A Fuzzy Vault Scheme
(Extended Abstract)

Ari Juels
RSA Laboratories
Bedford, MA, USA

ajuels@rsasecurity.com

Abstract

‘We describe a simple and novel cryptographic construction
that we refer to as a fuzzy vault. A player Alice may place
a secret value & in a fuzzy vault and “lock” it using a set
A of elements from some public universe U. If Bob tries
to “unlock” the vault using a set B of similar length, he
obtains k only if B is close to A, i.e., only if A and B over-
lap substantially. In constrast to previous constructions of
this flavor, ours possesses the useful feature of order invari-
ance, meaning that the ordering of A and B is immaterial
to the functioning of the vault. Our scheme enjoys provable
security against a computationally unbounded attacker.

1 Introduction

Alice is a movie lover. She is looking to find someone who
shares her taste in movies, but does not want to reveal in-
formation about her preferences indiscriminately to other
people. One approach she might take is to compile a set
A of her favorite movies and publish it in a concealed form.
For instance, Alice might post to a Web newsgroup a cipher-
text C'4 representing an encryption of her telephone number
tel 4 under the set (here, key) A. In this case, if another per-
son, say Bob, comes along with a set B of his own favorites
that is identical to A, then he can decrypt C4 and obtain
Alice’s phone number. If Bob tries to decrypt C4 with a
set different than Alice’s, he will fail to obtain her telephone
number. A drawback to this approach is its exactitude, or
lack of error-tolerance. If Bob’s interests are very similar to
Alice’s, e.g., if he likes two or three films that Alice doesn’t,
then he will not learn tel 4. It seems very likely in this case,
though, that Alice would still like Bob to obtain her tele-
phone number, as their tastes are quite similar.

In this paper, we introduce the notion of a fuzzy vault.
This is a cryptographic construction whereby Alice can lock
her telephone number tel 4 using the set A, yielding a vault
denoted by V4. If Bob tries to unlock the vault V4 using his
own set B, he will succeed provided that B overlaps largely
with A. On the other hand, anyone who tries to unlock
Va with a set of favorite movies differing substantially from
Alice’s will fail, helping to ensure that Alice’s set of favorites
remains private. Thus, a fuzzy vault may be thought of
as a form of error-tolerant encryption operation where keys
consist of sets. Our fuzzy vault proposal has two important
features that distinguish it over similar, prior work. First,
the sets A and B may be arbitrarily ordered, i.e., true sets
rather than sequences. Second, in contrast to previous work,

Madhu Sudan
MIT LCS
Cambridge, MA, USA

madhu@mit.edu

we are able to prove information-theoretic security bounds
over some natural non-uniform distributions on the set A.

FError-tolerant cryptographic algorithms are useful in
many circumstances in which security depends on human
factors, and thus exactitude represents a drawback. We of-
fer just a few examples here, all of which might benefit from
use of our fuzzy vault scheme:

1. Privacy-protected matching: As an extension of
our movie lover’s example above, we might consider a
business scenario. Bisco Corp. is looking to sell routers
possessing a set A = {a1,a2,...,ax} of specifications.
It might publish a fuzzy vault V4 with its identity &,
locked under A. If Disco Corp. is looking for routers
with a set B of similar specifications, then it will be
able to open the vault. Anyone who tries to unlock
the vault with a dissimilar set will not learn x. (We
address this idea in detail later in the paper, and de-
cribe an important security enhancement using on-line
throttling mechanisms.)

2. Personal entropy systems: Proposed by Ellison et
al. [5], this is a system that enables users to recover
passwords by answering a series of questions. In recog-
nition of the unreliability of human memory, the system
permits users to answer some of these questions incor-
rectly. A serious vulnerability in this system is exposed
in [2], who show more broadly that the underlying
hardness assumption is weak. Our fuzzy vault scheme
offers an alternative implementation that is provably
secure in an information-theoretic sense and that may
involve use of sets, and not just fixed-order answers.

