2) queries. More drastic separa-
tions are known in in the incidence-lists (bounded-degree)
model (of [16]): testing Bipartiteness (resp., 3-colorability)
of n-vertex graphs has query complexity Ω(

√
n) [16] (resp.,

Ω(n) [9]), but again a PCP of proximity will only use O(1/δ)
queries.

Another example comes from the domain of codes. For
any good code (or “even” any code of linear distance), there

4This notion of approximation (of decision problems) should
not be confused with the approximation of (search) optimization
problems, which is also closely related to PCPs [13, 1].

exists a PCP of proximity for the property of being a code-
word that makes a constant number of queries.5 This stands
in contrast to the linear lower-bound on the query-complexity
of codeword testing for some (good) linear codes, proved by
Ben-Sasson et. al. [7].

Needless to say, there may be interesting cases in which
PCPs of proximity do not out-perform property testers.

The relation of PCPP to other works: As discussed in
the introduction (see Section 1.2), notions related to (and
equivalent to) PCPPs have appeared in the literature be-
fore [3, 12]. In particular, holographic proofs are a spe-
cial case of PCPPs (which refer to pair languages L =
{(n, C(x)) : x ∈ L′ ∩ {0, 1}n}, where C is an error-correcting
code and L′ ∈ NP), whereas PCPPs are a special case of
“PCP spot-checkers” (when viewing decision problems as a
special case of search problems). In addition, PCPPs play an
important role also in the work of Dinur and Reingold [11];
again, see Section 1.2. Recall that both our use and their use
of PCPPs is for facilitating “proof composition” (of PCP-
type constructs). Finally, existing PCP constructions (such
as [1]) can be modified to yield PCPPs.

2.3 Robust Soundness
In this section, we present a strengthening of the standard

PCP soundness condition. Instead of asking that the bits
that the verifier reads from the oracle are merely rejected
with high probability, we ask that the bits that the verifier
reads are far from being accepted with high probability. The
main motivation for this notion is that, in conjunction with
PCPPs, it allows for a very simple composition without the
usual costs of “parallelization”.

Definition 2.5 (robust soundness). For functions
s, ρ : Z+ → [0, 1], a PCP verifier V for a language L has
robust-soundness error s with robustness parameter ρ if the
following holds for every x /∈ L: For every oracle π, the
bits read by the verifier V are ρ-close to being accepted with
probability strictly less than s. Formally,

∀π Pr
(I,D)

R←V (x)

[∃a s.t. D(a) = 1 and ∆(a, π|I) ≤ ρ] < s(|x|).

If s and ρ are not specified, then they are assumed to be
constants in (0, 1). PCPPs with robust-soundness are de-
fined analogously, with the π|I being replaced by (y ◦ π)|I .

Note that for PCPs with query complexity q, robust-
soundness with any robustness parameter ρ < 1/q is equiv-
alent to standard PCP soundness. However, there can be
robust PCPs with large query complexity (e.g. q = nΩ(1))
yet constant robustness, and indeed such robust PCPs will
be the main building block for our construction.

Various observations regarding robust PCPs are presented
in Section 2.5 of our technical report [6]. We briefly mention
here the relation of robustness to parallelization; specifically,
when applied to a robust PCP, the simple query-reduction
technique of Fortnow et. al. [14] performs less poorly than
usual (i.e., the resulting soundness is determined by the ro-
bustness parameter rather than by the number of queries).

5Indeed, this is a special case of our extension of the result of
Babai et. al. [3], discussed in Section 1.2. On the other hand,
this result is simpler than the locally testable code mentioned in
Section 1.3, because here the PCP of proximity is not part of the
codeword.



2.4 Composition
As promised, a robust “outer” PCP composes very easily

with an “inner” PCPPs. Loosely speaking, we can compose
such schemes provided that the decision complexity of the
outer verifier matches the input length of the inner verifier,
and soundness holds provided that the robustness parameter
of the outer verifier upper-bounds the proximity parameter
of the inner verifier. Note that composition does not refer to
the query complexity of the outer verifier, which is always
upper-bounded by its decision complexity.

