
Guessing Secrets Efficiently via List Decoding

Noga Alon∗ Venkatesan Guruswami† Tali Kaufman‡ Madhu Sudan §

Abstract

We consider the guessing secrets problem defined by Chung, Graham, and Leighton [CGL01].
This is a variant of the standard 20 questions game where the player has a set of k > 1 secrets
from a universe of N possible secrets. The player is asked Boolean questions about the secret.
For each question, the player picks one of the k secrets adversarially, and answers according to
this secret.

We present an explicit set of O(logN) questions together with an efficient (i.e., poly(logN)
time) algorithm to solve the guessing secrets problem for the case of 2 secrets. This answers the
main algorithmic question left unanswered by [CGL01]. The main techniques we use are small
ε-biased spaces and the notion of list decoding.

We also establish bounds on the number of questions needed to solve the k-secrets game for
k > 2, and discuss how list decoding can be used to get partial information about the secrets;
specifically, to find a small core of secrets that must intersect the actual set of k secrets.

∗Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel. Email:

noga@math.tau.ac.il. Supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation

and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
†Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195. Email:

venkat@cs.washington.edu. Most of this work was done while the author was at MIT.
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: kaufmant@tau.ac.il
§Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. Email:

madhu@mit.edu. Supported in part by NSF grants CCR-9875511, CCR-9912342 and by MIT-NTT award MIT2001-

01.

1

1 Introduction

Under the familiar “20 questions” game a player, say B, tries to discover the identity of some
unknown secret drawn by a second player, say A, from a large space of N secrets. B is allowed to
ask binary (Yes/No) questions about the secret to A (cf. [I52]). The assumption is that A answers
each question truthfully according to the secret he picked. The goal of B is to recover the secret
by asking as few questions as possible. Clearly, dlogNe questions are both necessary and sufficient
to discover the secret. (Here, and in the rest of the paper, all logarithms are in base 2).

Now, consider the following variant of the above game. Under this variant, the player A picks
not one, but a set of k ≥ 2 secrets. For each question asked by B, A gets to adversarially choose
which one of the k secrets to use in supplying the answer, but having made the choice must answer
truthfully according to the chosen secret. (When questions have binary answers, this imposes
the restriction that if all secrets give the same answer on a given question, then A must answer
accordingly, else it can give any answer to the given question.) This variant was introduced by
Chung, Graham and Leighton in [CGL01], and they called the problem “Guessing Secrets”. What
is the best strategy for B in this situation, and how many questions does it take in the worst-case for
B to “find” the secrets? In addition to being an interesting “puzzle”, secret guessing problems of this
type have apparently arisen recently in connection with certain Internet traffic routing applications
(cf. [CGL01]). Moreover, problems of a related nature have been studied in the literature under
the label of separating systems (see [KS88, Seg94, CES02] and references therein), and have been
applied in different areas of computer science such as technical diagnosis, constructions of hash
functions, and authenticating ownership claims. A variant of separating systems (under the name
bipartite graphs with isolated neighbor condition) were also used in [Gal98] to prove lower bounds
for monotone span programs. The focus of much of this line of work has been combinatorial, and
our work, and that of [MS01] done independently, appear to be the first to present non-trivial
algorithms to deal with (certain kinds of) separating systems.

Specifically, in this paper we present an algorithmic solution using list decoding to a problem
left open by the work of [CGL01] dealing with the case of k = 2 secrets. We also obtain some new
results concerning adaptive and oblivious schemes for guessing k > 2 secrets, showing upper and
lower bounds on the number of questions needed.

The paper assumes knowledge of some standard terminology and definitions concerning error-
correcting codes. We quickly recollect some of the basic terminology we will use below. A code C
of block length n over an alphabet Σ is a subset of Σn. The elements of C are called codewords. It
is called a linear code if Σ is a field and C is a subspace of the n-dimensional vector space Σn. The
minimum distance of a code is the smallest Hamming distance between two distinct codewords.
The relative distance is the minimum distance divided by the block length. For linear codes, the
minimum distance equals the smallest Hamming weight of a nonzero codeword, and the code can
also be viewed as a linear map from Σk to Σn, where k is called the dimension of the code. A linear

2

code of dimension k and block length n over a field of size q is customarily denoted as an [n, k]q
code. Its rate is the ratio k/n. The problem of list decoding a code C from a fraction α of errors
consists of, given a received word y ∈ Σn, finding a list of all codewords that differ from y in at
most αn coordinates. We will also need the concept of recovery from erasures: List decoding from
a fraction γ of erasures corresponds to finding a list of all codewords consistent with a received
word z, symbols at γn of whose positions are erased, i.e., are unknown, and the rest are known
correctly (and it is also known which γn positions are erased). We will need results concerning
some other coding-theoretic concepts like concatenated codes and Reed-Solomon codes which will
be described when they are needed.

1.1 Prior Work

We defer a formal definition of what it means to solve the 2-secrets problem to the next section.
We now briefly describe the prior work of Chung et al on this problem, followed by a description
of our results.

Chung, Graham, and Leighton [CGL01] prove that for the 2-secrets problem with a universe of
N secrets there exists a set of O(logN) questions answers to which suffice to solve the problem.
They also present an explicit set of O(log2N) questions, the answers to which allows one to “find”
the two secrets. But they did not present an efficient (with run time polynomial in logN) algorithm
to recover the secrets given the answers to the questions.

They briefly report a strategy using O(log3N) questions, attributed to Lincoln Lu, together
with an algorithm to recover the secrets in O(log4N) time given answers to these questions. But,
in this result the number of questions used is much more than the optimal O(logN). The question
of finding an explicit set of O(logN) questions together with an efficient secret-recovery algorithm
given answers to those questions was the central question left open by the work of [CGL01].