3. Biometrics: Alice authenticates to her server us-
ing fingerprint information. Her system administrator
wishes to store her fingerprint on the server or, more
precisely, a set A of features characterizing her finger-
print. (Such sets are known as biometric templates.) If
an attacker breaks into the server, however, Alice does
not want her template A compromised. An additional
complication is that biometric systems are error-prone:
When Alice tries to authenticate herself, her fingerprint
reader is likely to produce a template A’ that is simi-
lar to, but not identical to A (with bit errors and ran-
dom permutation and erasure of elements). Alice might
store a PIN locked in a fuzzy vault on a set A of fea-
tures describing her fingerprint, thereby achieving both
error-tolerance and privacy. Note that order-invariance
is critical here. It is usually not possible to impose an

order effectively on biometric features because of the
problem of erasures. For this reason, previous schemes
like that of Juels and Wattenberg [7] described below
are unlikely to work well for this problem.

1.1 Previous work

A somewhat less naive approach to a fuzzy vault con-
struction than straightforward encryption might be achieved
through use of Shamir secret sharing techniques [12]. Alice
partitions her secret value & into shares s1,s2,...,sn, and
encrypt these shares respectively under each of the elements
ai,a2,...,a, in her set A. This would yield a set of ci-
phertexts e1,e2,...,en. Given use of a (¢, n)-secret sharing
scheme, Bob would only need to decrypt ¢ shares successfully
in order to unlock Alice’s secret k. The problem with this
approach is twofold. First, suppose that Bob’s set B consists
of elements b1,b2,...,b,. Because A and B are unordered
sets, Bob has no way of knowing which of the ciphertexts
e; to try to decrypt with a given set element b;. Even if
Bob tries all n? possible decryption operations, there is a
second problem: He still does not know which decryptions
were successful. Straightforward mechanisms to reveal this
information to Bob leak substantial information about A.
Indeed, this may be regarded as the source of the weakness
in, e.g., the Ellison et al. construction. It is also possible for
Bob to try to deduce by means of a brute-force search which
elements of B do not overlap with those of A. This strat-
egy is inflexible and likely to be prohibitively slow in many
practical scenarios, as the computational requirements grow
exponentially in the size of |[A[) B|.

To overcome these difficulties, we invoke error-correcting
codes as the basis for our construction. Given the strong
affinities between error-correcting codes and cryptographic
codes, it is not surprising that error-correcting codes appear
in many areas of cryptography, such as quantum cryptogra-
phy, public-key cryptography (via the well known McEliece
cryptosystem) [9], and cryptanalysis, just to name a few ex-
amples. We do not explore this extensive branch of the lit-
erature here. We note, however, that Reed-Solomon codes,
the most popular form of error-correcting code and the one
we focus on here, may be viewed as a general, error-tolerant
form of Shamir secret sharing.

The starting point for our fuzzy vault construction is
the fuzzy commitment scheme of Juels and Wattenberg [7],
which is also based on the use of error-correcting codes. This
is a cryptographic primitive whereby a user commits to a se-
cret value & under a key z. The user may decommit using
any key z’ that is “close” to x under some suitable metric,
such as Hamming distance. An attacker without any knowl-
edge of z, however, cannot feasibly decommit . One appli-
cation of fuzzy commitment, as suggested by the authors, is
to securing biometric systems, as described above. An en-
rolled fingerprint image (known as a template), for example,
might be viewed as a key z. The user tries to authenticate
using another, slightly different image of the same finger,
which we may denote by z’. Authentication is successful if
and only if 2’ is “close” to x.

As the fuzzy commitment scheme in [7] is antecedent to
our own, we briefly sketch the details. Let F be a field, and
C be the set of codewords for some error-correcting code;
assume that codewords lie in F"*. To commit to a value
z € F™, the user selects a codeword ¢ uniformly at random
from C and computes an offset of the form § = ¢ —z €
F™, i.e., the difference over individual field elements. The

commitment consists of the pair (J,y), where y = h(c) for a
suitable one-way function h. To decommit using key z’, the
user computes § +z’ and, if possible, decodes to the nearest
codeword ¢/. The decommitment succeeds iff h(¢') = y.

The construction in [7] has the advantageous features of
conceptual simplicity and the ability to make use of any un-
derlying error-correcting code. Moreover, provided that z
is drawn uniformly at random from F™, the scheme enjoys
rigorously proveable security linear in the cardinality of C.
Suppose that the attacker gains no information about ¢ or z
from y, as would be the case under a random oracle assump-
tion on h given sufficiently large security parameters. [t is
easy to see then that the task of the attacker is to guess ¢ uni-
formly over C. A similar, less resilient antecedent scheme is
proposed in [3], while another system with similar goals but
no rigorously provable security characteristics is proposed in
[13].

