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A t-error-correcting code over a g-ary alphabet Fy is a set C' C Fy such that for any received
vector r € [Fj there is at most one vector ¢ € C' that lies within a Hamming distance of ¢ from
r. The minimum distance of the code C' is the minimum Hamming distance between any pair of
distinct vectors c¢q,co € C. In his seminal work introducing these concepts, Hamming pointed out
that a code of minimum distance 2¢ + 1 is a t-error-correcting code. It also pointed out the obvious
fact that such a code is not a t’-error-correcting code for any ¢’ > t. We conclude that a code can
correct half as many errors as its distance and no more.

The mathematical correctness of the above statements are indisputable, yet the interpretation
is quite debatable. If a message encoded with a t-error-correcting code ends up getting corrupted
in ' > t places, the decoder may simply throw it hands up in the air and cite the above paragraph.
Or, in an alternate notion of decoding, called list decoding, proposed in the late 1950s by Elias [10]
and Wozencraft [43], the decoder could try to output a list of codewords within distance ¢’ of
the received vector. If ¢ is not much larger than ¢ and the errors are caused by a probabilistic
(non-malicious) channel, then most likely this list would have only one element — the transmitted
codeword. Even if the errors are caused by a malicious jammer, the list cannot contain too many
codewords provided ¢’ is not too much larger than ¢. Thus, in either case, the receiver is in a better
position to recover the transmitted codeword under the model of list decoding.

List decoding was initiated mainly as a mathematical tool that allowed for a better understand-
ing of some of the classical parameters of interest in information and coding theory. Elias [10] used
this notion to get a better handle on the error-exponent in the strong forms of Shannon’s coding
theorem. The notion also plays a dominant role in the Elias-Bassalygo [34, 4] upper bound on the
rate of a code as a function of its relative distance.

Through the decades the notion has continued to be investigated in a combinatorial context;
and more recently has seen a spurt of algorithmic results. The paper being reflected on [23] was
motivated by a gap between the combinatorial understanding of Reed-Solomon codes, and the
known algorithmic performance. Below we summarize the combinatorial state of knowledge, and
describe the main result of [23], and also use the opportunity to survey some of the rich body of
algorithmic results on list decoding that have emerged in the recent past. We also muse upon some
useful asymptotic perspectives that eased the way for some of this progress, and reflect on some
possibilities for future work.
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1 Combinatorics of list decoding

We start by defining the notion of the list decoding radius of an (infinite family of) codes. This
notion is adapted from a definition in [20], who term it the “polynomial list decoding radius”.

Definition 1 A family of codes C has a list decoding radius L : Z* — Z% if there ewists a
polynomial p(-) such that for every code C € C of block length n, and every received vector r, it is
that case that there are at most p(n) codewords in C that have Hamming distance at most L(n)
from r. We say that the code has a relative list decoding radius ¢(n) if it has list decoding radius

L(n) =n-L(n).

The primary thrust of the combinatorial study is the relationship between ¢(n) and the more
classical parameters d(n), the relative distance of a code, and R(n), the rate of a code. (A family of
codes has rate R(n) (relative distance d(n)) if every member of C of block length n has information
length at least n - R(n) (minimum distance at least nd(n)).)

For a “well-designed” code C of relative distance §(n), one should expect the list decoding
radius ¢(n) to be at most d(n). And from the fact that a code can correct half as many errors as
its distance it follows that a family of codes C of relative distance d(n) has relative list decoding
radius £(n) > 0(n)/2. The real question here is where in between 0/2 and 0 does the list decoding
radius actually lie in general. The classical Johnson bound (or at least, its proof) shows that
¢(n) > 1 —4/1—0(n) which turns out to be better than §/2 for all choices of §. This bound
motivates one of the principal algorithmic challenges associated with list decoding: For a code
of relative distance §(n), give a polynomial time algorithm to find a list of all codewords within
a relative distance of (1 — y/1 —4d(n)) from a given received word r. This is the question that
motivated the work [23] and was answered positively therein. Before describing the algorithmic
results, we wrap up the section with a summary of the combinatorial state of knowledge.