1.2 Our Results

In this paper, we settle this open question. Specifically, using a connection to ε-biased spaces, we
present an explicit set of O(logN) questions for the 2-secrets problem, together with an efficient
O(log3N) time secret recovery algorithm using ideas from list decoding of error-correcting codes.
Note that up to a constant factor, this is the fewest possible number of questions. In a sense to
be made precise, our algorithm finds the maximum possible information about the 2 secrets which
A picked. This algorithmic result, described in Sections 3 and 4, is our main contribution to the
guessing secrets problem. We next describe some of the other results we obtain.

Using a straightforward connection to 2k-universal sets, we also explicitly describe a set of
ck logN questions for the k-secrets problem, for any k ≥ 3. (We do not however give an efficient
decoding algorithm to recover the secrets given answers to these questions.) The constant ck
depends exponentially on k. We also prove that this exponential dependence of ck on k is necessary,

3

even if B is allowed to pick the questions adaptively, i.e., depending upon A’s answers to previous
questions. On the other hand, all our positive results yield a non-adaptive or oblivious strategy for
B, i.e., B can fix the set of questions to be asked right at the outset.

1.3 Related work

Independent of our work, Micciancio and Segerlind [MS01] presented a different strategy with the
optimal O(logN) questions together with an O(log2N) time algorithm to recover the secrets. The
difference between their result and ours is that our questions are oblivious or non-adaptive, where as
in the strategy of [MS01], B picks the questions adaptively, depending upon A’s answers to previous
questions. On the other hand, their strategy uses only 4 logN + 3 questions, which in fact matches
the best known existence results due to [CGL01], while in addition providing an efficient secret
recovery algorithm. The constant in front of logN in our O(logN) bound for number of questions
is perhaps much worse. Thus the results of [MS01] are incomparable to ours. We elaborate further
on adaptive and oblivious strategies and motivate why oblivious strategies are interesting in the
next section.

2 Formal problem description

We first restrict ourselves to the case k = 2 when there are only two secrets. This is already
a non-trivial case and as we shall see one where a very satisfactory solution exists to the above
problem. In this case, A has a set X = {x1, x2} of two secrets, chosen from a universe U of N
possible secrets. Next, we proceed to precisely formulate the algorithmic problem that B wishes to
(and can hope to) solve. (The reader familiar with the paper [CGL01] probably already knows the
formal definition, and can skip the next few paragraphs.)

Note that A can always choose to answer according to the secret x1, and thus B can never hope
to learn with certainty more than one of A’s secret. Moreover, a moment’s thought reveals that
B cannot even hope to pin down with certainty one secret and claim that it must be one of A’s
secrets. This is because A could pick three secrets {x1, x2, x3} and answer each question according
to the majority vote of the answers of x1, x2, x3. For such a strategy, irrespective of the number of
questions B asks, A can always justify any subset of two of these secrets as the set X he picked.

In light of these, it turns out that the best that B can hope for is the following: For every set
of two disjoint pairs of secrets X = {x1, x2} and Y = {x3, x4} where the xi’s are all distinct, rule
out one of X or Y as the set which A picked. An instructive way to visualize this requirement is in
terms of graphs. Let KN denote the complete graph on the universe U of N secrets. View a pair
of secrets X = {x1, x2} as an edge (x1, x2) of KN . A question is simply a function F : U → {0, 1},
and the answer to it naturally induces a partition U = F−1(0) ∪ F−1(1). If A answers question F

with a bit b ∈ {0, 1}, then we know that the set X which A picked must satisfy X ∩ F−1(b) 6= ∅,
and hence B can “eliminate” all edges within the subgraph of KN spanned by F−1(1− b). Stated

4

in this language, the goal of B is to ask a series of questions by which he can eliminate all edges
except those in a set W that contains no pair of disjoint edges.

Now, there are only two possibilities for such a surviving set W . Either W must be a “star”,
i.e., a set of edges all sharing a common x0, or W must be a “triangle”, i.e., the set of three edges
amongst a set {x1, x2, x3} of three secrets. In the former case, B can assert that x0 must be one
of A’s secrets. In the latter case, B can assert that the secret pair of A is one of (x1, x2), (x2, x3),
or (x3, x1). In the sequel, when we use the phrase “find the secrets” we implicitly assume that we
mean finding the underlying star or triangle as the case may be. We also use the phrase “solve the
2-secrets problem” to refer to the task of finding the underlying star or triangle.

Oblivious vs Adaptive Strategies: There are two possible strategies that one can consider for
B: adaptive and oblivious (also called non-adaptive). For adaptive strategies each question of B
can depend on A’s answers to the previous questions. For oblivious strategies B must fix the set of
questions to be asked right at the outset and be able to infer the secrets just based on A’s answers
to those fixed questions.

Definitely, adaptive strategies seem more natural for a “20 questions” kind of set-up, since that
is what a human would use when playing such a game. But, oblivious strategies have the merit
of being easy to play (and being more democratic in terms of different players’ abilities), since
one just has to read out a fixed pre-determined set of questions. Moreover, as we shall see, it is
possible to do surprisingly well just using oblivious strategies. In fact, it turns out that there exist
oblivious strategies that find the secrets using just O(logN) questions, which is only a constant-
factor off the obvious lower bound of logN on the number of necessary questions. Moreover,
the quest for oblivious strategies runs into some intriguing combinatorial questions, and leads us,
quite surprisingly, into list decodable codes! Hence, we focus mainly on oblivious strategies here.
A probabilistic construction shows that O(logN) questions are sufficient to solve the 2-secrets
problem [CGL01]. But this only proves the existence of good strategies and the questions are not
explicitly specified. In the next section, we discuss how certain binary codes give explicit oblivious
strategies.