Note that if the hashed value h(c) is removed from the
Juels and Wattenberg scheme, i.e., if we no longer think of
it as a commitment scheme, then we obtain a kind of fuzzy
vault in which the vault itself is equal to . If z is uni-
formly distributed, then the scheme enjoys easily provable
information-theoretic security, i.e., security against a com-
putationally unbounded attacker (also proportional to the
cardinality of C). Like our own fuzzy vault construction,
this one can also be applied to any of the three practical
scenarios described above, i.e., privacy-protected matching,
personal entropy systems, or biometrics.

As a fuzzy vault variant, though, the scheme of Juels and
Wattenberg has two shortcomings. First, while it tolerates
some number of errors in the information symbols in z, it
does not tolerate substantial re-ordering of these symbols.
Given that translation and rotation errors are common in,
e.g., biometric systems, it is reasonable to expect that the
image 2’ may consist of a permutation of symbols in z. The
property of order-invariance is thus likely to be desirable in
a fuzzy commitment scheme. A second shortcoming of [7] is
the difficulty of proving rigorous results about security over
non-uniform distributions. Our proposed scheme addresses
these two shortcomings, and may be thought of as an order-
invariant version of the Juels-Wattenberg scheme.

1.2 Our scheme

Like the scheme of Juels and Wattenberg, ours is conceptu-
ally simple, and can be implemented using any underlying
error-correcting code (although we focus on Reed-Solomon
codes in our exposition here). While possessing the advan-
tages of order-invariance and easier analysis on non-uniform
distributions, our scheme does have a couple of drawbacks
that are important to note from the outset. First, it typi-
cally has substantially greater — though still quite practical
— memory requirements than the Juels-Wattenberg scheme.
Second, it is somewhat less flexible in terms of available pa-
rameter choices at a given security level, as we shall see.
Let us briefly sketch the intuition behind our scheme.
Suppose that Alice aims to lock a secret £ under set A. She
selects a polynomial p in a single variable such that p en-
codes & in some way (e.g., has an embedding of & in its coeffi-
cients). Treating the elements of A as distinct z-coordinate
values, she computes evaluations of p on the elements of
A. We may think of Alice as projecting the elements of A
onto points lying on the polynomial p. Alice then creates
a number of random chaff points that do not lie on p, i.e.,
points that constitute random noise. The entire collection

of points, both those that lie on p and the chaff points, to-
gether constitute a commitment of p (that is, x). Call this
collection of points R. The set A may be viewed as identi-
fying those points in R that lie on p, and thus specifying p
(and k). As random noise, the chaff points have the effect
of concealing p from an attacker. They provide the security
of the scheme.

Suppose now that Bob wishes to unlock & by means of a
set B. If B overlaps substantially with A, then B identifies
many points in R that lie on p, so that Bob is able to recover
a set of points that is largely correct, but perhaps contains a
small amount of noise. Using error correction, he is able to
reconstruct p exactly, and thereby . If B does not overlap
substantially with A, then it is infeasible for Bob to learn &,
because of the presence of many chaff points. (If B overlaps
“somewhat” , then he may still be able to recover k. The gap
between feasible recovery and infeasible is fairly small, how-
ever, as we discuss below.) We present details and analysis
in the body of the paper.

The hardness of our scheme is based on the polynomial
reconstruction problem, a special case of the Reed-Solomon
list decoding problem [2]. Other schemes making use of this
problem include, for example, that of Monrose, Reiter, and
Wetzel for hardening passwords using keystroke data [10].
An important difference between our scheme and previous
ones of this flavor is our range of parameter choices. The
scheme in [10] bases its security on the computational hard-
ness of small polynomial reconstruction instances, while we
select parameters enabling us to achieve information theo-
retic security guarantees for the same problem.

Organization

We sketch protocol and security definitions for our fuzzy
vault scheme in section 2. In section 3, we present protocol
details. We offer security analysis in section 4. Due to space
constraints, we omit proofs from this extended abstract.

