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ABSTRACT

We present the first explicit construction of Probabilisti-
cally Checkable Proofs (PCPs) and Locally Testable Codes
(LTCs) of fixed constant query complexity which have almost-

linear (= n - 2O(Vl°g")) size. Such objects were recently
shown to exist (nonconstructively) by Goldreich and Su-
dan [17]. Previous explicit constructions required size plHUe

with 1/e queries.

The key to these constructions is a nearly optimal randomness-

efficient version of the low degree test [32]. In a similar way
we give a randomness-efficient version of the BLR linearity
test [13] (which is used, for instance, in locally testing the
Hadamard code).

The derandomizations are obtained through e-biased sets
for vector spaces over finite fields. The analysis of the de-
randomized tests rely on alternative views of e-biased sets
— as generating sets of Cayley expander graphs for the low
degree test, and as defining linear error-correcting codes for
the linearity test.
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1. INTRODUCTION

Low degree testing, the problem of testing the proximity
of a function to a family of low-degree functions has been
a subject of intense examination in the past decade. On
the one hand, this task opens up a wide range of intriguing
mathematical questions. On the other hand, success in de-
signing and analyzing efficient tests has led to great strides
in the design of probabilistically checkable proofs (PCPs)
and more recently, in new families of error-correcting codes
called locally testable codes (LTCs). In this paper we ex-
plore the randomness requirement of such tests and reduce
them significantly. Our results translate to explicit construc-
tions of PCPs and LTCs of almost-linear size. We start with
some background material.

1.1 PCPs

Probabilistically Checkable Proofs (PCPs) are by now a
fundamental object of study in theoretical computer science.
The essence of a PCP system is the PCP verifier — a proba-
bilistic algorithm that is given a claimed theorem statement
as input and is given oracle access to a purported proof of
the theorem. The PCP verifier is allowed to query the proof
oracle for a small number q of bits. If the theorem is valid,
there must exist a proof that is accepted by the verifier with
probability one, while if the claimed theorem is not valid
then no proof should be accepted with probability greater
than, say, 1/2.

Strikingly sharp PCP constructions are known by now
for verifying membership in NP-complete languages. For
example, the optimal PCP theorem of Hastad [19] shows



that there exists a PCP verifier verifying satisfiability of a
given CNF formula (SAT) that queries only 3 of bits of the
proof, while maintaining the property that the size of the
proof is only polynomially longer than a traditional proof
(namely a satisfying assignment). However, the blowup in
the proof size is by a polynomial of huge degree.

Such blow-ups raise the natural question: What is the
smallest penalty in proof size that one has to pay for the
benefits of probabilistic verifiability with a constant number
of queries. This question was first addressed by Babai et
al. [9]. Soon after, Polishchuk and Spielman [30] showed
how to construct PCP verifiers making O(1/¢) queries to a
proof oracle of size just O(n'*€) for SAT (where n denotes
the size of the formula being claimed satisfiable).

The results of Polishchuk and Spielman seem near opti-
mal. Yet a recent result of Goldreich and Sudan [17] sug-
gests something better may be possible. They show that
there exists a verifier for SAT that accesses proofs of size
n-200en) — plte() while querying only a fixed constant
number (19) of bits from the proof. Their verifier is ob-
tained by a nonconstructive argument using the Probabilis-
tic Method. Due to the randomness in the construction of
the verifier, the applicability to actual proof checking is un-
clear. We remedy this situation by derandomizing the main
part of their construction. Formally we show:

THEOREM 1.1. SAT has a PCP verifier that on input of
length n: (i) accesses proof oracles of size n - 2°0(V1°&™ . (i)
makes a constant number of queries into the proof; (iii) ac-
cepts valid proofs with probability one; and (iv) rejects in-
valid theorems with probability at least 1/2.

Above and throughout the paper, O(f) means O(f - (log f)°)
for a fixed but unspecified constant c. We note that while we
roughly maintain the size complexity of [17], our constants
(in the query complexity) are significantly larger.

1.2 Locally testable codes

A code C' : X" — X™ is locally testable (with g queries),
if there is a (probabilistic) testing procedure that on every
vector v € ™, reads ¢ coordinates of v, and rejects it with
probability proportional to its distance from the code (i.e.,
the image of C). That is, elements of the code should always
be accepted, and vectors far away from the code should be
rejected with constant probability.!

Locally testable codes, first defined by Friedl and Su-
dan [15], may be viewed as the combinatorial centerparts of
PCPs. They bear strong intuitive relations to PCPs, with
an evident similarity between the testing procedure and the
verifier in a PCP system. Indeed, it has been a common
belief that such codes lie at the heart of most PCP construc-
tions, though, as pointed out by Goldreich and Sudan [17],
this belief is not too well founded. Nevertheless, existence
of a locally testable code with a given choice of parame-
ters strongly suggests the existence of a PCP with related
parameters, and vice versa. This motivates the study of
locally testable codes.

To focus on the main parameter of interest, let us restrict
ourselves to the case of binary codes, i.e. C : {0,1}" —

!Note that this is a different requirement than the one for
locally decodable codes, which asks that if v € ¥™ is close
to a codeword C(u), then any coordinate of u can be prob-
abilistically recovered reading only ¢ coordinates of v.

{0,1}™. We are interested in minimizing the blocklength
m = m(n). We require that the code has linear (i.e., Q(m))
minimum distance. Under these conditions, classical re-
sults of coding theory show that linear blocklength (i.e.,
m = O(n)) can be achieved, explicitly and efficiently. How-
ever, when we are interested in local testability in addition,
it is an intriguing open problem. No lower bounds prevent
the possibility of achieving linear length m = O(n) with
LTCs of constant query complexity.? The best previously
known explicit construction of locally testable codes (as fol-
low from [30, 17]) have size m = n'**/9@ for a g-query
locally testable code. Goldreich and Sudan [17] proved the
existence of almost-linear sized codes (i.e, with m = n”"(l))
by a probabilistic argument. Specifically, they show that
there exists a constant ¢ and a GF(2)-linear family of LTCs
Cy : {0,1}" — {0,1}™ with m = n - 2°0V°6™)) which can
be tested with ¢ queries. We derandomize their construc-
tion and restore explicitness, while maintaining the size of
the codes.