3 An explicit strategy with O(log N) questions

3.1 A characterization of oblivious strategies using separating codes

An oblivious strategy for B is simply a sequence F of n Boolean functions (questions) fi : [N] →
{0, 1}, 1 ≤ i ≤ n. We say a strategy solves the 2-secrets guessing problem if the answers to the
questions fi bring down the possible pairs of secrets to a star or a triangle.

For each secret x ∈ [N], we denote the sequence of answers to the questions fi on x by C(x) =
〈f1(x), f2(x), . . . , fn(x)〉. We suggestively call the mapping C : [N] → {0, 1}n thus defined as the
code used by the strategy. There is clearly a one-one correspondence between oblivious strategies

5

F and such codes C (defined by fi(x) = C(x)i, where C(x)i is the i’th bit of C(x)). Hence we will
from now on refer to a strategy F using its associated code C.

We say that a code C is (2, 2)-separating (or simply, separating) if for every 4-tuple of distinct
secrets a, b, c, d ∈ [N], there exists at least one value of i, 1 ≤ i ≤ n, called the discriminating index,
for which C(a)i = C(b)i 6= C(c)i = C(d)i. Note that if B asks questions according to a separating
code C, then for every two disjoint pairs of edges (a, b) and (c, d), B can rule out one of them based
on the answer which A gives on the i’th question, where i is a discriminating index for the 4-tuple
(a, b, c, d)). In fact it is easy to see that the (2, 2)-separating property of C is also necessary for the
corresponding strategy to solve the 2-secrets guessing game.

This implies the following characterization for the existence of oblivious strategies for the 2-
secrets guessing game.

Lemma 1 There exists a (2, 2)-separating code C : [N] → {0, 1}n if and only if there exists an
oblivious strategy for B to solve the 2-secrets guessing problem for a universe size of N that uses n
questions.

Hence the problem of finding a small set of questions to solve the 2-secrets problem reduces to
the task of finding a good (2, 2)-separating code. There is a reason why we called these objects
“codes” since the following result states that any error-correcting code with a certain property is
also a (2, 2)-separating code. We will assume without loss of generality that N = 2m so that we can
view each secret as an m-bit binary string. The separating code C then encodes an m-bit string
into an n-bit string.

Lemma 2 Let C be an [n,m]2 binary linear code with minimum distance d and maximum distance
(i.e., the maximum number of coordinates where two distinct codewords differ) equal to m1. Assume
further that d,m1 satisfy the condition d > 3m1

4 . Then, C is a (2, 2)-separating code. If the
constraint of linearity is removed, then an (n,m)2 binary code C is (2, 2)-separating if d > m1

2 + n
4 .

The above lemma is proved in the work of Cohen, Encheva, and Schaathun [CES02]. The result
for linear codes had been previously proved by Segalovich [Seg94]. For the case of general codes,
note that the condition d > m1/2 + n/4 implies d > n/2, since m1 ≥ d. We can strengthen the
above lemma to show that d > n/2 itself is a sufficient condition for a code to be (2, 2)-separating
(we also show this is indeed a strengthening in that there are codes that satisfy the condition
d > n/2 and that do not satisfy d > m1/2 + n/4). Since the result is not directly related to the
theme of the paper, we relegate it to Appendix A.

There is a big advantage in using linear codes C for B’s strategy, since then each question
simply asks for the inner product over GF(2) of the secret with a fixed m-bit string. Thus all
questions have a succinct description, which is not the case for general non-linear codes. Hence,
we focus exclusively on strategies based on linear separating codes in the rest of this section and
in the one following it.

6

3.2 Construction of good linear separating codes

Definition 1 (ε-biased codes) A binary linear code of block length n is defined to be ε-biased if
every non-zero codeword in C has Hamming weight between (1/2− ε)n and (1/2 + ε)n.

Now Lemma 2 implies the following separation property of ε-biased codes.

Lemma 3 If a binary linear code C is ε-biased for some ε < 1/14, then C is (2, 2)-separating.

Proof: Follows from Lemma 2 since (1/2− ε) > 3
4 · (1/2 + ε) for ε < 1/14. 2

Thus, in order to get explicit (2, 2)-separating codes (and hence, an explicit strategy for the
secret guessing game), it suffices to explicitly construct an ε-biased code for ε < 1/14.

A simple explicit construction of ε-biased codes can be obtained by concatenating an outer
Reed-Solomon code with relative distance (1 − 2ε) with an inner binary Hadamard code. It is
easy to see that all non-zero codewords have relative Hamming weight between (1/2− ε) and 1/2,
and thus this gives an ε-biased space. However, this construction encodes m bits into O(m2/ε2)
bits. Other explicit constructions of ε-biased codes of dimension m and block length O(m2/ε2)
are also known (cf. [AGHP92]). In fact, the explicit construction of a secret guessing strategy
with O(log2N) questions in [CGL01] is based on one of the ε-biased codes from [AGHP92]. All
these constructions suffer from the drawback of needing Ω(log2N) questions, while we would like
to achieve the optimal O(logN) questions.

But, there are also known ways to achieve ε-biased codes with block length O(m/εO(1)). For
example, one can use a concatenated scheme with outer code any explicitly specified code with
relative distance (1−O(ε)) over a constant alphabet size (that depends on ε), and inner code itself
being a Reed-Solomon concatenated with Hadamard code. Specifically, one can use for the outer
code the construction from [ABN+92] that achieves rate Ω(ε) and alphabet size 2O(1/ε). It is easy
to check that this gives an explicit [O(m/ε4),m]2 ε-biased code. A better choice of inner code can
be used to bring down the block length to O(m/ε3) [ABN+92], but this is not very important to
us since this will only improve the number of questions by a constant factor.