Theorem 2.6 (Composition Theorem). Suppose that
for functions rout, rin, dout, din, qin : N→N, and εout, εin,
ρout, δin : N→ [0, 1], the following hold:

• Language L has a robust PCP verifier Vout with ran-
domness complexity rout, decision complexity dout, robust-
soundness error 1 − εout, and robustness parameter
ρout.

• Circuit Value has a PCPP verifier Vin with ran-
domness complexity rin, query complexity qin, decision
complexity din, proximity parameter δin, and sound-
ness error 1− εin.

• δin(dout(n)) ≤ ρout(n), for every n.

Then, L has a (standard) PCP, denoted Vcomp, with

• randomness complexity rout(n) + rin(dout(n)),

• query complexity qin(dout(n)),

• decision complexity din(dout(n)), and

• soundness error 1− εout(n) · εin(dout(n)).

Furthermore, the computation of Vcomp (i.e. evaluating
(I,D) ← Vcomp(x;R)) can be performed by some universal
algorithm with black-box access to Vout and Vin. On inputs of
length n, this algorithm runs in time nc for some universal
constant c, with one call to Vout on an input of length n and
one call to Vin on an input of length dout(n). In addition:

• If (instead of being a PCP) the verifier Vout is a PCPP
with proximity parameter δout(n) then Vcomp is a PCPP
with proximity parameter δout(n).

• If Vin has robust-soundness with robustness parameter
ρin(n), then Vcomp has robust-soundness with robust-
ness parameter ρin(dout(n)).

Proof. We will use the inner PCPP to verify that the
oracle positions selected by the (robust) outer-verifier are
close to being accepted by the outer-verifier’s decision cir-
cuit. Thus, the new proof will consist of a proof for the
outer verifier as well as proofs for the inner verifier, where
each of the latter corresponds to a possible setting of the
outer verifier’s coin tosses (and is intended to prove that the
bits that should have been read by the outer-verifier sat-
isfy its decision circuit). We will index the positions of the
new (combined) oracle by pairs such that (out, i) denotes
the i’th position in the part of the oracle that represents the
outer-verifier’s proof oracle, and (R, j) denotes the j’th po-
sition in the R’th auxiliary block (which represents the R-th
possible proof oracle (for the inner verifier’s), which in turn
is associated with the outer-verifier’s coins R ∈ {0, 1}rout).

For notational convenience, we drop the input length n from
the notation below; all parameters of Vout are with respect
to length n and all parameters of Vin with respect to length
dout(n). With these conventions, here is the description of
the composed verifier, Vcomp(x):

1. Choose R
R←{0, 1}rout .

2. Run Vout(x;R) to obtain Iout = (i1, . . . , iqout) and
Dout.

3. Run Vin(Dout) (on random coin tosses) to obtain Iin =
((b1, j1), . . . , (bqin , jqin)) and Din.

(Recall that Vin, as a PCPP verifier, expects two or-
acles, an input oracle and a proof oracle, and thus
makes queries of the form (b, j), where b ∈ {0, 1} indi-
cates which oracle it wishes to query.)

4. For each ` = 1, . . . , qin, determine the queries of the
composed verifier:

(a) If b` = 0, set k` = (out, ij`); that is, Vin’s queries
to its input oracle are directed to the correspond-
ing locations in Vout’s proof oracle. Recall that
the j-th bit in Vin’s input oracle is the j-th bit in
the input to Dout, which in turn is the ij-th bit
in the proof oracle of Vout.

(b) If b` = 1, set k` = (R, j`); that is, Vin’s queries
to its R’th possible proof oracle are directed to
the corresponding locations in the auxiliary proof.
Recall that the j-th bit in the proof oracle that
Vin is using to verify the claim referring to the
outer-verifier coins R is the j-th bit in the R-th
block of the auxiliary proof.

5. Output Icomp = (k1, . . . , kqin) and Din.

The claims about Vcomp’s randomness, query, decision,
and computational complexities can be verified by inspec-
tion. Thus we proceed to check completeness and soundness.