The inequality ¢(n) > 1 — /1 — §(n) appears to be the best possible lower bound one can
establish on the relative list decoding radius of a code as a function of its distance.! It is easy
to prove the existence of non-linear codes which match this bound. The question of whether the
bound is the best one can prove for linear codes remains open, though significant progress has been
made towards resolving it in [25, 20, 18].

JFrom the point of usage, it is more useful to compare the rate of a code with its list decoding
radius. This question has been investigated over the years by [6, 7, 45, 11, 20]. It follows from
the converse to Shannon’s coding theorem that a g-ary code of relative list decoding radius £(n)
has rate at most R(n) ~ 1 — Hy(¢(n)). The above mentioned works show that there exist codes
approaching this bound. The associated algorithmic challenge, of constructing such codes explicitly
and finding decoding algorithms for them remains wide open.

2 List decoding algorithms

Despite the obvious utility of list decoding algorithms, few results were obtained till the eighties.
The first efficient list decoding algorithms, due to Dumer [9] and Sidelnikov [36] corrected a number
of errors that were of the form ¢(n) = (3 +0(1))d(n) for some families of Reed-Solomon codes. This

!This applies to bounds that apply for all codes, regardless of their alphabet size. For small alphabets, eg. for
binary codes, a better bound can be proven. Since our primary focus is Reed-Solomon codes, we do not elaborate on
the improved bound on list decoding radius that takes into account the alphabet size.



problem was introduced to the computer science literature by Goldreich and Levin [14] who gave a
highly efficient randomized list decoding algorithm for Hadamard codes, when the received vector
was given implicitly. This work led to some extensions by Goldreich, Rubinfeld, and Sudan [16].
Yet no efficient list decoding algorithms were found for codes of decent rate (constant, or even
slowly vanishing rate such as R(n) = n~1*¢ for some ¢ > 0).

The first list decoding algorithm correcting ad(n) errors for o > % for codes of constant rate
was due to Sudan [38], who gave such an algorithm for Reed-Solomon codes. The algorithm was
subsequently extended to algebraic-geometric codes by Shokrollahi and Wasserman [35]. Yet these
results did not decode up to the best known combinatorial bounds on list decoding radius; in fact,
they did not correct more than 6(n)/2 errors for any code of rate greater than 1/3. The obvious gap
between the combinatorial bound (¢(n) > 1 — /1 —d(n)) and the algorithmic results motivated
the work [23], where this gap was bridged for Reed-Solomon codes and algebraic-geometric codes.
Specifically, the following theorem was proven for the class of Reed-Solomon codes.

Theorem 2 ([23]) There exists an algorithm that, given a received vector r and a description of
a q-ary Reed-Solomon code of dimension (k + 1) and block length n, finds a list of all codewords
within a distance of n(1 — \/k/n) from the received vector. The running time of the algorithm is
bounded by a polynomial in n and q.

Below we give a brief overview of the algorithm and in particular, describe some of the history
behind this algorithm.

2.1 Decoding Reed-Solomon Codes

It might help to recall the definition of Reed-Solomon codes. Let [F, denote a field of size ¢ and let
Ffl [z] denote the vector space of polynomial of degree at most k over ;. Recall that the Generalized
Reed Solomon code of dimension (k + 1), is specified by distinct x1,...,2, € F, and consists of
the evaluations of all polynomials p of degree at most k at the points z1,...,x,. More formally,
letting x = (z1,...,xy,) and letting p(x) denote (p(x1),...,p(zy,)), we get that the associated code
RSk x is given by

RSy kx = {p(x)|p € Fy[a]}.

Viewed from this perspective (as opposed to the dual perspective, where the codewords of the
Reed Solomon codes are coefficients of polynomials), the Reed Solomon decoding problem is really
a “curve-fitting” problem: Given n-dimensional vectors x and y, find all polynomial p € IF’; [x] such
that A(p(x),y) < e, for some error parameter e. (Here and later, A(-,-) denotes the Hamming
distance.) We now give a brief summary of the algorithmic ideas that led to the algorithm in [23].
This chain of ideas includes the Welch-Berlekamp algorithm [42, 5], an algorithm for a restricted
decoding problem due to Ar et al. [1], and the list decoding algorithm of Sudan [38].