We therefore have:

Lemma 4 ([ABN+92]) For any ε > 0, there exists an explicitly specified family of constant rate
binary linear ε-biased codes.

Applying the above with any ε < 1/14, and using the connection to separating codes from
Lemma 3 and the result of Lemma 1, we get the following:

Theorem 5 There is an explicit oblivious strategy for the 2-secrets guessing game that uses O(logN)
questions where N is the size of the universe from which the secrets are drawn.

7

4 An efficient algorithm to recover the secrets

The construction of an explicit strategy using O(logN) questions is not difficult, and follows rather
easily once one realizes the connection to ε-biased spaces. However, a fairly basic and important
point has been ignored so far in our description. We have only focused on strategies that “combi-
natorially” limit the possible pairs of secrets to a star or a triangle. But how can B figure out the
star or triangle as the case may be, once he receives the answers to all the questions? One obvious
method is to simply go over all pairs of secrets and check each one for consistency with the answers.
By the combinatorial property of the strategy, we will be left with only a star or a triangle. The
disadvantage of this approach, however, is that it requires O(N2) time. We would ideally like to
have a strategy to recover the secrets that runs in poly(logN) time, since we are thinking of N as
very large. Strategies with such an efficient secret recovery algorithm are called invertible strategies
in [CGL01].

In this section, we present a connection between list decoding and the 2-secrets guessing game.
Using this connection, we are able to give an oblivious invertible strategy that uses only O(logN)
questions. The time to recover the secrets (i.e. the triangle or a succinct representation of the star)
is O(log3N).

4.1 Connection to list decoding

We will need the following combinatorial bound for list decoding in the proof of Lemma 7 as well
as Lemma 9 in the next section.

Proposition 6 (cf. [GS01], Theorem 1) Let C be a binary code of block length n and relative
distance δ, 0 < δ < 1/2. Then, for every y ∈ {0, 1}n, the number of codewords of C at Hamming
distance at most (1−

√
1− 2δ + 2δ/L)n/2 from y is at most L.

Lemma 7 Suppose that for some c ≥ 1, C is a [cm,m]2 binary linear code which is ε-biased for
some constant ε < 1/14. Suppose further that there exists a list decoding algorithm for C that
corrects up to a (1/4 + ε/2) fraction of errors in time O(T (m)). Then, C is a (2, 2)-separating
code which gives a strategy to solve the 2-secrets guessing game for a universe size N = 2m in
O(T (logN) + log3N) time using c logN questions.

Proof: Let C be a code as in the statement of the lemma and assume that B is using C for its
strategy. Let X = {x1, x2} be the set which A claims he picked after giving all the answers. Let
the set of answers be a = (a1, a2, . . . , an). Then for each i, we must have either C(x1)i = ai or
C(x2)i = ai since A is supposed to answer each question according to one of x1 or x2. Now by
the property of C, we have C(x1)i = C(x2)i for all i ∈ A for some set A ⊆ [n] of size at least
(1/2− ε)n. For each i ∈ A we have C(x1)i = C(x2)i = ai, and for each i /∈ A, exactly one of C(x1)i

8

and C(x2)i equals ai. It follows that either C(x1) or C(x2) is within Hamming distance (n−|A|)/2
of a; assume without loss of generality that it is C(x1). Then

∆(a, C(x1)) ≤ (1/2 + ε)
n

2
=
(1

4
+
ε

2

)
n .

The algorithm for B to recover the secrets (i.e., the triangle or the star) after receiving the
answer vector a is as follows.

1. Perform list decoding of the code C using the assumed algorithm to find the set, say S, of all
x ∈ {0, 1}m for which ∆(a, C(x)) ≤ (1

4 + ε
2)n.

2. For each x ∈ S returned by the list decoding algorithm in the previous step, do the following.
Compute A = {i : C(x)i = ai}, and perform an erasure list decoding of the received word a
when all of its symbols in positions in A are erased. In other words find (some representation
of) the set Sx of all x′ for which C(x′)i = ai for each i ∈ [n] \A. If Sx is empty, then remove
x from S.

3. Return the set of unordered pairs {(x, x′) : x ∈ S, x′ ∈ Sx} as the final set of all possible
feasible pairs.

We now argue the correctness of the algorithm. First note that any pair returned by the
algorithm is a proper solution to the guessing secrets. This is because the set Sx consists of
precisely those secrets that could form the other secret in a pair with x so that the resulting pair
will be “consistent” with the answers a. We next prove that any pair (x, x′) which is a consistent
solution to the 2-secrets problem for the answers a, will be found by the algorithm. Appealing
to the (2, 2)-separation property of C (which is implied by Lemma 3 since C is ε-biased for some
ε < 1/14), the above two facts imply that the final set of pairs will either be a triangle or a star.

If a pair (x, x′) is consistent with a, then we know by the initial arguments in this proof that
min{∆(a, C(x)),∆(a, C(x′))} ≤ (1/4+ε/2)n. Assume, without loss of generality, that ∆(a, C(x)) ≤
(1/4 + ε/2)n. Then, x will be found as part of the set S in the first list decoding step of the above
algorithm. Now for each i such that C(x)i 6= ai, we must have C(x′)i = ai, or otherwise (x, x′)
would not be a consistent pair for the answers a. Hence x′ will be a solution to the erasure de-
coding performed in the second step. It follows that x′ ∈ Sx and that (x, x′) will be output by the
algorithm, as desired.