Suppose that x ∈ L. Then, by completeness of the outer
verifier, there exists a proof πout making Vout accept with
probability 1. In other words, for every R ∈ {0, 1}rout , if we
set (Iout, Dout) = Vout(x;R), we have Dout(πout|Iout) = 1.
By completeness of the inner verifier, there exists a proof
πR such that Vin(Dout) accepts the oracle πout|Iout ◦πR with
probability 1. If we set π(t, ·) = πt(·) for all t ∈ {out} ∪
{0, 1}rout , then Vcomp accepts π with probability 1.

Suppose that x /∈ L, and let π be any oracle. Define
oracles πt(·) = π(t, ·). By the robust-soundness (of Vout),
with probability greater than εout over the choices of R ∈
{0, 1}rout , if we set (Iout, Dout) = Vout(x;R), then πout|Iout

is ρout-far from satisfying Dout. Fixing such an R, by the
PCPP-soundness of Vin (and δin ≤ ρout), it holds that
Vin(Dout) rejects the oracle πout|Iout ◦ πR (or, actually, any
proof oracle augmenting the input oracle πout|Iout) with prob-
ability greater than εin. Therefore, Vcomp(x) rejects oracle
π with probability at least εout · εin.

The additional items follow by similar arguments. If Vout

is a PCPP verifier, then the input is of the form (x, y), where
y is given via oracle access. In this case, throughout the
proof above we should replace references to the oracle πout

with the oracle y◦πout, and for soundness we should consider
the case that y is δout-far from L(x). If Vin has robust-
soundness, then at the end of the soundness analysis, we



note that not only is πout|Iout ◦πR rejected with probability
greater than εin but rather it is ρin-far from being accepted
by Vin (and hence also by Vcomp).

3. OVERVIEW OF OUR MAIN CONSTRUCT
Throughout this section, n denotes the length of the ex-

plicit input given to the PCPP verifier, which in case of
Circuit Value is defined as the size of the circuit (given
as explicit input). As stated in the introduction, our main
results rely on the following highly efficient robust PCP of
proximity.

Theorem 3.1 (Main Construct). There exists a uni-
versal constant c such for all n,m ∈ Z+, δ, γ > 0 satisfying
n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c, Circuit Value has a
robust PCP of proximity with the following parameters

• randomness
`
1− 1

m

´
logn+O(m logm)+O(log logn)+

O(log(1/δ)),

• decision complexity q = n1/m · poly(logn, 1/δ), which
also upper-bounds the query complexity.6

• perfect completeness, and

• for proximity parameter δ, the verifier has robust-soundness
error γ with robustness parameter (1− γ)δ.

We comment that the condition δ < γ/c merely means
that we present robust PCPs of proximity only for the more
difficult cases (when δ is small).

Proof Overview: Theorem 3.1 is proved by modifying a
construction that establishes Theorem 1.1. We follow [20]
and modify their construction. (An alternative approach
would be to start from [24], but that construction does not
seem amenable to achieving robust soundness.) The con-
struction of [20] may be abstracted as follows: To verify the
satisfiability of a circuit of size n, a verifier expects oracles
Fi : Fm → F , i ∈ {1. . . . , t = poly logn}, where F is a field
and m is a parameter such that Fm ≈ mm · n. The veri-
fier then needs to test that (1) each of the Fi’s is close to a
m-variate polynomial of low degree and (2) the polynomials
satisfy some consistency properties which verify that Fi is

locally consistent with Fi−1.7 (These consistency checks in-
clude tests which depend on the input circuit and verify that
Fi’s actually encode a satisfying assignment to the circuit.)

We work within this framework — namely our verifier will
also try to access oracles for Fi’s and test low-degreeness
and consistency. Our key modification to this construc-
tion is a randomness-reduction in the low-degree test ob-
tained by using the small collection of (small-biased) lines
of [8], while using only the “canonical” representations of
these lines (and avoiding any complication that was intro-
duced towards “proof composition”). In particular, unlike

6In fact, we will upper-bound the query complexity by q =
n1/m ·poly(logn, 1/δ) and show that the verifier’s decision can be

implemented by a circuit of size Õ(q), which can also be bounded

by n1/m · poly(logn, 1/δ) with a slightly larger unspecified poly-
nomial.
7Strictly speaking, the consistency checks are a little more com-
plicated, with the functions really being indexed by two subscripts
and consistency tests being between Fi,j and Fi,j−1, as well as
between Fi,0 and Fi+1,0. However, these differences don’t alter
our task significantly — we ignore them in this section to simplify
our notation.