2 Definitions and Background

We work over a field F of cardinality ¢ and a universe U;
for convenience, we assume in our exposition that & = F,
although this need not be the case in generally. Our aim is to
lock a secret value k € F* under a secret set A € Ut = F?,
for protocol parameters k and . We consider a fuzzy vault
algorithm Lock that takes as input a secret k and set A
and outputs a vault V4 € F" for some security parameter
r. The algorithm LOCK may be (and for our purposes will
be) probabilistic.

A corresponding decryption algorithm UNLOCK takes as
input a vault Va4 € F” and a decryption set B € U*. The
output of this algorithm is a plaintext value &’ € F*, or else
"null’ if the algorithm is unable to extract a plaintext.

Our goal is to come up with a pair of vault lock-
ing/unlocking algorithms LLOCK/UNLOCK that allows recon-
struction of the plaintext & when the decryption set B is
close to the encryption set A. At the same time, we want
the vault V4 not to reveal x. Recall from above that we are
interested in algorithms that are order invariant. In other
words, the ordering on the sets A and B should have no real
impact on the locking and unlocking procedures.

2.1 Requirements

The next three definitions formalize the requirements of a
good pair (LocK, UNLOCK) of algorithms for our fuzzy vault
scheme. We say that a probability is negligible if it is asymp-
totically smaller than any positive polynomial in ¢ and .
We say that a probability is overwhelmang if it is larger than
1 — ¢ for some negligible quantity {. Our first definition
outlines the completeness condition for our algorithms, i.e.,
what should happen when the players are honest.

Definition 1 An locking/unlocking pair (LOCK, UNLOCK)
with parameter set (k,t,) is complete with e-fuzziness if the
following holds. For every k € F* and pair of sets A, B € U
such that |A— B| < ¢, we have UNLOCK(B, LOCK(A4, k)) = &
with overwhelming probability.

We now formalize the security, and in particular the
soundness of the algorithmic pair (Lock, UNLOCK) in an
information-theoretic sense. Assume that A is selected ac-
cording to some potentially non-uniform distribution d. We
seek to characterize the ability of an attacker with unlimited
computational power to determine & from LoCK(A,«). We
assume that this attacker is given knowledge of a uniformly
random d-fraction of A4, i.e., a random subset A’ of at most
6t elements in A (where we assume dt to be an integer). This
assumption that the adversary has knowledge of part of the
secret key A is slightly unorthodox. In a “fuzzy” system,
however, it is natural to consider such notions of partial ad-
versarial knowledge, as highlighted in our examples below.
Of course, other security assumptions are possible.

‘We characterize security in terms of the following exper-
iment with a computationally unbounded adversary Adwv for
a given parameter set. This adversary Adv takes as input
a set of dt elements of A, the parameters ¢ and k, and a
vault V4 on A, and outputs a guess at k. Formally, Adv is
an algorithm Adv : U x Z2 x F© — F* with no bound
on computational complexity. Let €4 denote selection from
probability distribution d, and €y denote uniform random
selection. Here, and in all analysis that follows, we assume
that & is generated uniformly at random, as & is typically
used as a key for some independent ciphertext or crypto-
graphic protocol. Let {A}; denote the set of subsets of A of
cardinality 7. The experiment is as follows.

Experiment Attack(L.oCk, Adv)
k€ F* AcaUdt; A ey {Alst;
if Adv(A’,t,k,Lock(4,k)) =&

Output’1’;
else
Output’0/;

This leads to the following definition.

Definition 2 An encryption/decryption patr
(Lock, UNLOCK) s information theoretically secure with pa-
rameter pair (6, u) if pr[Attack(LOCK, Adv) = 1] < p for any
computationally unbounded adversary Adv.

Let d’ be the probability distribution d restricted to sets
A such that A’ C A. Observe that given vault Va, the
best strategy a (computationally unbounded) adversary can
adopt is to output a plaintext «’ such that the expression

w(’ila VA) - pTAEd/Z/lt [LOCK(Aa ’i/) - VA]

is maximized. For a given vault V4 = LoCkK(A, k), the
probability of success of this strategy is easily seen to be
w(k, Va)/ >, coe w(K', Va).

Remark: Note that our definition of information theoretic
security does not necessarily imply that the secret & is fully
protected in an information theoretically secure manner. In
particular, we may have mutual information I(L.OCK, &) > 0,
i.e., our scheme may offer information theoretic hiding of &
over a set of possible values smaller than F*.