THEOREM 1.2. There exist a constant q and an explicitly
constructible GF(2)-linear family of LTCs Cy : {0,1}" —
{0,1}™ with m = n - 2°0V1°6™) which can be tested with g
queries (for infinitely many n).

1.3 Derandomized Low Degree Tests

Our constructions of PCPs and locally testable codes come
via a derandomization of the “low degree test”, so we begin
by recalling the low degree testing problem along with the
related linearity testing problem. In both cases, the testing
algorithm is given oracle access to a function f : F™ — F,
and aims to determine whether f has a certain property
(in our case, either linearity or small total degree). The
testing algorithm is a randomized procedure that accesses
this oracle in a few (ideally constant number of) positions,
and then accepts or rejects. We want the tester to accept
every f with the property, and reject every f that is far
(in Hamming distance) from having the property. This is
actually the original setting from which the general area of
Property Testing [32, 16] has evolved.

In both the Blum-Luby-Rubinfeld linearity test [13] and
the original low degree test [32], the testing algorithm chooses
two random points &,y € F™. In the linearity test, it then
tests whether f(Z) + f(¥) = f(Z + ¢). In the low degree
test, it tests whether f(Z) agrees with the univariate poly-
nomial obtained by interpolating f at d + 1 points on the
line {Z¥+ty:t € F}.

Note that these tests use a sample space of size quadratic
in the size of the domain, i.e. one of size [F|*™, due to
choosing two random points. Goldreich and Sudan [17] use
the Probabilistic Method to show that the size of the sam-
ple space can be reduced to nearly linear, namely O(|F|™ -
log |F|), but their proof is nonconstructive. They apply their
idea several times in the paper, and achieve significant im-
provements (albeit nonconstructive) over existing PCPs and
LTCs. At the end, they raise the natural question of de-
randomizing their technique, which would obviously lead to
explicit constructions.

We provide an ezxplicit sample space of nearly linear size
for the low degree and linearity tests. The sample space is

2This is in contrast to locally decodable codes, where there

is a super-linear lower bound of m > n'*%(@ [24] and the
best known upper bounds are exponential in n.



of the following form: as above, we choose & uniformly from
F™ but 7 is chosen from an e-biased set S. Then we apply
the same acceptance criterion as the original test.

Thus, we use a sample space of size |F|™ - |S|, which is
nearly linear in |F|™ if we use the best known explicit con-
structions of e-biased sets. Of course, the challenge is to
show that the test still works correctly, i.e. still rejects func-
tions that are far from being linear (resp., low degree) with
high probability.> This of course relies on particular prop-
erties of e-biased sets, so we turn to discuss those now.

2. EPSILON-BIASED SETS

We now present general background on e-biased sets and
discuss their equivalent formulations in terms of Cayley ex-
pander graphs and linear error-correcting codes, which play
a central role in our analyses. Formal definitions and precise
statements will appear in the full version. While some of the
discussion here generalizes to arbitrary Abelian groups, we
restrict ourselves (for simplicity, and since all our applica-
tions are such) to vector spaces F™ of dimension m over a
finite field F.

We recall basic notation about characters and Fourier rep-
resentations (For more details see e.g. [10, 21]). For F a field
of characteristic p, a character of F'™ is a homomorphism
X : F™ — up, where pp is the (multiplicative) group of com-
plex pth roots of unity. The trivial character maps F™ to
1. The set of characters form a basis for the vector space of
functions mapping F™ to C. Le. every function f: F"™ — C
can be written as > + /x - X where the sum is over all char-

acters x and fx is the Fourier coefficient of f corresponding

to character x. The Fourier coefficient corresponding to x

is defined by f = (f,x) = g Lpcem f(@)x(2). When

F = Z, each character can be written as xo for o € F™,
where xa(z) dof X e (here w is a primitive complex
pth root of unity). In this case we abuse notation and write
fa for fXQ.

A set S C F™ is called e-biased if all nontrivial Fourier
coefficients of the characteristic function of S are bounded
by £|S|/|F™|, in absolute value. That is, for every character
X #1123 ,cs X(y)| <elS|. These sets are interesting when
|S] < |F|™ (as S = F™ is O-biased). A prime example of an
e-biased set is a random set, for which S can be taken to be
extremely small (namely, |S| = O(mlog|F|/e%)). However,
most applications of e-biased sets need explicit construc-
tions, i.e. ones which are deterministic and efficient. Clearly,
for a derandomization application such as ours, choosing the
set at random defeats the whole purpose!

The seminal paper of Naor and Naor [29] defined these
sets, gave the first explicit constructions of such sets of size
poly(m/e) for F = GF(2), and demonstrated the power of
these constructions for several applications. Many other
constructions followed [1, 23, 2, 33, 14, 4], the best of which
have size O(m® - log® |F'| /&) for various triples of constants
a,b,c < 3.

3 Actually, our analysis of the tests give slightly weaker guar-
antees. In the case of linearity testing, our test is only guar-
anteed to reject functions that are far from being affine, so
(after a slight modification) we obtain an affineness test. In
the case of testing for total degree d, the test is only guar-
anteed to reject functions that are far from total degree md,
but we can fix this with a slight augmentation to the test.

Since the introduction of explicit e-biased sets by [29],
the set and diversity of applications of these objects grew
quickly, establishing their fundamental role in theoretical
computer science. The settings where e-biased sets are used
include: the direct derandomization of algorithms such as
fast verification of matrix multiplication and communication
protocols for equality [29]; the construction of almost k-wise
independent random variables, which in turn have many ap-
plications [29, 27]; inapproximability results for quadratic
equation over GF(2) [20]; learning theory [4]; explicit con-
structions of Ramsey graphs [28]; and elementary construc-
tions of Cayley expanders [5, 26].

In this paper we add to this long list by applying e-biased
sets to the derandomization of low degree tests. To ana-
lyze our derandomizations, we rely on two alternative, but
equivalent, viewpoints of e-biased sets, which we describe
below.