in [20, 18, 8], we cannot afford to pack the polynomials
F1, . . . ,Ft into a single polynomial (by using an auxiliary
variable that blows-up the proof length by a factor of the
size of the field in use). Instead, we just maintain all these
t polynomials separately and test them separately to obtain
Theorem 1.1. (In the traditional framework of parallelized
PCPs, this would give an unaffordable increase in the num-
ber of (non-Boolean) queries. However, we will later ame-
liorate this loss by a “bundling technique” that will yield
robust-soundness.)

The resulting PCP is converted into a PCP of proxim-
ity by comparing the input-oracle (i.e. supposed satisfying
assignment to the circuit) to the proof-oracle (which is sup-
posed to include an encoding of the said assignment). That
is, we read a random location of the input and the corre-
sponding location of the proof oracle, and test for equal-
ity. Actually, these locations of the proof-oracle must be ac-
cessed via a self-correction mechanism (rather than merely
probing at the desired points of comparison), since they con-
stitute only a small part of the proof oracle (and thus cor-
ruptions there may not be detected). (This technique was
already suggested in [3].)

The most complex and subtle part of the proof of Theo-
rem 3.1 is establishing the robust-soundness property. We
sketch how we do this below, first dealing with the low-
degree test and the consistency tests separately, and then
showing how to reconcile the two “different” fixes.

Low-degree tests of F1, . . . ,Ft: Selecting a random line
` : F → Fm (from the aforementioned sample space), we
can check that (for each i) the restriction of Fi to the line `

(i.e., the function fi(j) , Fi(`(j))) is a low-degree (univari-
ate) polynomial. Each of these tests is individually robust;
that is, if Fi is far from being a low-degree polynomial then
with high probability the restriction of Fi to a random line
` (in the sample space) is far from being a low-degree poly-
nomial. The problem is that the conjunction of the t tests
is not sufficiently robust; that is, if one of the Fi’s is δ-far
from being a low-degree polynomial then it is only guaran-
teed that the sequence of t restrictions (i.e., the sequence of
the fi’s) is (δ/t)-far from being a sequence of t low-degree
(univariate) polynomials. Thus robustness decreases by a
factor of t, which we cannot afford for nonconstant t.h

Our solution is to observe that we can “bundle” the t func-
tions together into a function F : Fm → F t such that if one
of the Fi’s is far from being a low-degree polynomial then
the restriction of F to a random line will be far from being
a bundling of t low-degree univariate polynomials. Specifi-
cally, for every x ∈ Fm, define F(x) , (F1(x), ...,Ft(x)). To
test that F is a bundling of low-degree polynomials, select a
random line ` (as above), and check that f `(j) = F(`(j)) is
a bundling of low-degree univariate polynomials. Thus, we
establish robustness at the bundle level; that is, if one of the
Fi’s is far from being low degree then, with high probability,
one must modify f ` on a constant fraction of values in order
to make the test accept. The point is that this robustness
refers to Hamming distance over the alphabet F t, rather
than alphabet F as before. We can afford this increase in
alphabet size, as we later encode the values of F using an
error-correcting code in order to derive robustness at the bit
level.

We wish to highlight a key point that makes the above
approach work: when we look at the values of F restricted
to a random line, we get the values of the individual Fi’s



restricted to some random line, which is exactly what a low-
degree test of each Fi needs. This fact is not very surprising,
given that we are subjecting all Fi’s to the same test. But
what happens when we need to make two different types of
tests? This question is not academic and does come up in
the consistency tests.

Consistency tests: To bundle the t consistency tests be-
tween Fi and Fi+1 we need to look into the structure of
these tests. We note that for every i, a random test es-
sentially refers to the values of Fi and Fi+1 on (random)
i-th axis-parallel lines. That is, for every i, and a random
x′ = (x1, ..., xi−1) ∈ F i−1 and x′′ = (xi+1, ..., xm) ∈ Fm−i,
we need to check some relation between Fi(x

′, ·, x′′) and
Fi+1(x′, ·, x′′).8 Clearly, querying F as above on the ith
axis-parallel line, we can obtain the relevant values from
F(x′, ·, x′′), but this works only for one specific value of i,
and other values of i will require us to make other queries.
The end result would be that we’ll gain nothing from the
bundling (i.e., from F) over using the individual Fi’s, which
yields a factor of t loss in the robustness.9 Fortunately, a
different bundling works in this case.