2.2 Reed-Solomon codes

It is possible to construct a fuzzy vault scheme based on
essentially any type of linear error-correcting code. To
sharpen our conceptual focus and analysis, however, we
restrict our attention to Reed-Solomon (R-S) codes. We
are interested primarily in (k,t)-codes, i.e., those in which
codewords consist of ¢ information symbols, i.e., field el-
ements. FEach codeword corresponds to a unique polyno-
mial p of degree less than k over F; thus there are ¢
codewords in total. In the simplest embodiment of such
an R-S code, we may express a codeword as the sequence
{v1 = p(1),y2 = p(2),...,yt = p(t)}, where 1,2,...,¢ repre-
sent the first ¢ elements of the field F.

If ¢ > k, then a codeword may be seen to contain some
redundancy. The presence of such redundancy is what per-
mits the code to be used for error correction. Suppose that
d = 1{y1,95,...,y:} is a corruption of the codeword c. In
other words, we have y; # y; for some e-fraction of the in-
formation symbols in ¢/. Provided that ¢ is small enough,
the redundancy of the code is such that given just the cor-
rupted codeword ¢/, we can recover the original codeword
c. For this, we use a decoding algorithm that we denote by
RSpDECODE. The algorithm RSDECODE takes ¢ as input,
and provided that too much corruption has not occurred,
outputs c.

The most common application of a Reed-Solomon or
other error-correcting code is to message transmission over
a noisy channel. For this, the procedure is as follows. The
sender takes a message k € F* and encodes it as a polyno-
mial of degree at most k. The sender computes the corre-
sponding codeword ¢ and transmits it over a noisy channel.
The noise on the channel causes a corrupted codeword ¢’ to
be obtained by the receiver. The receiver applies RSDECODE
to ¢, obtains ¢, and recovers the original polynomial p and
thus the message k. As we shall see, in our scheme we may
think of the noise on the channel as arising from differences
between the sets A and B. By guessing A inaccurately, Bob
introduces noise into the channel transmitting . (In con-
trast, the fuzzy commitment scheme in [7] never actually
makes explicit use of the message space.)

2.3 Our special use of Reed-Solomon codes

For our constructions, it is convenient to consider a gener-
alization of Reed-Solomon codes. We think of a codeword
as consisting of an evaluation of a polynomial p over any
set of ¢ distinct points in F. In other words, we think of a
codeword as consisting of a set of pairs {(z;,¥:)Y—1, where
z; € F, all of the z; are distinct, and y; = p(z;).

In this generalized view, the decoding algorithm
RSdecode takes as input a collection of points which are
presumed to lie preponderantly on a single polynomial of
pre-specified degree at most k—1. The RSdecode algorithm,

if successful, outputs a polynomial p intersecting the large
majority of input points.! Otherwise, the algorithm outputs
‘null’. This will happen, for instance, if no polynomial of
the right degree matches the inputs adequately, or if com-
putation of such a polynomial is too hard because of too
much corruption of the associated codeword. The following
are parameter specifics for the algorithm RSdecode.

Public parameters: A field F.

Input: A degree parameter k£ < g and a set of points Q =
{(zi,yi)}zzl such that z;,y; € F for 1 <¢ < ¢t

Output: A polynomial p of degree less than k over F, or else
'null’. We write RSdecode(k, Q) to denote the output on inputs
k and Q.

For our (practical) purposes, the best choice for
RSdecode is generally the classical algorithm of Peterson-
Berlekamp-Massey [1, 8, 11]. This algorithm decodes suc-
cessfully if at least k;t points in ¢ share a common poly-
nomial. The best version of RSdecode to date, i.e., the one
most likely to recover p successfully, is that of Guruswami
and Sudan [6]. This algorithm successfully determines p pro-
vided that the number of points in @ that lie on p is at least
vkt. Our preference for the classical algorithm is based on
the fact that this algorithm is in general much more effi-
cient than the Guruswami-Sudan, and has the advantage of
being well studied and widely implemented. Moreover, for
many of the parameter choices we are likely to encounter in

practice, % is fairly close to vV kt.