Traditional algorithms, starting with those of Peterson [32] attempt to ”explain” y as a function
of x. This part becomes explicit in the work of Welch & Berlekamp [42, 5] (see, in particular, the
expositions in [13] or [37, Appendix A]) where y is interpolated as a rational function of x, and this
leads to the efficient decoding. (Specifically a rational function a(z)/b(z) can be computed such
that for every i € {1,...,n}, we have a(x;) = y; * b(x;).)

Rational functions, however, are limited in their ability to extract the message from data with
large amounts of error. In particular they fail to work when the data has exactly two explanations
— i.e., there are two polynomials p; and ps such that for exactly half the points y; = p1(z;) and for



the other half y; = pa(x;). In such a case it is still possible to find an algebraic explanation of the
points {(z;.y;)}_;: we simply have that the polynomial Q(z,y) = (y — p1(z)) - (y — p2(z)) is zero
on every given (z;,y;). Furthermore the polynomial Q(z,y) can be found by simple interpolation
(which amounts to solving a linear system), and the candidate polynomials pj(z) and pe(x) are
the roots of the polynomial Q(x,y). (Notice that the factoring will find two polynomials p; and py
and, if w? # 1, the true candidate is p; iff it satisfies po = wp;.) This was the problem considered
by Ar et al. [1] and the solution above is the one given by them.

The next step in this chain of ideas, due to Sudan [38], is the realization that the algorithm
above already solves the Reed-Solomon list decoding problem for a non-trivial choice of parameters
(rate vs. list decoding radius). In particular, a simple counting argument shows that there exists a
non-zero polynomial Q(z,y) of degree /n each in z and y that is zero on any set of n points. Now,
if a subset of more than (k+1)+/n these points satisfy y; = p(x;), then y—p(z) is a factor of Q(z,y).
Thus finding such a bivariate polynomials ) and factoring it, gives a small list of polynomials that
includes all the candidates for output of the list decoding algorithm. By picking the degree of )
very carefully, one can improve its performance significantly to at least n — v/2kn errors (see [39)]
for a more complete analysis of the performance of this algorithm).

The interesting aspect of the above algorithm is that it takes some very elementary algebraic
concepts, such as unique factorization, Bezout’s theorem, and interpolation, and makes algorithmic
use of these concepts in developing a decoding algorithm for an algebraic code. This may also
be a good point to mention some of the significant advances made in the complexity of factoring
multivariate polynomials that were made in the 1980’s. These algorithms, discovered independently
by Grigoriev [17], Kaltofen [26], and Lenstra [28], form the technical foundations of the decoding
algorithm above. Modulo these algorithms, the decoding algorithm and its proof rely only on
elementary algebraic concepts. Exploiting slightly more sophisticated concepts from commutative
algebra, leads to even stronger decoding results that we describe next.

The algorithm of Guruswami and Sudan [23] is best motivated by the following weighted curve
fitting question: Suppose in addition to vectors x and y, one is also given a vector of positive
integers w where w; determines the “weight” or confidence associated with a given point (x;,y;).
Specifically we would like to find all polynomials p such that Z”p(m):yi w; > W (for as small a W
as possible). How can one interpret the weights in the algebraic setting? A natural way at this
stage is to find a “fit” for all the data points that corresponds to the weights: Specifically, find a
polynomial Q(x,y) that “passes” through the point (z;,y;) at least w; times. The notion of a curve
passing through a point multiple times is a well-studied one. Such points are called singularities.
Over fields of characteristic zero, these are algebraically characterized by the fact that the partial
derivatives of the curve (all such, up to the (r — 1)th derivatives, if the point must be visited by the
curve 7 times), vanish at the point. The relevant component of this observation is that insisting
that a curve pass through a point r times is placing (T;rl) linear constraints on the coefficients. This
fact remains true over finite fields, though the partial derivatives don’t yield these linear constraints
any more. Formalizing this algorithm carefully and optimizing the degree of Q) appropriately, gives
the following lemma:

Lemma 3 ([23]) Given vectors x,y € FI, and w € (Z1)", a list of all polynomials p € F%[x]
satisfying Zilp(xi)zyi w; > L\/k o wi(w; + l)J can be found in time polynomial in n,) ., w;,
provided all pairs (x;,y;) are distinct.