Now we move on to the run-time analysis of the algorithm. By the hypothesis of the lemma, the
first list decoding step can be performed in O(T (m)) time. Moreover, the size of the list S returned
will be bounded by an absolute constant. Specifically, applying Proposition 6 with δ = 1/2− ε, we
find, after a simple calculation, that list decoding up to a fraction (1/4 + ε/2) of errors requires
lists of size at most (ε2 − 3ε + 1/4)−1, which is less than 24.5 for ε < 1/14. Hence we will have
|S| ≤ 24 and therefore the second erasure decoding step will only be performed for O(1) choices of
x.

9

For the second step we critically use the fact that C is a linear code, and hence erasure list
decoding amounts to finding all solutions to a linear system. The set Sx, therefore, is either empty
or the coset of a linear subspace, say Wx, of Fm

2 , and in the latter case can be represented by one
solution together with a basis for Wx. Hence an O(m2) size representation of each non-empty Sx

can be computed in the time needed to solve a linear system, which is certainly O(m3).
Hence the above algorithm finds either the triangle or the star of all pairs of secrets consistent

with the answer vector a in O(T (m) + m3) time. Note that in the case when it outputs a star,
the number of pairs could be quite large (as high as (N − 1) in case the answer vector a exactly
matches C(x) for some secret x). The algorithm exploits the fact that the non-hub vertices of the
star, being the set of solutions to a linear system, can be described succinctly as the coset of a
linear space. 2

Remark: We stress here that the use of list decoding in the above result is critical and unique
decoding does not suffice for the above application. This is because for any pair (x, x′) which is
consistent with a, we are only guaranteed that one of x or x′ is within Hamming distance (1/4+ε/2)n
from a. Thus, we need to perform decoding up to a radius that is a fraction (1/4 + ε/2) of the
block length. Therefore, if we were to perform unique decoding, we would need a relative distance
of (1/2 + ε), which is known to be impossible for binary codes unless they just have a constant
number of codewords which is not very useful (this is a standard result in coding theory called the
Plotkin bound, see for example [vL99, Sec. 5.2]). Also, note that after the list decoding algorithm
finds the set S of codewords close to a, the application gives a natural post-processing routine to
prune the list and actually zero down the possibilities to the true solutions.

4.2 The final result using specific list decodable codes

We now prove that explicit codes with the property needed in Lemma 7 exist, and thus conclude
our main algorithmic result about the 2-secrets guessing game. The result of Lemma 9 is quite
standard and can be proved easily using known techniques on concatenated codes. The only new
element is the requirement of an ε-biased code, but as we shall see this necessitates no significant
change in the proof technique.

We need the following result on list decoding Reed-Solomon codes:

Theorem 8 (Implicit in [GS99]) Let C be an [n, k + 1, n − k]q Reed-Solomon code defined by
the evaluation of degree k polynomials over GF(q) at n distinct elements of GF(q). Then, given
lists Li ⊆ GF(q) with each |Li| ≤ `, there are at most O(

√
n`/k) codewords of C which agree with

an element of Li for at least αn values of i, provided α > Ω(
√
k`/n). Moreover, the list of all such

codewords can be found in O(n2`2 log2 q) time.1

1The claim about the run-time follows from fast implementations of the algorithm of [GS99] from [NH99, RR00].

10

Lemma 9 For every positive constant α < 1/2, the following holds. For all small enough ε > 0,
there exists an explicit asymptotically good family of binary linear ε-biased codes which can be list
decoded up to an α fraction of errors in O(n2(log n

ε)O(1)) time.

Proof: (Sketch) We only sketch the proof since it is by now quite routine. Given α < 1/2, we
pick ε = O((1/2−α)2). The code construction will be the concatenation of an outer Reed-Solomon
code CRS of rate smaller than ε with inner code Cin being an explicitly specified ε/2-biased binary
linear code (such a code exists by Lemma 4). It is clear that the resulting concatenated code, say
C, has minimum relative distance at least (1 − ε)(1/2 − ε/2) > 1/2 − ε, and maximum relative
distance at most 1 · (1/2 + ε/2) < 1/2 + ε. Hence C is definitely an ε-biased code.

Let the Reed-Solomon code be defined over GF(2`) and have block length n0 = 2`. Let the block
length of Cin be n1. The block length of C is then N = n0n1. To list decode a received word r ∈ Fn

2 ,
we first divide r into n0 blocks r1, r2, . . . , rn0 corresponding to the n0 inner encodings, where each
ri ∈ Fn1

2 . Each of the ri’s is decoded by brute-force to produce a list Li of all ζ ∈ GF(2`) for which
∆(Cin(ζ), ri) ≤ βn1, for some β where α < β < 1/2. Since δ(Cin) ≥ 1/2−ε and β = 1/2−Ω(

√
ε), it

follows by Proposition 6 that for each i, |Li| = O(1/ε). Now if x is such that ∆(C(x), r) ≤ αN , then
by an averaging argument for at least an α/β fraction of i, 1 ≤ i ≤ n0, we must have CRS(x)i ∈ Li.
Therefore, to finish the list decoding, it suffices to list decode the outer Reed-Solomon code to find
all x for which CRS(x) has an element from Li at the i’th position for at least αn0/β values of i. If
the rate of CRS is at most O(α2ε/β2), this can be accomplished in O((n0/ε)2 log2 n0) time by the
result of Theorem 8 stated above. This completes the proof of the lemma. 2

Applying the result of Lemma 9 with α = 1/4 + 1/28 = 2/7 and any ε < 1/14, gives an explicit
construction of the codes which were needed in Lemma 7, with a quadratic list decoding algorithm.
The O(log3N) time required to perform the “simple, clean-up” erasure decodings in Lemma 7
therefore dominates the overall time to recover the triangle or star of secrets. This gives our main
result of this section, which achieves the optimal (up to constant factors) number of questions
together with a poly(logN) algorithm to recover the secrets.