Consider F
′

such that F
′
(x) , (F1(x),

GF (2)(S(x)), ...,Ft(S
t−1(x))), for every x ∈ Fm, where S

denotes a (right) cyclic-shift (i.e., S(x1, ..., xm) = (xm, x1 . . .
. . . , xm−1) and Si(x1, ..., xm) = (xm−(i−1), . . . , xm, x1, x2, . . .

. . . xm−i)). Now, if we ask for the value of F
′
on the first and

last axis-parallel lines (i.e., on (·, x2, ..., xm) and (x2, ..., xm, ·) =
S−1(·, x2, ..., xm)), then we get all we need for all the m
tests. Specifically, for every i, the i-th component in the

bundled function F
′
(·, x2, ..., xm) is Fi(S

i−1(·, x2, ..., xm)) =
Fi(xm−i+2, ..., xm, ·, x2, ..., xm−i+1), whereas the (i + 1)-st

component in F
′
(S−1(·, x2, ..., xm)) is Fi+1(Si(S−1(·, x2 . . . ,

. . . , xm))) = Fi+1(xm−i+2, ..., xm, ·, x2, ..., xm−i+1). Thus,
we need only to query two bundles (rather than t), and ro-
bustness only drops by a constant factor.

Reconciling the two bundlings: But what happens
with the low-degree tests that we need to do (which were
“served” nicely by the original bundling F)? Note that we

cannot use both F and F
′
, because this will requires testing

consistency between them, which will introduce new prob-
lems as well as a cost in randomness that we cannot afford.
Fortunately, the new bundling (i.e., F

′
), designed to serve

the axis-parallel line comparisons, can also serve the low-
degree tests. Indeed, the various Fi’s will not be inspected
on the same lines, but this does not matter, because the
property of being a low-degree polynomial is preserved when
“shifted” (under S).

Tightening the gap between robustness and proxim-
ity: The above description suffices for deriving a weaker
version of Theorem 3.1 in which the robustness is only (say)
δ/3 rather than (1−γ)δ for a parameter γ that may be set as
low as 1/poly(logn). Such a weaker result yields weaker ver-
sions of Theorems 1.2 and 1.3 in which the query complexity
is exponentially larger (e.g., for proof-length exp(o(log log n)2)·
n, we would have obtained query complexity exp(o(log log n)) =

8Again, this is an oversimplification, but suffices to convey the
main idea of our solution.
9It turns out that for constant m (e.g., m = 2) this does not pose
a problem. However, a constant m would suffice only for proving
a slightly weaker version of Theorem 1.2 (where o(log logn) is
replaced by log logn). but not for proving Theorem 1.3, which
requires setting m = logε n, for constant ε > 0.

logo(1) n rather than o(log logn)). To obtain the stronger
bound on the robustness parameter, we take a closer look at
the conjunction of the standard PCP test and the proximity
test. The PCP test can be shown to have constant robust-
ness c > 0, whereas the proximity test can be shown to have
robustness δ′ , (1 − γ))δ. When combining the two tests,
we obtain robustness equal to min(αc, (1 − α)δ′), where α
is the relative length of queries used in the PCP test (as a
fraction of the total number of queries). A natural choice,
which yields the weaker result, is to weight the queries (or
replicate the smaller part) so that α = 1/2. (This yields ro-
bustness of approximately min(c, δ′)/2.) In order to obtain
the stronger bound, we assign weights such that α = γ, and
obtain robustness min(γc, (1−γ)δ′) > min(Ω(γ), (1−2γ)δ),
which simplifies to (1 − 2γ)δ for δ < γ/O(1). (The above
description avoids the fact that the PCP test has constant
soundness error, but the soundness error can be decreased
to γ by using sequential repetitions while paying a minor
cost in randomness and while approximately preserving the
robustness. We comment that the proximity test, as is, has
soundness error γ.)