2.1 Epsilon-Biased Sets as Expanders

Any set S C F™ naturally gives rise to a Cayley graph
G's whose vertices are the elements of F"*, and whose edges
connect pairs of vectors whose difference is in S. (Here we
assume S is symmetric (S = —S5) so as to yield an undirected
graph).

For a d-regular graph G, the normalized second eigenvalue
of G is defined to be |X2|/d € [0,1], where Az is the second
largest eigenvalue of the adjacency matrix of G in absolute
value. It is well-known that this is a good measure of a
graph’s expansion (smaller second eigenvalue = better ex-
pansion).

The following is implicit in [5, 29].

LEMMA 2.1. For any S C F™, S is e-biased iff the nor-
malized second eigenvalue of Gs is at most .

The derandomized sample spaces used in our tests can be
viewed as selecting a random edge (Z,Z + ¢) in Gs. This
point of view is critical in our analysis of the low degree
test. We will use the standard combinatorial implication
of the second eigenvalue bound on Gg, called the expander
mixing lemma (cf., [7]). This lemma says that between every
two sets of vertices, the fraction of edges between them is
roughly the fraction of edges between them in the complete
graph.

LEMMA 2.2 (EXPANDER MIXING LEMMA). (¢f., [7]) For
G = (V, E) a connected d-regular graph over n vertices with
normalized second eigenvalue A\ and any two sets A, B C
V' of densities a = |A]/|V|, b = |B|/|V|, let e(A,B) be
the number of ordered pairs (u,v),u € A,v € B such that

(u,v) € E. Then %—ab‘ < A\Wab.

In addition to the mixing properties of a Cayley expander,
we will also make crucial use of the algebraic structure of the
graph, namely that applying 2 x 2 F-linear transformations
to the set of edges yields an isomorphic graph and hence
preserves the expansion.

2.2 Epsilon-Biased Sets as Linear Codes

For a field F of characteristic p, any set S C F" defines
a linear code Cs C u;? over the alphabet u, = Z,, by re-
stricting all characters x : F™ — pup, to S. In fact, every
Zp-linear code can be obtained in this way.

It was observed in [29] that the e-bias property of S is
closely related to the error-correcting properties of this lin-



ear code. Specifically, suppose F has characteristic 2. Then
S is e-biased iff every pair of distinct codewords in Cs have
relative Hamming distance (1+¢)/2. For fields of character-
istic > 2, e-bias does not correspond to Hamming distance,
but rather to the (related) following measure of distance. A
code C C ;L;? over the alphabet p, is e-orthogonal if every
pair of distinct codewords z,y € C are nearly orthogonal,

ie. [{z,y)s| < e, where (z,y)s &of ﬁ Y .esT(2)y(z). (We
normalize by |S| so all elements of i are unit vectors, i.e.
[|z||s dof V{(z,xz)s = 1.) By definition, S C F™ is e-biased
iff Cs is e-orthogonal. It is not hard to show that if C is
e-orthogonal then every pair of distinct codewords have dis-
tance at least (1 —€)/2, but for p > 2 the converse is not
necessarily true.

This coding-theoretic point of view will be critical in our
analysis of the derandomized linearity test. In particular,
we will apply the following variants of two standard coding
theory facts to Cs and thereby show that the nearly orthogo-
nal elements of Cg, are essentially as good as the orthogonal
vectors implicitly arising in the analysis of the original BLR
test.

LEMMA 2.3  (e-ORTHOGONALITY LEMMA). For e > 0
let C C /15 be an e-orthogonal code of blocklength |S| over

the alphabet p,. Let u € C° be a vector with ||u||s < 1.
Then,

[Unique Decoding] If |{(u,w)s| > 1—38 for some w € C, then
for any v € C,v # w,

{u,v)s| < £+25

[List Decoding] For any distribution D on C,

ZD“ {v,u)s

vel

< VIIDI? +¢ < VDo +¢

Let us compare the previous lemma to its “standard” cod-
ing theory cousins. Suppose a code has large minimal dis-
tance. The cousin of the Unique Decoding part is the simple
observation that if u is close to a codeword v then it must
be far from any other codeword w. The cousin of the List
Decoding part is the Johnson Bound. This bound says that
only a few codewords can be “somewhat close” to a fixed
word u. Our List Decoding bound says any large set of
codewords in an e-orthogonal code must have small aver-
age inner product with a fixed vector, i.e. most codewords
are far from it (on average). Actually, the standard John-
son Bound for binary codes can be deduced from the List
Decoding part of the e-orthogonality lemma.

3. AFFINENESS TESTING

In this section we show how to test whether a function
f 2y — Zy is close to being affine, where the randomness
needed is only (1 + o(1))mlogp, compared with 2mlogp in
the previous tests.

3.1 The BLR Affineness Test

For Abelian groups G (additive) and H (multipilicative),
an affine function from G to H is a function f such that

Va,y € G, f(x)f(y) = f(z+y)f(0). In the affineness test-
ing problem we are given oracle access to a function f : G —
H, and wish to test whether it is close in Hamming distance

to some affine function. For f,g : G — H two functions,
we define the agreement of f and g as Proeg[f(z) = g(x)].
We are interested in measuring the mazimal agreement of f
with some affine function. Blum, Luby, and Rubinfeld [13]
suggested the following test:

BLR AffTest’, on function f: G — H

1. Select z,y € G uniformly at random.

2. Accept if f(z)f(y) = f(z +y)f(0)

The original test suggested by [13] was only for homomor-
phisms, for which f(0) = 0, but their techniques generalize
to affine functions as well. Indeed, notice that f is affine

iff the function f’ def f71(0) - f is a homomorphism. More-
over the acceptance probability of the previous test on the
two functions is the same. By definition f is affine if and
only if the test accepts for all pairs z,y € G. What is more
surprising is that the acceptance probability of the test is
a good estimate on the maximal agreement of f with an
affine function. This has been shown in [13] by the following
theorem.

THEOREM 3.1. [13] For any finite Abelian groups G, H
and any function f : G — H, if AffTest’ accpets with
probablity > 1 — %5, then f has agreement > 1—9 with some
affine function.