Theorem 10 [Main Result on Guessing Secrets, k = 2] For the guessing secrets game between
players B and A with 2 secrets picked out of a universe of size N , there exists an explicit oblivious
strategy for B to discover the underlying star or triangle of possible pairs of secrets, that requires
O(log3N) time and uses O(logN) questions.

5 The case of more than two secrets

One can also consider the situation when the player A has k > 2 secrets. In this case, stated in the
same graph-theoretic language that we used to describe the 2-secrets problem, the goal of B would
be to find a k-uniform hypergraph H with vertex set being the N secrets with the property that
every two hyperedges of H intersect. Let us call such a hypergraph an intersecting hypergraph.

11

5.1 Explicit oblivious strategies with O(log N) questions

Unlike the case of graphs, where there were only two classes of such graphs, namely a triangle
or a star, the situation for k-uniform hypergraphs is much more complicated. A classification
of intersecting k-uniform hypergraphs is known for k = 3 (see [CGL01] for pointers related to
this), but is open for k > 3. Nevertheless, there exist explicit strategies which will allow B to
“combinatorially” reduce the possibilities to an intersecting hypergraph, even though we do not
know any method for B to actually find some representation of this hypergraph short of trying
out all k element subsets of secrets and pruning out the “inconsistent” ones. This follows from
a connection of the k-secrets guessing problem to the study of 2k-universal families of binary
strings. The latter problem concerns finding a subset S ⊂ {0, 1}N of as small size as possible with
the property that for every subset of 2k indices i1, i2, . . . , i2k and every (a1, a2, . . . , a2k) ∈ {0, 1}2k,
there exists a string x ∈ S such that xij = aj for each j = 1, 2, . . . , 2k. Explicit constructions of such
universal families of very small size, namely at most ck logN , are known [NN93, ABN+92, NSS95],
where ck is a constant that depends exponentially on k.

We claim this implies the existence of explicit oblivious strategies using ck logN questions for
the k-secrets guessing game. Indeed let {y1, y2, . . . , yn} be a 2k-universal family of N -bit strings
for some n ≤ ck logN . For 1 ≤ i ≤ n, define the function fi : [N] → {0, 1} as follows: for each
x ∈ [N], fi(x) is simply the x’th bit of the string yi. That is, the string yi gives the truth table of
the function fi. Clearly if the yi’s are explicitly specified then so are the functions fi. We claim
the sequence of questions f1, f2, . . . , fn is a valid oblivious strategy for the k-secrets guessing game.
This is because, for every pair of disjoint sets of k secrets each, say S1 = {i1, i2, . . . , ik} ⊂ [N] and
S2 = {ik+1, . . . , i2k} ⊂ [N], by the 2k-universality property there exists some i for which fi(x) = 0
for each x ∈ S1 and fi(z) = 1 for each z ∈ S2. This implies that the answer to question number
i rules out one of the sets S1 or S2 as being a possible set of k secrets consistent with all answers
to the questions f1, f2, . . . , fn. This is exactly what we wanted to show, and the k-sets of secrets
consistent with any answer to the questions f1, f2, . . . , fn therefore form an intersecting k-uniform
hypergraph.

The best known construction of 2k-universal families, due to [NSS95], achieves ck = 22k+o(k).
We therefore have:

Theorem 11 For the k-secrets guessing game over a universe of size N , there exists an explicit
oblivious strategy for B that uses at most 22k+o(k) logN questions.

5.2 An efficient “partial solution” for the k-secrets game

For the case of k > 2 secrets, the question of whether there exists a strategy together with an
efficient algorithm to actually find a representation of the intersecting hypergraph is wide open.
We instead aim for the weaker goal of finding a small “core” of secrets such that any k-set which

12

A might pick must intersect the core in at least one secret. This at least gives useful partial
information about the set of secrets which A could have picked.

This version of the problem is quite easily solved if we could ask not just binary questions,
but questions with answers that lie in a larger alphabet [q] = {1, 2, . . . , q}. That is, each of the n
questions that B asks is now a function Fi : [N] → [q], 1 ≤ i ≤ n. For any set of k secrets which
A might pick, the sequence of answers a ∈ [q]n must agree with the correct answers to one of the
secrets for at least n/k values of i. If q is a prime power bigger than k, there are known explicit
constructions of q-ary linear codes, say C, with N codewords and block length O(logN) which are
efficiently list decodable from a fraction (1− 1/k) of errors [GS00]. Basing the questions Fi on the
n positions of the code (as in the earlier binary case), the answer vector a of A will differ from at
least one secret in A’s set in at most a fraction (1− 1/k) of positions. The list decoding algorithm,
when run on input a, will output a small list that includes that secret.

When B is only allowed binary questions, we can still give such a “core finding” strategy as
follows. Pick q to be a power of 2 larger than k2, and C to be an explicit q-ary linear code that
is list decodable using lists of size poly(k) from a fraction (1 − 1/k2) of errors [GS00]. As above,
we first encode each secret by C to get a string of length n = O(logN) over [q]. We then encode
each element of [q] further using 2k-universal family F of strings in {0, 1}q. That is, we encode
j ∈ [q], by the string comprising of the j’th entry from the set of strings in F . In other words, we
concatenate C with the 2k-universal family F to get a binary code C ′. Player B now asks A for
the bits of the encoding of the secret as per the concatenated code C ′.