The above completes the overview of the proof of The-
orem 3.1 (and the actual proof is provided in our techical
report [6]). Composing the above theorem with itself O(t)
times yields the following theorem:

Theorem 3.2. For every parameter n, t ∈ N such that
2 ≤ t ≤ 2 log log n

log log log n
there exists a PCP of proximity for

Circuit Value with randomness complexity log2 n+O(t+

(logn)
1
t ) log logn+O((logn)

2
t )+t2 ·poly log log logn, query

complexity O(1), perfect completeness, and soundness error
1−Ω(1/t) with respect to proximity parameter Ω(1/t). Alter-
natively, we can have query complexity O(t) and soundness
error 1/2 maintaining all other parameters the same.

Setting t(n) = 2/ε yields Theorem 1.3 whereas t(n) =
2 log logn/ log log logn yields Theorem 1.2. For obtaining
Theorem 3.2, it was essential to have the tight bound on
the robustness parameter (as a function of the proximity
parameter) in Theorem 3.1. The reason is that when we
compose two robust PCPs of proximity the proximity pa-
rameter of the second must be upper-bounded by the ro-
bustness parameter of the first. Thus, when we compose
many robust PCPs of proximity, the robustness parameter
deteriorates exponentially in the number of composed sys-
tems where the base of the exponent is determined by the
tightness of the robustness. Using γ = 1− (1/t), we obtain
query complexity that is linear in t (rather than exponential
in it).

Acknowledgments
We are grateful to Avi Wigderson for collaborating with us
at early stages of this research and to Irit Dinur for inspiring
discussions at late stages of this research.

4. REFERENCES
[1] Arora, S., Lund, C., Motwani, R., Sudan, M.,

and Szegedy, M. Proof verification and the hardness
of approximation problems. Journal of the ACM 45, 3
(May 1998), 501–555. (Preliminary Version in 33rd
FOCS, 1992).



[2] Arora, S., and Safra, S. Probabilistic checking of
proofs: A new characterization of NP. Journal of the
ACM 45, 1 (Jan. 1998), 70–122. (Preliminary Version
in 33rd FOCS, 1992).

[3] Babai, L., Fortnow, L., Levin, L. A., and
Szegedy, M. Checking computations in
polylogarithmic time. In Proc. 23rd ACM Symp. on
Theory of Computing (New Orleans, Louisiana, 6–8
May 1991), pp. 21–31.

[4] Bellare, M., Goldreich, O., and Sudan, M. Free
bits, PCPs, and nonapproximability—towards tight
results. SIAM Journal of Computing 27, 3 (June
1998), 804–915. (Preliminary Version in 36th FOCS,
1995).

[5] Bellare, M., Goldwasser, S., Lund, C., and
Russell, A. Efficient probabilistically checkable
proofs and applications to approximation. In Proc.
25th ACM Symp. on Theory of Computing (San
Diego, California, 16–18 May 1993), pp. 294–304.

[6] Ben-Sasson, E., Goldreich, O., Harsha, P.,
Sudan, M., and Vadhan, S. Robust PCPs of
proximity, Shorter PCPs and Applications to Coding.
Technical Report (to be posted in ECCC).

[7] Ben-Sasson, E., Harsha, P., and Raskhodnikova,
S. Some 3CNF properties are hard to test. In Proc.
35th ACM Symp. on Theory of Computing (San
Diego, California, 9–11 June 2003), pp. 345–354.

[8] Ben-Sasson, E., Sudan, M., Vadhan, S., and
Wigderson, A. Randomness-efficient low degree tests
and short PCPs via epsilon-biased sets. In Proc. 35th
ACM Symp. on Theory of Computing (San Diego,
California, 9–11 June 2003), pp. 612–621.

[9] Bogdanov, A., Obata, K., and Trevisan, L. A
lower bound for testing 3-colorability in
bounded-degree graphs. In Proc. 43rd IEEE Symp. on
Foundations of Comp. Science (Vancouver, Canada,
16–19 Nov. 2002), pp. 93–102.

[10] Bogdanov, A., and Trevisan, L. Lower bounds for
testing bipartiteness in dense graphs. Tech. Rep.
TR02-064, Electronic Colloquium on Computational
Complexity, 2002.