For the special case f : Z," — Z, tighter results are ob-
tained. For the rest of this section we fix G = Z;' and for
ease of analysis associate Z, with the multiplicative group
of complex pth roots of unity pp. The homomorphisms from
Zy," to pp are precisely the characters of Z;" and the affine
functions are the characters and their affine shifts, i.e. the
set of functions {¢ - xa : ( € pp, a0 € Zy'}. Bellare, Cop-
persmith, Hastad, Kiwi, and Sudan [10] studied the case
of p = 2 and showed that both the acceptance probabil-
ity and agreement are naturally expressed using the Fourier
representation of f. In this case (p = 2) the agreement
of f with the homomorphism X is (1 + fa)/2 and hence
the agreement with the affine function —xq is (1 — fa)/2.
That is, the maximal agreement of f with an affine function
equals (1+max|fa|)/2. As to the acceptance probability,
they proved the following theorem.

THEOREM 3.2. [10] For f : Z5" — {—1,1}, if AffTest’
accepts with probability %‘5 then |fo| > & for some a €

Z3'. In particular, f has agreement > 1T+6
function.

with some affine

The extension of the analysis of [10] to p > 2 was first
considered by Kiwi [25] and later on by Hastad and Wigder-
son [21]. Although it is easy to express both the acceptance
probability and the agreement in terms of Fourier coeffi-
cients, now these coefficients might be complex numbers and
their interpretation is not as straightforward. Following [21],
we add the following assumption on f in order to make the
analysis simpler.

DEFINITION 3.3. f : Zy' — pp is said to preserve scalar
multiplication if for all x € Z",a € {1,...,p—1}, f(a-x) =

(f())*.

Notice that for p = 2 every function f : Z3" — {—1, 1} pre-
serves scalar multiplication. Even when p > 2, in some ap-
plications of affineness testing (e.g. PCPs) this assumption



can be effectively achieved by folding [11, 19]): >From every
class of p — 1 inputs of the type {z,2z,...,(p — 1)z}, pick
(arbitrarily) a unique representative, and access it whenever
the value of f is needed on any of these inputs (answering
in a way that preserves scalar multiplication).

It is not hard to see that all Fourier coefficients of a
multiplication preserving f are real numbers. Furthermore,
the agreerlnent of such an f with the homomorphism x, is

% +(1- ;) - fo. Similarly, for any ¢ € tp, ¢ # 1, the agree-

ment of f with the affine function (- x, is %(1 —fa). That is,
when fo is positive, f has some non-trivial agreement with
Xo- When f, is negative, f has non-trivial agreement with
each of the non-zero affine shifts of f. Hastad and Wigder-
son present the following straightforward generalization of
theorem 3.2 to arbitrary prime p.

THEOREM 3.4. [21] For f : Z" — pp, if AffTest! ac-
cepts with probability % +(1— %) -9, then |fa| > 0§ for some
a € Zy'. In particular, f has agreement > %(1 + 9) with
some affine function.

3.2 Derandomized Affineness Testing

The original testing procedure of [13] uses a sample space
of size |G|>. We wish to reduce the size of this space (i.e.
reduce the amount of randomness required). Notice that we
cannot hope to decrease it to less than |G|/3, because doing
so would mean our test does not even query the function
on all values. Goldreich and Sudan [17] observed that non-
constructively, one can reduce the size of the sample space
to |G| -log |H|. We now present explicit sets which are
almost as small as the random construction used by [17] for
G =17, and H = pip.

We propose the following derandomized affineness test,
that depends on the choice of a set S C Z;" (which we will
take to be e-biased).

Derandomized AﬁTesté:

1. Choose x € Z;" uniformly at random, and y € S uni-
formly at random.

2. As in the BLR Test, accept if f(x)f(y) = f(z+1v)f(0)

It is easy to see that if f is affine then for any S, the
acceptance probability of the derandomized test is 1. The
main theorem of this section shows that the converse also
holds: if the test accepts with high probability, then f is
close to affine.

THEOREM 3.5
Let S C Zy" be an c-biased set for e > 0, and f : Zy' — pp
be an arbitrary function that preserves scalar multiplication.
Assume AﬂTesté accepts with probability % +(1- %) - 9.
Then

1. There exists o € Zy' such that |fal > /62 —¢. Hence
f has agreement > %(1 + V02 —¢) with some affine
function.

2. If 6 = 1 — v then there exists o € Zy' such that
|fa| > /1 —+/2v — €. Hence [ has agreement > %(1—&—
1 —+/20¢) with some affine function.

(DERANDOMIZED LINEARITY ANALYSIS).

Since S = Zj;" is 0-biased, for this S part 1 of our theorem
gives Theorems 3.4, 3.2 as special cases. The best construc-
tions of e-biased sets are of polynomial size in logp, m and
€. Thus we have reduced the randomness required by the
linearity test from 2m log p bits, down to m log p+-O(log 2 +
loglogp) = (1 +0(1)) - mlogp (the last equality is for fixed
p and &, while m grows to infinity).

3.3 Analysis

Previous analysis of the linearity test for Z;" proceed by
representing both the agreement of f with affine functions
and the acceptance probability of the test on f, in terms
of the Fourier coefficients of f [10, 21]. We follow a similar
path, with a slight twist in the end. As we will shortly see,
the acceptance probability of the derandomized test using
S, will be expressed in terms of the projection of f|s on the
e-orthogonal code Cs (here f|s is the restriction of f to the
input set S). Applying the e-orthogonality lemma 2.3 will
complete the proof. Now for the details (more of which will
appear in the full version).

We assume wlog f(0) = 1, because the probability of
acceptance of our test on the function f’ ECI (fo)—*
is equal to the acceptance probability on f. Thus, our
test checks whether f(z)f(y)(f(z +y))~' = 1 for random
x € Zy',y € S. We express the acceptance probability of
the derandomized test on f in terms of Fourier coefficients

of f.

LEMMA 3.6. The acceptance probability of AﬁTest’; on
f preserving scalar multiplication is

. LS S o | = 5 2 Pi) = xa()

yeSs
a=1 OLEZgl QEZL"

Where g*(x) = (g(z))* and (h,g)s = |S|7' 3, cs h(¥)g(y).