Using the 2k-universal property of F , for each 1 ≤ i ≤ n, B can recover an intersecting k-
hypergraph Hi on [q] for the value of the i’th symbol of the encoding of the k secrets by C. B can
do this by a brute-force search over all k-element subsets of q, since q, k are constants, this only
takes constant time for each i. B then picks one of the hyperedges Ei from Hi arbitrarily, and then
picks an element ai ∈ [q] from it at random.

Let S = {x1, x2, . . . , xk} be the set of k-secrets that A picked. Note that Ei must intersect the
set Si = {C(x1)i, . . . , C(xk)i} consisting of the i’th symbols of the encoding by C of the secrets in
S. Therefore, for each i, 1 ≤ i ≤ n, we have ai ∈ Si with probability at least 1/k. Hence, we will
have ai ∈ Si for at least an expected fraction 1/k of the i’s. An averaging argument then implies
that there must exist a j, 1 ≤ j ≤ k, for which ai = C(xj)i for at least a 1/k2 fraction of i’s.
Therefore, the assumed list decoding algorithm for C on input a will find a small list that includes
the secret xj . This lets us conclude:

Theorem 12 For the k-secrets guessing game with a universe of N secrets, there exists an explicit
oblivious strategy for B that uses O(logN) questions. Moreover, there is an efficient poly(logN)
time algorithm for B to find a small core of poly(k) secrets such that the k-set picked by A must
contain at least one secret from the core.

13

5.3 Lower bounds for the k-secrets game

As mentioned above, there is an oblivious algorithm for solving the k secrets problem by asking
ck logN questions. An easy probabilistic argument shows that the smallest possible ck is O(k22k).
This also follows from the result of [KS73] that shows (non-explicitly) that there is a 2k-universal
family of N -bit strings consisting of O(k22k logN) strings. The next result shows that no oblivious
algorithm can do much better, and Proposition 14 following that extends this to adaptive strategies.

Proposition 13 If there exists an oblivious strategy for solving the k-secrets problem that requires
ck logN questions, then ck = Ω(22k).

Proof: Suppose there is an oblivious strategy consisting of n questions. Then there are n functions
fi : [N]→ {0, 1} such that for every pair of disjoint sets of k secrets each, say S1 = {i1, i2, . . . , ik} ⊂
[N] and S2 = {ik+1, . . . , i2k} ⊂ [N], there exists some i for which fi(x) = ε for each x ∈ S1 and
fi(z) = 1− ε for each z ∈ S2, where ε ∈ {0, 1}. Our objective is to show that n is large. To do so,
pick, randomly and independently, two disjoint subsets S′1 and S′2 of [N], where |S′1| = |S′2| = k−1.
We say that fi separates S′1 and S′2 if there is an ε ∈ {0, 1} such that fi(x) = ε for each x ∈ S′1 and
fi(z) = 1 − ε for each z ∈ S′2. A simple computation shows that for each fixed i, the probability
that fi separates the two random sets S′1 and S′2 is smaller than 21−2k. Therefore, by linearity of
expectation, there are some two sets S′1 and S′2 as above which are separated by at most n21−2k

functions fi. Fix such S′1, S
′
2 and let I ⊂ {1, 2, . . . , n} be the set of all functions separating them.

We claim that for each two distinct p, q ∈ [N] \ (S′1 ∪ S′2), the two vectors (fi(p) : i ∈ I) and
(fi(q) : i ∈ I) must differ. Indeed, otherwise, none of the functions fi will separate S′1 ∪ {p}
and S′2 ∪ {q}, contradicting the fact that they form an oblivious strategy for solving the k-secrets
problem. It thus follows that

N − (2k − 2) ≤ 2n21−2k
,

implying that
n ≥ 22k−1 log(N − 2k + 2),

and completing the proof. 2

We next show that even adaptive algorithms cannot solve the k-secrets problem using ck logN
questions unless ck = Ω(22k

√
k

).

Proposition 14 Any adaptive algorithm for solving the k-secrets problem requires at least ak logN−
ak log ak questions, where

ak = 2k − 2 +
1
2

(
2k − 2
k − 1

)
.

Proof: Let ak be as in the statement of the proposition. We claim that for every k ≥ 2 there is an
intersecting k-uniform hypergraph Hk on ak vertices which is a maximal intersecting hypergraph.
That is, one cannot add to it any additional edge (of size k) and keep it intersecting. Such a

14

hypergraph is described in [EL75]. Here is the construction; the set of vertices consists of two
disjoint sets, Xk of size 2k−2, and Yk of size 1

2

(
2k−2
k−1

)
, whose elements are indexed by the partitions

of Xk into two disjoint parts of equal size. The edges are all k-subsets of Xk, together with
(
2k−2
k−1

)
additional edges: for each partition of Xk into two equal parts A and B, the sets A ∪ {y} and
B ∪ {y} are edges of Hk, where y is the element of Y corresponding to the partition (A,B).

There are at least
(

N
ak

)
copies of Hk on subsets of the set of vertices [N]. For every question

F : [N] 7→ {0, 1} of B, and for each copy H of Hk, the player A can always save H (namely,
ensure that each edge of it can still serve as a valid set of k secrets) by an appropriate answer.
Indeed, as H is intersecting, there cannot be an edge of H in F−1(0) and another one in F−1(1),
and hence either each edge of H intersects F−1(0) and then A can answer 0 and save H, or each
edge intersects F−1(1), and then answering 1 will save H. This implies that the player A can save,
in each question, at least half of the copies of Hk left after the previous questions. As B cannot
finish the guessing game as long as more than one copy of Hk is still valid (because the maximality
of Hk ensures that the union of every two copies is not intersecting) it follows that the number of
questions required is at least

log
((N

ak

))
≥ ak logN − ak log ak,

as needed. 2

As mentioned in [CGL01], the question of guessing secrets may also be of interest when the
questions have more than two possible answers. We conclude the paper by pointing out that several
aspects of this variant have been studied by various researchers under the name parent identifying
codes. For more details, see, e.g., [CFN94], [HLLT98], [BCE+01], [AFS01].

