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On her first day on the job as an editor of a math journal, Alice opens her mailbox to be
overwhelmed by ten submissions claiming to prove the Riemann Hypothesis, each a 100 pages long!
Presumably, most are buggy proofs, but is there an easy way to find the errors? Conventional
wisdom has it that this is an impossible task. However a surprising (even shocking?) result
developed by theoretical computer scientists gives Alice a way out, at least in theory. They have
shown how it is possible to specify a format for writing proofs that makes error-detection extremely
easy. More accurately, they give a probabilistic procedure to verify proofs that only looks at three
bits of a purported proof to verify it, and accepts correct proofs (provided they are in the new
format) while rejecting any purported proof of a false theorem with probability at least half. If
Alice doesn’t like this high probability of accepting incorrect proofs, well, she just has to read three
more bits and the probability of accepting incorrect proofs goes down to a 25%, and so on. The
new format for writing proofs does make the proofs somewhat longer, but not unreasonably so (at
least in a theoretical sense).

So what do theorems and proofs have to do with computer science? It turns out that both
notions, and in particular, the distinction between them, are computational: Proofs are by definition
easy to verify, while theorems are in general hard to prove, where easiness and hardness qualify
the computational effort required to perform the corresponding tasks. The distinction between
the two lies at the heart of the famed “P=NP?” question; and the computational perspective has
been exploited for years in computer science, logic, and optimization. For example, it is possible to
cast theorem-proving as an instance of the Travelling Salesman Problem (TSP) (cf. [1]). Given a
purported theorem statement T and an estimate n on the length of the proof, one can write down
the inter-city distance chart of a hypothetical universe with N cities (where N is only polynomially
larger than n), and a bound B such that the following is true: There exists a tour of the N cities
returning back to the starting point of length at most B, if and only if the theorem T has a proof
of length at most n. Thus fundamental tasks of mathematics reduce to mere combinatorics in this
interpretation. More usefully, the simple combinatorial task of finding optimal TSP tours is seen
to be as hard as proving “general mathematical theorems.

The new probabilistically checkable proofs (PCPs) are based on a transformation that is similar
in spirit, though much more involved technically. They rely on techniques and insights from a
multitude of areas including the theory of error-correcting codes, algebra, Fourier analysis, extremal
combinatorics. The simplest of these transformations uses algebraic ideas employed earlier in the
theory of error-correcting codes, the area of mathematics developed to deal with the problem of
errors that occur when one is communicating information over noisy media. In this transformation,
one views every string (be it the theorem or the proof) as a multivariate polynomial. So a theorem
statement T becomes a polynomial 7; and the search for a proof P becomes a search for a polynomial

*MIT CS & AI Laboratory, 200 Technology Square, NE43-307, Cambridge, MA 02139, USA. Supported in part
by NSF award ITR 0312575.



7; and the consistency relation between 7" and P as required by the logical system is expressed
by a operator R that maps two polynomials in a new one. The goal of proving theorems is thus
rephrased in the following way: Given a polynomial 7, does there exist a polynomial 7w of a pre-
specified degree such that R(7,¢) is the zero polynomial? (To see that such problems can get
quite complex to solve, consider the simple operator R that maps the pair (7,7) to the polynomial
d(z,y) = 7(x,y) — w(z)7(y)w(z + y): Solving such a relation is already quite complex; and gets
even more so as the complexity of R increases.)

The advantage with algebraic interpretations of logical requirements comes from the following
well-known fact: If a polynomial is not identically zero, then it is almost always non-zero. At a
high level, interpreting this theorem in the logical setting suggests that if we propose a proof 7 for
the theorem 7, then the proof is either always valid; or rarely so (since R(7.7) is either identically
zero, or rarely so). Utilizing this theorem requires many technical conditions to enable R(r,7) to
be easily evaluated given access to 7, 7 in appropriate form; and methods to ensure that the format
used to specify the polynomial 7 does not allow the prover to cheat by giving functions that are
not of the specified degree. We wont get into all this, but the interested reader is directed to survey
articles (cf. [2]) for descriptions of the earlier work and to [3, 4] for some of the more recent works.

So what impact does all this have on the life of the editor of the math. journal? Sadly, none so
far. While the methods developed by the theoretical computer scientists are quite ingenious and
correct they have had little influence on the way mathematicians write their theorems and proofs.
Most centrally this is possibly because the role of a proof goes well beyond the task of merely
proving the theorem. Mathematicians look to proofs for providing insight and intuition into the
theorem and use it to develop their own theories. So it is unlikely that these modern formats for
proofs will replace the traditional formats of theorems and proofs.

However, developments in the field of probabilistically checkable proofs have nevertheless had
a resounding impact in computational mathematics. Most directly, they show why many combi-
natorial problems, such as the travelling salesperson problem (TSP), are hard to solve even near
optimally. Recall that the classical theory of NP-completeness showed that finding optimal TSP
tours are hard since they lead to automatic methods for proving theorems. A modern analogous
result shows that finding near-optimal tours lead to nearly-correct proofs in the PCP format, which
in turn suffices to determine if a theorem is true or not. Indirectly, the study of probabilistically
checkable proofs has led to a resurgence of interest in the study of computational aspects of error-
correcting codes; and to some dramatic improvements in the speed and fraction of errors that we
are now able to cope with in adverse settings of errors [5, 6].

Finally, there is one place where one hopes that the fast probabilistic verification of theorems
and proofs may actually be practical: a scenario where theorems and proofs are more automated,
and one doesnt care much for any intuition given by the proof. This is in the area of verifying
correctness of execution of computer programs. Often one would like to audit the execution and
verify that it did indeed take place correctly. In such scenarios a computer executing a program
can easily produce a proof of correct execution, but it would be inordinately long (as long as the
number of steps the program took to execute). Transforming such proofs into their probabilistically
checkable formats would provide an efficient way of auditing. Technical drawbacks, in particular
the increase in the size of the probabilistically checkable proof relative to the size of the size of the
traditional proof, have held back this application. But there has been significant progress on this
front recently [7, 8] and this area continues to be a subject of active investigation.
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Figure 1: Traditional proofs can be transformed into a new format, leading to efficient probabilistic
verification; and new implications for the travelling salesman problem.
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