3 The Fuzzy Vault Algorithms

We are now ready to detail our locking and unlocking al-
gorithms for our fuzzy vault scheme. We first present the
algorithm L.ock. The basic idea here is to create a general-
ized Reed-Solomon codeword representing the secret & (as
a corresponding polynomial p). This codeword is computed
over z-coordinates corresponding to elements in the set A.
To conceal the codeword, we add chaff points, i.e., random
noise in the form of random (z;,y;) pairs.

In our exposition here, we assume some straightforward,
publicly agreed-upon method for representing the secret « as
a polynomial (e.g., taking the information symbols in & to be
the coeflicients of the polynomial). We simply write p — &
to represent this conversion. We let €y denote uniformly
random selection from a set.

Public parameters: A field F, a Reed-Solomon decoding algo-
rithm RSDECODE.

Input: Parameters k,t, and r such that £k < ¢t <r < q. A secret
k€ FF. Aset A= {a;}}_,, where a; € F.
Output: A set R of points {(x;,y;)}]_; such that z;,y; € F.

Algorithm Lock
X, R — ¢;
P K;
for :=1 to ¢t do
(zi,4:) — (as,plas));
X «— X bigcupz;;

LSo-called set decoding algorithms may in fact produce a set of
candidate polynomials. We assume that a successful algorithm out-
puts one of these selected uniformly at random from the entire set.

R — R J(zi);
for i=t+1 to r do

z; € F—X;

yi v F —{p(zi)};

R RJ(zi,vi);
output R;

So as not to leak information about the order in which the
z; are chosen, the set R may be output in a pre-determined
order, e.g., points in order of ascending z-coordinates, or
else in a random order. Note that chaff points in LOCK are
selected so as to intersect neither the set A nor the polyno-
mial p. This is for technical reasons, namely to simplify our
security proofs. We refer to the set R and the parameter
triple (k,t,r) together as a fuzzy vault, denoted by Va.

As explained above, to unlock a vault V4 created by Alice
as above, Bob tries to determine the codeword that encodes
the secret x. Recall that the set A specifies the z-coordinates
of “correct” points in R, i.e., those that lie on the polynomial
p. Thus, if B is close to A, then B will identify a large
majority of these “correct’ points. Any divergence between
B and A will introduce a certain amount of error. Provided
that there is sufficient overlap, however, this noise may be
removed by means of a Reed-Solomon decoding algorithm.
We write < p to denote conversion of a polynomial of
degree at most k to a secret in F*, i.e., the reverse of the

b;,0
procedure employed in Lock. We let (x;,y;) ¢i0) R denote

projection of R onto the z-coordinate b;. In particular, if
there is a pair (b;,y) € R for any y, then (x;,v:) = (bs,v);
otherwise a null element is assigned to the pair (z;,y;). Our
unlocking algorithm is now as follows.

Public parameters: A field F, a Reed-Solomon decoding algo-
rithm RSDECODE.

Input: A fuzzy vault V4 comprising a parameter triple (k,¢,r)
such that £ <t < r < q and a set R of points {(z;,y;)};_; such
that z;,y; € F. A set B = {bi}zzl, where b; € F.

Output: A value &' € F* | J {!null’}.

Algorithm UNLOCK

Q—¢;
for :=1 to t do
(@i, ys) “2 R;
Q— QU @i, u);
&' «— RSpECODE(k, Q);
output &;

If the final decoding operation is successful, then the
algorithm outputs a secret « which should be equal to &
if the set B is close to the original set A. If the decoding
operation fails, then the algorithm outputs 'null’.

The following proposition characterizes the completeness
of our fuzzy vault scheme.

Proposition 1 Given wuse of the Peterson-Berlekamp-
Massey algorithm for RSdecode, the algorithm pair
(Lock, UNLOCK) above with parameter triple (k,t,r) is com-
plete with (152)-fuzziness.

As an example of how the above algorithms might be
applied, we briefly consider a parameterization of k and ¢ in
what we call the movie lover’s problem, i.e., the problem de-
scribed above in which Alice is seeking someone with similar

taste in movies. We defer discussion of security parameters
for the next section.