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ronny Roth. Construction
of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38:509–516, 1992.

[AFS01] Noga Alon, Eldar Fischer and Mario Szegedy. Parent-identifying codes. J. Combinatorial
Theory, Series A, 95:349–359, 2001.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and Réne Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures and Algorithms, 3:289–304,
1992.

[BCE+01] Alexander Barg, Gerard Cohen, Sylvia Encheva, Gregory Kabatiansky and Gillés Zémor.
A hypergraph approach to the identifying parent property: the case of multiple parents, SIAM
J. Disc. Math., 14(3):423–432, 2001.

15

[CES02] Gérard D. Cohen, Sylvia B. Encheva, and Hans G. Schaathun. More on (2, 2)-separating
systems. IEEE Transactions on Information Theory, to appear, 2002.

[CFN94] Benny Chor, Amos Fiat and Moni Naor. Tracing traitors. Proceedings of Crypto’94 LNCS
839 (1994), pp. 257–270.

[CGL01] Fan Chung, Ron Graham, and Tom Leighton. Guessing secrets. The Electronic Journal
of Combinatorics, 8(1):R13, 2001.

[EL75] Paul Erdős and Láslzo Lovász, Problems and results on 3-chromatic hypergraphs and some
related questions, Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on
his 60th Birthday), vol. II, pp. 609-627. Colloq. Math. Soc. Janos Bolyai, vol 10, North-Holland,
Amsterdam, 1975.

[Gal98] Anna Gál. A characterization of span program size and improved lower bounds for mono-
tone span programs. Proc. of 30th ACM Symposium on Theory of Computing, pp. 429-437,
1998.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of Reed-Solomon and
Algebraic-geometric codes. IEEE Transactions on Information Theory, 45 (1999), pp. 1757-
1767.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain concate-
nated codes. Proc. of the 32nd Annual ACM Symposium on Theory of Computing, May 2000,
pp. 181-190.

[GS01] Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson Bound. Manuscript,
2001. Avaliable from http://theory.lcs.mit.edu/~madhu/papers.html.

[HLLT98] H.D. Hollmann, J.H. van Lint, J.-P. Linnartz and L.M. Tolhuizen. On codes with the
identifiable parent property. J. Combinatorial Theory, Series A, 82 (1998) pp. 121–133.

[I52] I’ve Got a Secret. A classic ’50’s and ’60’s television gameshow. See
http://www.timvp.com/ivegotse.html.

[KS88] János Körner and Gábor Simonyi. Separating partition systems and locally different se-
quences. SIAM J. Discrete Math., 1 (1988), pp. 355-359.

[KS73] Daniel J. Kleitman and Joel Spencer. Families of k-independent sets, Discrete Mathematics,
6 (1973), pp. 255-262.

[MS01] Daniele Micciancio and Nathan Segerlind. Using prefixes to efficiently guess two secrets.
Manuscript, July 2001.

16

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[NH99] Rasmus R. Nielsen and Tom Hφholdt. Decoding Reed-Solomon codes beyond half the min-
imum distance. Coding Theory, Cryptography and Related areas, (eds. Buchmann, Hoeholdt,
Stichtenoth and H. tapia-Recillas), pages 221–236, 1999.

[NSS95] Moni Naor, Leonard Schulman, and Aravind Srinivasan. Splitters and Near-optimal De-
randomization. Proc. of IEEE Symposium on Foundations of Computer Science (FOCS), pages
182-191, 1995.

[RR00] Ronny Roth and Gitit Ruckenstein. Efficient decoding of Reed-Solomon codes beyond half
the minimum distance. IEEE Transactions on Information Theory, 46(1):246–257, January
2000.

[Seg94] Yu L. Segalovich. Separating systems. Problems of Information Transmission, 30(2):105–
123, 1994.

[vL99] J. H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics 86, (Third
Edition) Springer-Verlag, Berlin, 1999.

A A sufficient condition for (2, 2)-separating codes

Lemma 15 Let C be an [n,m]2 binary code with minimum distance d > n/2. Then C is a (2, 2)-
separating code. Moreover, this bound is tight, in that there are codes of block length n and distance
n/2 which are not (2, 2)-separating.

Proof: Suppose it is not, let x, y, z, w be 4 words where there is no coordinate i such that xi =
yi 6= zi = wi. Then for every fixed i, the contribution of coordinate number i to the sum of the four
Hamming distances ∆(x, z) + ∆(x,w) + ∆(y, z) + ∆(y, w) is at most 2. Thus, by summing over all
i, the sum of these four distances is at most 2n, which is impossible.

The code consisting of x = 1111, y = 0000, z = 0011, and w = 1100 has distance d = n/2 and
is not (2, 2)-separating, showing that the condition d > n/2 cannot be further relaxed. 2

We also point out that the condition d > n/2 is strictly stronger than the condition d >

m1/2 + n/4 of Lemma 2. There are some simple codes in which d > n/2 but for which the
inequality d > m1/2 + n/4 does not hold. Indeed the code with the following four words

111 111 111 111 111 1111
001 001 001 001 001 0000
010 010 010 010 010 0000
100 100 100 100 100 0000

17

is an example. Here n = 19, d = 10,m1 = 14 and it is clearly (2, 2)-separating, as d > n/2, but the
inequality d > m1/2 + n/4 does not hold.

18