Although the second expression above is cleaner, we use
the first to complete our analysis.

Proof (of Theorem 3.5): The acceptance probability of
AffTest is % +(1- %)5. So by lemma 3.6 and the triangle
inequality there must be some a # 0 such that

S< D fa- (' xa)s

Q€

Fix such an a and employ the coding-theory ideas and
notation of section 2.2. To stress this point of view and to
simplify notation, let u be the restriction of f® to the set
S, i.e. wu is an element of H5~ Similarly, for a € Z," let vq
be the restriction of x& = X(a.a) t0 S (va is an element of
Cs C u;). Using this notation we get (f*, x%)s = (u,va)s
Recall that Cs = {va : a € Z}'} is an e-orthogonal code over
the alphabet p,. View {fg}agzgl as a distribution on Cg.

Indeed, f:a is real because f respects scalar multiplication,
and > f2 =1 by Parseval’s identity, so this distribution is
well defined.

In order to prove part 1, apply the list decoding part

of lemma 2.3 obtaining § < 1/max f§ +¢e. We conclude

max |fo| > V02 —e. As noted earlier, f respecting scalar
multiplication has agreement at least %(1 + max | fa|) with
some affine function, completing the proof of part 1. As to



part 2 of the theorem, assume § = 1 —~. By averaging there
must exist some « such that (u,va)s > 1 —~. So by the
unique decoding part of lemma 2.3, (u,vg)s < € + /2 for
all 3 € Zy,", 3 # o. Using Parseval’s identity again we get
S pra Ji-(u,0)s <e+y/2y, 50 1—y < (1—9) fa+e+y/27.
Moving factors from the right to left hand side completes the

proof of the theorem. |

4. LOW DEGREE TESTING

We start by recalling the low degree testing problem. Let
F be a finite field of size q. Our aim is to test whether
f : F™ — F is close to an m-variate polynomial of total
degree d. For Z,y € F™ the line crossing & in direction ¥ is
the set

Cog C{F+t-§:t€F) (1)

Let L be the set of all possible lines in F'™. Each line ¢
is represented in roughly |F|? ways above, so we fix some
canonical parameterization of each line, i.e. a pair (Z,%)
such that £ = £z 7. Let F[t]? be the set of univariate polyno-
mials of degree at most d polynomials over IF (¢ is the formal
variable).

In the version of the low degree testing problem we con-
sider, we are given oracle access to a pair of functions (f, g),
where f: F™ — F and g : L. — F[t]%. The function g sends
each line ¢ to a degree d univariate polynomial called its line
polynomial, which we interpret as a function from ¢ — F
(under the canonical parameterization of £). Thus for a line
¢ and a point Z € £, g(£)(2) is well defined.* We say f agrees
with the line polynomial g(¢) on Z if f(2) = g(¢)(2).

If f is a degree d polynomial then one can set g(¢) = f|e,
so f agrees with all line polynomials on all points in F".
This gives rise to the low degree test originally suggested by
Rubinfeld and Sudan [32].

RS Low Degree Test LDTest’9, on function f : F™ —
F and line oracle g : L — F[t]%:

1. Select &,y € F™ uniformly and independently at ran-
dom.

2. Accept if f agrees with the line polynomial g(¢z z) on
Z, i.e. f(&) = g(lzy)(Z). Otherwise reject.

We stress that when g(¢z g) is queried, it is done by speci-
fying the canonical representation of the line £ = ¢z 7 (rather
than the points Z, ¥ themselves). We also note that the origi-
nal low degree testing problem involves just a single oracle f,
in which case g(¢) can be simulated by interpolating f at d+1
points on £. But the formulation above, in terms of a sep-
arate line oracle, is important in PCP constructions (where
one “large” query is preferable to several “small” queries).

For any function f : F™ — [F, there is an optimal line
oracle g = fi. which maximizes the acceptance probability
of the test. This line oracle assigns to each line £ the degree d
polynomial that has the maximal agreement with f on £. If
there are several polynomials that have maximal agreement
with f then the first one (according to a fixed ordering of
F[t]?) is selected.

It is not hard to show that f has degree d if and only if the
test accepts on all pairs Z,§ € F™ (when the optimal line

4Specifically, let Z, ¥ give the canonical parameterization of
¢, let t' be such that Z = Z+t' - 7, let p(t) = g(£) € F[t]*
and set g(¢)(2) = p(t').

oracle is used). The fundamental low degree testing theorem
of [32, 6, 3] shows that the rejection probability of the low
degree test is a good measure of the Hamming distance of f
from the set of low degree polynomials.

4.1 Derandomized Low Degree Test

The low degree test described above has a sample space
of size |[F™|?, which is quadratic in the domain size. We
derandomize this test by a method similar to that done for
the linearity test:

Derandomized Low Degree Test, LDTesté’g:

1. Select ¥ € F™, ¢ € S uniformly and independently at
random.

2. As in the RS Test, accept if f agrees with the line
polynomial g(¢z 7) at Z (otherwise reject).

We analyze the test when S is A-biased, and our main
theorem is the following. In all theorems presented in this
section, we do not try to optimize constants.

THEOREM 4.1 (Low DEGREE ANALYSIS). There exists
a universal constant o > 0 such that the following holds. Let
d < |F|/3,m < «fF|/log|F|,S C F™ be a A-biased set for
A < a/(mlog|F|), and § < . If Pr[LDTestl? accepts] >
1—90, then f has distance at most 40 from some polynomial
of total degree md.

Using the best constructions of e-biased sets, we get a sam-
ple space of nearly linear size, namely |F|™ - polylog(|F|™).

We note that the above Theorem only concludes that f is
close to a polynomial of total degree at most md. However,
the following augmentation to the above test can be used to
verify that f is actually close to degree d: With probability
1/2, instead of executing the above test, we choose Z at
random in F™ and accept if f agrees with the line polynomial
g(l5z) at . (Note that here the direction is completely
uniform, instead of being restricted to S.)