Example 1 (The movie lover’s problem) Let us con-
sider the movie lover’s problem with a total set of 10* titles
in which Alice selects a set A of t = 22 different favorites.?
We might choose k = 14. Since % = 18, another movie
lover with a set B of 22 favorite titles will be able to decrypt
the digital box via the Peterson-Berlekamp-Massey algorithm
provided that the original set A and the new set B intersect
on at least 18 titles. Notice that for this choice of param-
eters, it is feasible to compute aoll possible subsels of size
18 from the set of size 22, and try interpolating from each
subset. This would result, however, in an average of 3657.5
trials, while the cost of one decoding step is easily within an
order of magnitude of one interpolation step. Thus the use
of RSdecode speeds up® the decommitment step by at least a
factor of 300.

4 Security

The security of our fuzzy vault construction depends on the
number of chaff points r — ¢ in the target set R. The greater
the number of such points, the more “noise” there is to con-
ceal p from an attacker. As many chaff points are added
to R, there begins to emerge a set of spurious polynomials
that look like p, i.e., polynomials that have degree less than
k and agree with exactly ¢ points in R. Briefly stated, the
more chaff points there are, the greater the probability that
some set of ¢ of these chaff points (and/or real points) align
themselves by chance on some polynomial of the desired de-
gree. In the absence of additional information, an attacker
cannot distinguish between the correct polynomial p and all
of the spurious ones. Thus, p is hidden in an information-
theoretically secure fashion in R, with security proportional
to the number of spurious polynomials. Note that the secu-
rity of the vault V4 depends exclusively on the number of
such polynomials, and not on the length of the secret key «;
the vault is often weaker than the secret & it protects (which
is acceptable for the applications we describe). The follow-
ing lemma proves that with high probability many polyno-
mials degree less than k agree with the target set R in ¢
places, i.e., that there are many spurious polynomials. This
lemma and its proof are based on similar results of Dumer
et al. [4].

Recall that the locking algorithm Lock picks ¢ points
according to a given p of degree less than k and r—{ random
points (z;,y;) in F X F and outputs this set in random
order as a vault hiding p (i.e., k). Recall that ¢ denotes the
cardinality of F. The following lemma is parameterized by
7k, and ¢t and a small real number p.

Lemma 1 For every p > 0, with probability ot least 1 — p,
the target set R generated by the algorithm LOCK on poly-
nomial p and locking set A satisfies the following condition:
There exist at least %qkit(r/t)t polynomials p’ of degree less
than k such that R includes exactly i poinis of the form
(z,p/(z)) € Fx F.

2We consider 22 titles, as this is the number of password questions
used in [5], which seems a good example application for our ideas.

3 Another way of viewing this is that the fuzzy vault algorithm can
be enhanced by additional use of brute-force search, thereby improv-
ing the security threshold. This improvement can be made substantial
without a loss of speed relative to the pure brute-force algorithm.

Example 2 As an example, consider the following choice
of parameters. Suppose we pick a field of size approrimately
q=10% and setr = q. Nowlett = 22, i.e., the movie lovers
pick twenty-two of their favorite movies out of a choice of q,
and we chaff the data with q—22 random points. Suppose we
use this information to encrypt a polynomial of degree less
than 14 (as in our earlier example). Then we expect to see
about 2% polynomials of degree less than 14 agreeing with
22 out of the roughly 10* points in R. In particular, with
probability at least 1 — 2742, there will be 2*° polynomials
ezhibiting this behavior. (Thus, we achieve what may be
roughly characterized as a 43-bit security level.)

The example above suffers from a significant loss in secu-
rity due to a naive transformation of expected values to high
probability results in the proof of Lemma 1. We believe that
this loss in security is just an artifact of the proof, and that
the true answer is perhaps more along the lines “With prob-
ability at least 1 — 2752, there are 2%° polynomials agreeing
with the given data on 22 points.” (Thus, we get roughly
83-bit security.) Again, this conjecture remains open at this
stage. For the moment, however, we try a different choice
of parameters to strengthen our security analysis.

Example 3 Again, we pick r = ¢ = 10* and t = 22. This
time we use this information to encrypt o polynomial of de-
gree less than 18. The decommitment works correctly with
20 agreements, and the running time is faster than a brute-
force search by a factor of at least 10. Then we expect to see
about 2*3° polynomials of degree less than 18 agreeing with
22 out of the approzimately 10* points in Q. In particular,
with probability at least 1 — 27 °, there will be 27° polynomi-
als exhibiting this behavior. (Thus, we achieve what may be
roughly characterized as a 70-bit security level.)