[11] Dinur, I., and Reingold, O. PCP testers: Towards
a more combinatorial proof of PCP theorem. (In
Preparation), 2003.

[12] Ergün, F., Kumar, R., and Rubinfeld, R. Fast
approximate PCPs. In Proc. 31st ACM Symp. on
Theory of Computing (Atlanta, Georgia, 1–4 May
1999), pp. 41–50.

[13] Feige, U., Goldwasser, S., Lovász, L., Safra, S.,
and Szegedy, M. Interactive proofs and the hardness
of approximating cliques. Journal of the ACM 43, 2
(Mar. 1996), 268–292. (Preliminary version in 32nd
FOCS, 1991).

[14] Fortnow, L., Rompel, J., and Sipser, M. On the
power of multi-prover interactive protocols.
Theoretical Computer Science 134, 2 (Nov. 1994),
545–557. (Preliminary Version in 3rd IEEE Symp. on
Structural Complexity, 1988).

[15] Goldreich, O., Goldwasser, S., and Ron, D.
Property testing and its connection to learning and
approximation. Journal of the ACM 45, 4 (July 1998),
653–750. (Preliminary Version in 37th FOCS, 1996).

[16] Goldreich, O., and Ron, D. Property testing in
bounded degree graphs. Algorithmica 32, 2 (Jan.
2002), 302–343. (Preliminary Version in 29th STOC,
1997).

[17] Goldreich, O., and Safra, S. A combinatorial
consistency lemma with application to proving the
PCP theorem. SIAM Journal of Computing 29, 4
(2000), 1132–1154. (Preliminary Version in
RANDOM, 1997).

[18] Goldreich, O., and Sudan, M. Locally testable
codes and PCPs of almost linear length. In Proc. 43rd
IEEE Symp. on Foundations of Comp. Science
(Vancouver, Canada, 16–19 Nov. 2002), pp. 13–22.
(See ECC Report TR02-050, 2002).

[19] Guruswami, V., Lewin, D., Sudan, M., and
Trevisan, L. A tight characterization of NP with
3-query PCPs. In Proc. 39th IEEE Symp. on
Foundations of Comp. Science (Palo Alto, California,
8–11 Nov. 1998), pp. 18–27.

[20] Harsha, P., and Sudan, M. Small PCPs with low
query complexity. Computational Complexity 9, 3–4
(Dec. 2000), 157–201. (Preliminary Version in 18th
STACS, 2001).

[21] Håstad, J. Some optimal inapproximability results.
Journal of the ACM 48, 4 (July 2001), 798–859.
(Preliminary Version in 29th STOC, 1997).

[22] Katz, J., and Trevisan, L. On the efficiency of
local decoding procedures for error-correcting codes.
In Proc. 32nd ACM Symp. on Theory of Computing
(Portland, Oregon, 21–23 May 2000), pp. 80–86.

[23] Lapidot, D., and Shamir, A. Fully parallelized
multi prover protocols for NEXP-time (extended
abstract). In Proc. 32nd IEEE Symp. on Foundations
of Comp. Science (San Juan, Puerto Rico, 1–4 Oct.
1991), pp. 13–18.

[24] Polishchuk, A., and Spielman, D. A. Nearly-linear
size holographic proofs. In Proc. 26th ACM Symp. on
Theory of Computing (Montréal, Québec, Canada,
23–25 May 1994), pp. 194–203.

[25] Raz, R. A parallel repetition theorem. SIAM Journal
of Computing 27, 3 (June 1998), 763–803.
(Preliminary Version in 27th STOC, 1995).

[26] Rubinfeld, R., and Sudan, M. Robust
characterizations of polynomials with applications to
program testing. SIAM Journal of Computing 25, 2
(Apr. 1996), 252–271. (Preliminary Version in 23rd
STOC, 1991 and 3rd SODA, 1992).

[27] Samorodnitsky, A., and Trevisan, L. A PCP
characterization of NP with optimal amortized query
complexity. In Proc. 32nd ACM Symp. on Theory of
Computing (Portland, Oregon, 21–23 May 2000),
pp. 191–199.