The surprising element in the above lemma is that the performance is not invariant to scaling



of the w;’s — and the requirement on the amount of agreement decreases as one scales the weights
up. This holds even if all the weights are equal, in which case the problem being solved is just
the Reed-Solomon list decoding problem in a disguised form. In particular, by setting the weights
appropriately large gives the algorithm claimed in Theorem 2. Thus we have a better unweighted
decoding algorithm, that uses the weighted version as an intermediate step! Of course, it is also
possible to state what the algorithm achieves for a general set of weights. For this part, we will just
assume that the weight vector is an arbitrary vector of non-negative reals, and get the following:

Theorem 4 ([23, 24]) Given vectors x,y € Fy, a weight vector w € Ry, and a real number

e >0, a list of all polynomials p € F’; [x] satisfying Zﬂp(xi):yi w; > \/k:(a + >0 w?) can be found

in time polynomial in n and %, provided the pairs (x;,y;) are all distinct.

This result summarizes the state of knowledge for list decoding of Reed Solomon codes, subject
to the restriction that the decoding algorithm runs in polynomial time. However this criterion,
that the decoding algorithm runs in polynomial time, is a very loose one. The practical nature of
the problem deserves a closer look at the components involved and efficient strategies to implement
these components. This problem has been considered in the literature, with significant success. In
particular, it is now known how to implement the interpolation step in O(n?) time, when the output
list size is a constant [31, 33]. Similar running times are also known for the root finding problem
(which suffices for the second step in the algorithms above) [3, 12, 29, 31, 33, 44]. Together these
algorithms lead to the possibility that a good implementation of list decoding may actually even
be able to compete with the classical Berlekamp-Massey decoding algorithm in terms of efficiency.
A practical implementation of such an algorithm in C++, due to Rasmus Refslund Nielsen, is
available from from his homepage (http://www.student.dtu.dk/ p938546/index.html).

The paper [23] also presents a generalization of the weighted decoding algorithm to the case of
algebraic-geometric codes. Using it as an intermediate step with a suitable choice of weights, one
gets an algorithm that decodes algebraic-geometric codes beyond half the minimum distance for
every value of rate. In fact, as noted in [27], a careful choice of weights enables decoding up to the
combinatorial bound on list decoding radius.

2.2 Other algorithmic results

A rich body of algorithmic results concerning list decoding have appeared following the publication
of [23]. We have already mentioned the works that addressed the question of more efficient imple-
mentations of the list decoding algorithms for Reed-Solomon and algebraic-geometric codes from
[23]. Goldreich, Ron, and Sudan [15] considered the question of list decoding a number-theoretic
code called the Chinese Remainder code (henceforth, CRT code). Here, the messages are identified
with integers m in the range 0 < m < K and a message m is encoded as: m — (m (mod p1),...,m
(mod py,)) where p; < pa < --- < p, are n relatively prime integers. When K = p; - p2- - pi,
the Chinese Remainder Theorem implies that the code thus defined has distance (n — k 4+ 1). The
combinatorial bounds then indicate that such a code can be list decoded with small lists up to
about n — vkn errors. Goldreich et al. [15] initiated the study of list decoding CRT codes and

this was continued in Boneh [8]. However, these algorithms corrected only about n — Q(, /knﬁ%)

errors and therefore their performance was poor when the p;’s had widely different magnitudes.
Subsequently, in [22], it was realized that algebraic and number-theoretic codes can be unified
under the umbrella of ideal-based codes. Loosely speaking, the messages of an ideal-based code are



all elements of small “size” in a “nice” commutative ring, and a message is encoded by the sequence
of its residues modulo a set of pairwise coprime ideals of the ring. Moreover, [22] also showed that
the idea behind the list decoding scheme from [23] can be generalized to work for ideal-based
codes as well. In addition to giving a “unified” approach to list decoding Reed-Solomon, algebraic-
geometric and CRT codes, this also resulted in an improved algorithm for CRT codes that could
list decode from up to n — (1 + €)vkn errors (for arbitrary € > 0) and thus essentially up to the
combinatorial list decoding radius.