In the full version of the paper, we show that if (f, g) pass
the augmented test with high probability, then f is actually
close to a polynomial of total degree d. The parameters
are identical to those in Theorem 4.1, except that we also
require md < «o|F|.

4.2 Overview of the Analysis

Our analysis of the derandomized low-degree test can be
thought of as a blend of the original low-degree test analysis
of [32, 6, 3, 30] and the iterative decoding methods that are
used for expander/low-density parity-check (LDPC) codes.
To draw this analogy, consider a bipartite graph where the
left-hand vertices correspond to points in F™ and the right-
hand vertices correspond to lines in F™. Thus, a degree
d polynomial f : F" — F can be thought of as labelling
the left-hand vertices with field elements. f also induces a
labelling of the right-hand vertices by univariate polynomials
of degree d — vertex £ gets labelled by f|,. These right-hand
vertices can be thought of as giving “consistency” checks on
the left-hand vertices, analogous to the parity-check vertices
in an LDPC code.

Suppose we have a pair of functions f : F™ — F and
g : L — F[t]* that passes the (original) low degree test with
high probability. The original low-degree test analysis in [32,
3] considers a “corrected” function f’:F™ — F obtained by



setting the value at each left vertex & to be the majority vote
of the value specified by the labelling of its neighbors (i.e.
maj{g(¢)(Z)}, where the majority is over all lines ¢ cross-
ing Z). This is analogous to one round of error-correction
in the iterative decoding of LDPC codes. Remarkably, with
the standard low degree test, it is possible to show that one
round of this decoding eliminates all errors (i.e. inconsistent
edges), and f’ passes the low degree test with probability 1
(and hence is a degree d polynomial). Since it can also be
shown that f’ is close to f, this completes the analysis. How
is it possible that one round of decoding eliminates all the
errors? This relies on two main ideas. First, this point-line
bipartite graph is extremely well-connected. Every two left-
hand vertices have a common neighbor. Thus, one round
of error-correction can conceivably yield global consistency.
Second, consistency among the lines is forced by their in-
tersections. In particular, lines can be grouped into planes,
and the consistency among them can be deduced from the
bivariate low-degree analyses of [6, 30].

The analysis of our derandomized test begins the same
way as for the standard low degree test: we perform major-
ity voting to obtain a corrected function f’. However, our
graph is not as well-connected by far, since we only con-
sider lines whose direction is in our A-biased set. It is much
sparser than the full point-line graph, and in particular has
nonconstant diameter. So we cannot hope for one round
of error-correction to eliminate all errors. However, we can
gain hope from the fact that decoding for LDPC codes is
done on sparse graphs, and it is known that several rounds
of majority voting successfully corrects all errors if the un-
derlying graph is a sufficiently good expander (cf., [34]). In
our case, the point-line bipartite graph is very related to
the Cayley expander generated by the A-biased set. (Recall
Section 2.1.) Using this relationship (and the compatibility
of our restricted graph structure with the reduction to the
bivariate low-degree analysis), we are able to show that after
one round of majority voting, the fraction of errors decreases
dramatically. That is, we obtain a function f’ that passes
the low-degree test with much higher probability (roughly
speaking). We repeat this process several times, and ulti-
mately obtain a function F' passing the low-degree test with
probability 1 (and hence is a low-degree polynomial). It is
easy to show that distance accumulated at each step de-
creases geometrically, so I is indeed close f, as desired.

4.3 -biased Lines are good Samplers

As mentioned above, a key component in our analysis is
the relationship between lines used in our test and the expan-
sion properties of the Cayley graph Gg. Specifically, we use
this connection to show that a random line ¢z y with direc-
tion from ¢ € S (as used in our LDTestg’g) has good sam-
pling properties. Specifically, suppose there is some small
“bad set” B C F™ of density u. (Think of B as correspond-
ing to points at which the low-degree test fails.) Then we
will show that a random line ¢ is unlikely to have large in-
tersection with B.

We start by showing that the probability that any two
particular points £+a-§ and £+b-7 on ¢ land in B is roughly
u? (even though these points are far from independent). The
reason is that any two such points are like a random edge
in the expander Gg, and thus the Expander Mixing Lemma
2.2 applies. When a = 0 and b = 1, the points are in fact a
random edge in Gs. For other values of a,b, the algebraic

structure of Gg allows us to still relate them to a random
edge (they are a random edge in the isomorphic expander
G(p—a)s)- Thus, we have:

LEMMA 4.2. Suppose S CF™ is A-biased. Then, for any
B C F™ of density p = |B|/[F™|, and any two distinct
a,beF,

Pr [(@+af € B)A(Z+bje B)] <pu®+ A

TeF™m,gjes

Once we have analyzed pairs, the sampling property of an
entire line follows by a variance computation:

LEMMA 4.3  (SAMPLING LEMMA). Suppose S C F™ is
A-biased. Then, for any B C F™ of density u = |B|/|F™|

and any € > 0,
¢z N B 1 It
> _ < (= A £
2 I R AN R A=

r
ZEF™,jes

In the case S = F™, this lemma is a standard consequence
of pairwise independence of random lines and Chebychev’s
inequality. In such a case the error probability is bounded
by MF\%’ The above lemma says that using a possibly much
smaller \-biased set for S, we obtain almost the same bound.
Note that the tail probability will be substantially smaller
than g (if 1/|F| and X are small relative to €%); this will
correspond to the error-reduction in one round of correction
in our analysis of the low-degree test.

Proor. For each a € F, let X, be an indicator random
variable for ¥ + ay € B. We are interested in bounding
the deviation of X = Za X, from its expectation. We can
compute the variance as

Var[X] = Var[X.]+ Y Cov[Xa, X4,
a€clF a#belF

where Cov|[X,, X3] = E[XoXp] — E[X.] E[X3].