As stated above, we believe our scheme more amenable
to analysis over non-uniform distributions that that in [7].
As an example, we note that the above lemma naturally
adapts itself to the case where the set of locking sets A are
not all considered equally likely. For simplicity we consider
the case where A is equally likely to come from some family
of sets £ C 24 = 2% | ie., a family of sets over Y = F. We
have the following lemma.

Lemma 2 For every p > 0, with probability ot least 1 — p,
the target set R generated by the algorithm LLOCK to commit
to a polynomial p with locking set A satisfies the following
condition: There exist at least %qk7t|8| polynomials p' € P
such that R agrees with p' on some subset of t points in the

famaly £.

Example 4 Consider a variant of the mowie lover’s prob-
lem where the movie lover is expected to choose 2 mouvies
each from 10 calegories, and each category consists of 1000
mouwies. In this case, the distribution on movies has support
on only ((1(2)3))10 sets. The above lemma shows that with
r =10% ¢t = 20 and k = 16, one expects to find 2% poly-
nomials of degree at most 15 agreeing with the data on 20
points, with 2 agreements each from each of 10 categories.
As usual, this can be converted to the following probability
statement: With probability at least 1 — 2752 there emist 2°°
polynomials of degree ot most 15 that agree with the given
data points on two points each in each of the 10 categories.
(Thus, we achieve roughly a 58-bit security level.)

Finally, we give a characterization of the information-
theoretic security of LOCK according to Definition 2.

Theorem 3 For every ¢ > 0, the al-
gorithm LOCK s (9, p)-information theoretically secure for

p= 2\/%qk7(1+6)t(7-/t)(176)t.

Remark: It is possible to make much stronger security
claims under reasonable computational assumptions on the
hardness of Reed-Solomon decoding, as in, e.g., [10]. We
do not explore this possibility here, as there is no general
consensus on a basis for such hardness assumptions.

References

[1] E. R. Berlekamp. Algebraic Coding Theory. McGraw
Hill, New York, 1968.

[2] D. Bleichenbacher and P. Nyuyen. Noisy polynomial in-
terpolation and noisy chinese remaindering. In B. Pre-
neel, editor, Furocrypt '00, pages 53-69, 2000.

[3] G.I. Davida, Y. Frankel, and B.J. Matt. On enabling
secure applications through off-line biometric identifi-
cation. In IEEE Symposium on Privacy and Security,
1998.

[4] I. Dumer, D. Micciancio, and M. Sudan. Hardness of
approximating the minimum distance of a linear code.
In Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 475-484,
1999.

[5] C. Ellison, C. Hall, R. Milbert, and B. Schneier. Pro-
tecting Secret Keys with Personal Enitropy, pages 311—
318. 2000.

[6] V. Guruswami and M. Sudan. Improved decoding of
Reed-Solomon and algebraic-geometric codes. In FOCS
’98, pages 28-39. IEEE Computer Society, 1998.

[7] A. Juels and M. Wattenberg. A fuzzy commitment
scheme. In G. Tsudik, editor, Sizth ACM Conference
on Computer and Communications Security, pages 28—

36. ACM Press, 1999.

[8] J. L. Massey. Shift register synthesis and BCH de-
coding. IEEFE Transactions on Information Theory,
15(1):122-127, 1969.

[9] R.J. McEliece. A public-key cryptosystem based on al-
gebraic coding theory. Technical Report DSN progress
report 42-44, JPL, Pasadena, 1978.

[10] F. Monrose, M. K. Reiter, and S. Wetzel. Password
hardening based on keystroke dynamics. In G. Tsudik,
editor, Sizth ACM Conference on Computer and Com-
munications Security, pages 73-82. ACM Press, 1999.

[11] W. W. Peterson. Encoding and error-correction proce-
dures for Bose-Chaudhuri codes. IRE Transactions on
Information Theory, I'T-60:459 — 470, 1960.

[12] A. Shamir. How to share a secret. Communications of

the ACM, 22:612-613, 1979.

[13] C. Soutar. Biometric encryption for secure key genera-
tion, January 1998. Presentation at the 1998 RSA Data
Security Conference.