The result of Theorem 4 has seen elegant applications in list decoding algorithms for concate-
nated codes with outer code being Reed-Solomon or algebraic-geometric and with certain choices
of inner code. Nielsen [30] considers the case of inner codes with small distance. Elegant analytic
results for the case when the inner code is Hadamard are obtained in [24]. In [20], the authors
use “tailor-made” inner codes that work very well in conjunction with the weighted Reed-Solomon
decoding algorithm. In the latter two works, the inner codes are first decoded to provide, for each
position ¢ of the outer Reed-Solomon code, a “weight” w;  for each field element o. The weight
wj o is @ measure of the confidence that the 7’th symbol of the Reed-Solomon codeword is o. These
weights are then used to list decode the outer Reed-Solomon code as per Theorem 4. Analyzing
such a decoding procedure with a careful choice of weights gives algorithms to list decode certain
concatenated codes up to or reasonably close to their list decoding radius. We refer the reader to
[24, 20], or [19, Chapter 8] for further details.

Besides algebraic-geometric codes, Reed-Solomon codes can be generalized in another way, by
allowing polynomials on more than one variable to encode the message. This gives the class of
Reed-Muller codes. The technique used in [23] unfortunately does not seem to generalize in any
simple way to decode Reed-Muller codes up to their list decoding radius, or for that matter even
beyond half the distance for all rates, and this remains an interesting open question. However,
in [2, 40], using clever reductions to the univariate case, an algorithm to list decode Reed-Muller
codes well beyond half the distance is presented for codes of low rate.

A consequence of Theorem 2 is that, for arbitrary ¢ > 0, efficient list decoding up to a fraction
(1 — ¢) of errors can be performed using codes of rate 2. The only drawback of Reed-Solomon
codes is their large alphabet size (which is at least their block length). While this is alleviated
by algebraic-geometric codes and the generalization of Theorem 2 to them, the construction and
decoding complexity become rather high. Using Reed-Solomon codes together with suitable highly
expanding graphs, Guruswami and Indyk [21] present a simple construction of a code over a fized
alphabet size that achieves rate Q(e2) and can be efficiently list decoded from a fraction (1 —¢) of
errors. They also present a construction with rate Q(e) (and thus is “better” than Reed-Solomon
codes), though the decoding complexity becomes sub-exponential (2" for arbitrary v > 0) in the
block length [21]. This latter result raises the hope that even better codes and algorithms can be
obtained by devising non-algebraic approaches to list decoding.

3 Future directions

It is well-known that the capacity of the binary symmetric channel with cross-over probability
p equals (1 — H(p)). In other words, over the channel which flips each bit independently with
probability p, one can achieve arbitrarily reliable communication at any rate less than 1—H (p). Now
consider the noise model where the channel adversarially corrupts up to a fraction p of positions.
In such a case, “traditional” unique decoding is limited by the half the distance barrier, and thus



one has to use codes of relative distance 2p. In turn, this means one cannot achieve the capacity
1— H(p). List decoding exhibits that this limitation is not entirely inherent to the adversarial error
model, and can be overcome if one is allowed to output a small list of codewords as answers. In
fact, a result due to [20] shows that one can get within € of the capacity, even under the adversarial
model, provided one is permitted list decoding with lists of size 1/e. This raises the intriguing
possibility of a “worst-case” theory of information hinging upon list decoding as the basic notion
of error-recovery.

The above-mentioned codes from [20] that achieve “capacity” under a worst-case setting are,
however, highly non-explicit. An explicit construction of such codes together with efficient list
decoding algorithms poses a enormous challenge for future work on list decoding, and consti-
tutes in the authors’ mind the single biggest open question in the area. There has been steady
progress in this pursuit for the low-rate regime using clever concatenation schemes combined with
the weighted Reed-Solomon list decoding algorithm (see, for example, [20]). Nevertheless, we are
still very far from any construction of “capacity-approaching” codes that nearly achieve the optimal
rate vs. list decoding radius trade-off. Algebraic codes possibly augmented with more sophisticated
concatenation-like ideas still hold some promise. But, in light of the recent coding-theoretic de-
velopments using combinatorial objects such as “extractors” and “expanders” [41, 21], it is quite
possible that non-algebraic approaches will be important in this pursuit.
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