Z is picked uniformly at random, so for each i, E[X.] = 4,
and since X, is {0, 1}-valued we get Var[X,] = u— p* < p.
For the covariance, we use the previous lemma 4.2 to obtain
E[XoXs] < 1 + A, so Cov[Xa, Xp] < A

Thus,

Var(X] < [F| - p+ [F|* - A

By Chebychev’s Inequality we conclude

Var[X] 1 o
Pr[| X — ulF Fl< —— < | = - =
(X - > efF] < ER < (4 0) -

The proof is complete. [

4.4 One Round of Correction

The following lemma states what happens in one round
of majority-vote error correction. Repeatedly applying this
lemma (as in the outline above) yields Theorem 4.1. This
lemma states that if S is A-biased then one can remove a
small set of “bad” directions from S and obtain a function
that is both close to f and passes the new test (using the
smaller set of good directions) with significantly higher ac-
ceptance probability.



LEMMA 4.4. There exists a universal constant ¢ > 0 such
that the following holds. Suppose d < |F|/3, S is a A-
biased subset of F™, and T C S s.t. |T| > |S|/2. If
Pr[LDTesté’fL accepts] > 1— 4, then for any v,8 > 0 such
that v§' = & and &' < 1/60, there exists f' : F™ — F and
T' C T with the properties:

1. |T'| > (1 = y)|T|. (T' remains large).
2. A(f', f) <26. (f is close to f).

3. Plr[LDTestgw//f[L accepts] > 1 —c(A + ﬁ) 8 ((f L)
passes the new test with much higher probability than

PrOOF SKETCH. A full proof will appear in the full ver-
sion. Let T” be the set of directions ¢ € T such that for at
least 1 — ¢’ fraction of ¥ € F™, f agrees with the line poly-
nomial going through # in direction g. From the fact that
the acceptance probability is at least 1 —~¢’, it follows that
|T'| > |T|-(1—7). For each ¥ € F™, we define the corrected
function f'(Z) to be the most common value of f.(¢z7)(Z)
over ¥ € T’ (breaking ties arbitrarily). It is not hard to
see that A(f’,f) < 26. In order to prove the third part

of the theorem we notice that Plr[LDTest;/,’fL accepts] >
Pracpm g zer [fL(lz,7)(Z) = fL(¢z,z)(Z)]. Thus we only need
to show that on two random lines ¢z ; and ¢z > with direc-
tions ¥, Z € S and common origin #, the polynomials given
by fL agree at their origin with overwhelming probability
(higher than the original acceptance probability). As in [3],
we prove this by a reduction to bivariate low degree testing.
We use Lemma 4.3 to argue that with overwhelming prob-
ability, f agrees with fr({s ) and fL({z,z) at most points
W on the lines ¢z 7 and ¢z >) and at most points & on the
affine plane {Z + ay + b2 : a,b € F}. This enables us to then
apply the bivariate testing theorem of [6, 30] to deduce that
the two line polynomials agree at the origin of this plane,
ie. fu(ls7)(@) = fL(lz2)(Z), as needed. |

S. LOCALLY TESTABLE CODES

Given the work in [17], it is relatively straightforward to
go from a randomness efficient low-degree test to a locally
testable code. Here we give a concise statement of the final
results and an outline of the neccessary steps leading them,
leaving the details for the final version.

Our starting point is the standard Reed-Muller code. Thus,
we view a k-bit message M as describing the coefficients of a
degree d, m-variate polynomial Py over a finite field F of size
q. We code M by giving the evaluation of Py on all points
in F™. For the right setting of parameters, we get constant
rate and linear distance (where distance is measured over
the alphabet F). The next step in the encoding is to give
the restriction of Pas to all lines. This was formally defined
as a code by Friedl and Sudan [15]. (In [17], it is called the
FS-code and we will use their terminology). It is convenient
to think of the alphabet of this code as (d + 1)-tuples from
F, i.e. each symbol gives the restriction of Py to a line in
F™ (described by a degree d univariate polynomial). The
low degree test analysis of Rubinfeld and Sudan [32] implies
that this code is locally testable with query complexity 2,
where the test we perform is the natural one, i.e. select a
random point in F” and two random lines going through
it, and test if the two polynomials agree on the intersecting

point. There are two problems with this code. The first is
the quadratic blowup in the encoding size, which translates
to inverse quadratic rate (at best). The reason is that there
are |F|>™ lines. The second problem is the large alphabet
size. We deal with these problems one at a time.

Goldreich and Sudan showed that the truncation of the
FS-code to a random set of (1 + o(1))|F™| lines suffices for
the low degree test to succeed (i.e. reject any word far from
a low degree polynomial with constant probabiliy), resulting
in nearly linear size locally testable codes [17]. Plugging in
our explicit constructions from the previous section gives
explicit codes, summarized by the following lemma.

LEMMA 5.1. For infinitely many k, there exists a poly-
nomial time constructible family of Fe-linear locally testable
code mapping k bits to n = k - polylog k symbols over an
alphabet of size 2018 F) - Fyrthermore the codes have dis-
tance Q(n).

Proor. For simplicity we assume all numbers are integers
and use the following parameters for the truncated FS-code.
Pick d,m such that d = m™ and |F| = ¢ = c-dm = O(m™ ")
for a large constant c. By the Schwartz-Zippel lemma, the
relative distance of this code (over the alphabet F) is 1 —
d/q =1—1/m which is linear (at least).

A degree d, m-variate polynomial is defined by (
'm+d)

m

m”:d) co-

efficients, so the message length is k = logq - (
me*m7 whereas the blocklength in the standard Reed—
Muller encoding is ¢ = mmitm < k-m?>™. Noticing m <
V/log k for sufficiently large m we see that ¢™ < k- 20(VIog k)

We actually need to encode the function on all lines used in
our low degree test. Our low degree tests use A-biased spaces
where A = O(1/(mloggq). The best constructions of such
spaces have size poly(m,logg, 1/A\) = poly(m,loggq). So the
number of lines used by our test is ¢™ ™! - poly(m,log q) (we
save a factor of ¢ because each line passes through ¢ points)
and this equals our block length n. Thus,

> logq-

n = ¢" " poly(m,logq)

m2+0(1)

IN

m

= k- polylog k,

as desired. The size of the alphabet is (d+1) log g = 20(VIogF)
as claimed. And our low-degree test analysis implies that
this code is locally testable with 2 queries. Finally, if we
select F = GF(2"), then each linear constraint over F trans-
lates to a system of linear constraints over GF(2), so we get
GF(2)-linear codes. This completes the proof of the lemma.

The remaining problem in the above construction is the
large alphabet size ((d + 1)logq). This same problem was
faced by [17] and they showed how to solve it in two dif-
ferent ways. For the sake of completeness, we survey their
techniques.

Look at a specific test of our testing procedure. We query
(the coefficients of) two degree d univariate polynomials
Py, Py, and check for some predetermined values e,e’ € F
if the following equation holds

Pi(e) = Py(€)) (2)

The first solution given by [17] is to encode {P;(e;)}e;er by
a locally decodable code over the alphabet F. This results



in a reduction of the query complexity, because the value
P;(e) can be decoded by reading only a constant number
of values in the locally decodable code (instead of reading
d 4+ 1 symbols). This reduction in query complexity comes
at a dear price in the blocklength, because the only locally
decodable codes we know of are very inefficient in terms of
their rate.

The second (and better) solution offered by [17] uses PCPs.

For each possible test we wish to perform, our code gives a
PCP proof of Eq. (2). In other words, our code is the trun-
cated FS code, appended by PCP proofs of the statements
in Eq. (2) for all possible tests our randomness-efficient test
performs. Now, instead of performing the “line vs. line”
low degree test, we test the PCP proof of the correspond-
ing statement Eq. (2). The query complexity of this test
is constant, and the blowup to the code size is not too
large, because we only need to encode statements of size
2(d 4+ 1)log g < m, and hence even a polynomial size PCP
can be tolerated. The main problem is to show that ap-
pending the PCPs results in a code and does not reduce the
distance of the truncated FS-code. This problem was once
again solved by [17], so plugging in our explicit constructions
we get the following theorem. (A proof can be reconstructed
using [17] and details will be given in the final version).

THEOREM 5.2. For infinitely many k, there exists a
polynomial-time constructible family of linear locally testable

codes mapping k bits ton =k - 90WIogk) pivs  Purthermore
the codes have distance Q(n).

6. SHORT PCPS

In this section we sketch the short PCPs derived from the
efficient low degree test of section 4. We assume the reader
has some familiarity with PCP constructions (see [35] for
introduction and pointers) and rely heavily on the construc-
tions given in [18].

The PCP construction is built from an outer and inner
verifier. The randomness used by the outer verifier dictates
to a large extent the total length of the proof. It is this
verifier that we make efficient and so focus on it.

Let ¢ be a 3-CNF of length n. In the standard PCP con-
struction, a (randomized, poly-time, outer) verifier V' wishes
to check whether ¢ is satisfiable, while reading only a small
number of symbols from the proof 7 provided by a prover
P.? V assumes P knows a satisfying assignment A € {0,1}",
and views A as a function A : H™ — {0,1} where H is a
subest of a small finite field F (|[H| = h < |F| and A™ = n).
V requests from P the low degree extension of A to the
whole domain F™ where |[F™| = n'*°(Y) This extension is
the function f : F™ — F and is viewed by V (and us) as an
encoding of the assignment A. V checks that (i) f is indeed
a low degree polynomial and (i) f|gm satisfies ¢. (Actu-
ally, the verifier chooses one of these two tests to perform at
random, to save on random bits.)

Our new verifier performs part (%) via the randomness effi-
cient low degree test of section 4. The number of random bits
required by this test is (1 + o(1))mlog [F| = (1+ o(1)) logn,
compared with 2mlog |F| &~ 2logn required by the original
low degree test.

S5For clarity of exposition, we assume the constraints V ver-
ifies are precisely the clauses of ¢. The real verifier we use
checks more complicated algebraic local constraints, derived
from the De-Bruin Graph Coloring problem of [30].

As for part (ii), let C be a clause of ¢ that depends on
the assignment to the three variables given by the triple
A(50), AWS), A(yS) (where <, y<,yS € H™). The stan-
dard verifier (e.g. the verifier of [18]) selects a random
point z € F™ and queries 7 for f|s, the restriction of f
to a low degree surface s that runs through the four points
WS,y y$, ). Since f is assumed to be low degree and s
has low degree, then f|; is also a low degree polynomial.
Given the description of a low degree polynomial (that is
supposed to be f|s), V can check if the constraint C' is sat-
isfied (because the surface passes through all inputs to C).

The problem with this standard verification process is the
price we pay in randomness: selecting a constraint C' costs
(1+o0(1))logn bits and selecting a random z € F™ costs an
additional (1 4+ o(1))logn bits, summing up to more than
2logn bits.

In order to save in randomness we delve deeper into the
efficient PCP constructions of [18] and show that the set
of surfaces defined only by the points A(yY), A(ys), A(yS)
(without the additional randomness of z!) is random enough
for our purposes. Namely, a random point on such a ran-
dom surface is with high probability uniformly distributed
over F™. Using this observation, we show that both tests
performed by V' can be done with a randomness pricetag of
(14 0(1)) logn bits. Composing this with standard efficient
inner verifiers yields the short PCP. Details of the proofs are
deferred to the full version.

We state our main theorems using the standard defini-
tions of Multi-Prover Interactive proof systems (MIPs) and
Probabilistically Checkable Proofs (PCPs). Namely, we use
the notation L € MIP. 4[p,r,a] to say the language L has
a p-prover one round proof system with randomness r, an-
swer size a, soundness s and completeness c¢. Similarly L €
PCP;[r, q] means L has PCP proofs with perfect complete-
ness, soundness s, randomness r and query complexity gq.

The construction sketched above yields the following.

THEOREM 6.1 (RANDOMNESS-EFFICIENT MIPS).
There exists v > 0 and functions r(n) = logn +
O(ylognloglogn) and a(n) = 2°0V1°8™)  guch that
SAT is contained in MIP1 1_[3,7,a.

Composing this with standard inner verifiers (as in [6, 3]),
we obtain:

THEOREM 6.2  (SHORT PCPS). There exist constants 3
1, ¢ < 00, and a function r(n) = logn + O(y/log n loglogn)
such that SAT € PCP1 g[r,q]. In particular the proof oracles
have size 27V = . 200V1980) o instances of length n.
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