SIGACT News Complexity Theory Column 34

Lane A. Hemaspaandra
Dept. of Computer Science, University of Rochester
Rochester, NY 14627, USA 1lane@cs.rochester.edu

Introduction to Complexity Theory Column 34

This issue’s guest columnists are angels. The column was faced with a last-minute cancellation,
and they prepared on very short notice a wonderful column. And I'm sure that many readers of
the column will want to learn even more by, for example, reading their monograph Complexity
Classifications of Boolean Constraint Satisfaction Problems [7].

Future complexity columns include Holzer/McKenzie on a familiar complexity class turning up
in a surprising context, Gasarch (and a host of contributors) on the future of NP, Schaeffer /Umans
on completeness for higher levels of the polynomial hierarchy, Nickelsen/Tantau on partial infor-
mation classes, and Paturi on the complexity of k-SAT,

Regarding the Schaeffer/Umans column, their 2-part column will be in part a kind of Garey
and Johnson for completeness results for ¥ and II¥, ¢ > 2. You can help their project by, if
you have proven natural sets complete for NPNP | coNPNP NPNPNP, coNPNPNP, etc., letting them
(MSchaefer@cti.depaul.edu and umans@microsoft.com) know of your result and its best citation
location. Thanks!

Guest Column: Complexity Classifications of Boolean Constraint
Satisfaction Problems!'

Nadia Creignou? Sanjeev Khanna® Madhv Sudan®

Abstract

Many fundamental combinatorial problems can be formulated as Boolean constraint satis-
faction problems. Roughly speaking, an instance of such a problem consists of a collection of
simple constraints on Boolean variables. Some typical computational goals include finding an
assignment that satisfies all constraints, counting the number of satisfying assignments, or find-
ing an “optimal” satisfying assignment. This article surveys some results that give a complete
taxonomy of complexity of computational problems that arise in this framework. These results

1© 2001, N. Creignou, S. Khanna, and M. Sudan.

2Laboratoire d’Informatique Fondamentale, Université de la Méditerranée, Marseille, 13288, FRANCE.
E-mail: creignou@lim.univ-mrs.fr.

3Dept. of Computer & Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
E-mail: sanjeev@cis.upenn.edu. Supported in part by an Alfred P. Sloan Research Fellowship and by an NSF
Career Award CCR-0093117.

4Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
E-mail: madhu@mit.edu. Supported in part by NSF grants CCR-9875511, CCR-9912342 and by MIT-NTT award
MIT2001-01.



highlight the fact that Boolean constraint satisfaction problems offer an excellent framework
to study central problems in a host of standard complexity classes and provide formal basis
for “empirical observations” concerning computational phenomena in these classes. We also
describe a unifying toolkit for obtaining such taxonomy results for a variety of computational
goals.

1 Introduction

One of the fundamental goals of complexity theory is to classify computational problems as easy or
hard. Other goals include determining notions of “easiness” or “hardness”; proving that different
notions of hardness may or may not coincide (such as, say, showing NP different from P); and to
see what makes problems hard or easy. At the moment we have plenty of notions of hardness and
few clues on how to prove that some of these notions may or may not coincide. Let us suppose that
some day we realize our dreams of proving as strong lower bounds as we could hope for, for specific
problems. Even in this wildly optimistic scenario, we do not expect complexity theory to culminate
with a compact classification describing which problems are easy and which ones hard. We will
continue to need to investigate individual problems to ascertain their computational complexity.

There are several reasons why a complete taxonomy of computational problems is impossible.
To start with, there are infinitely many computational problems. Furthermore, Rice’s theorem
says that given a completely general computational problem (by say a Turing machine deciding it),
determining the minimal computational complexity required to solve the problem is undecidable.
Even worse, the computational complexity of the problem may not have one of finitely many
possibilities. The famed theorem of Ladner [17] shows, for instance, that if NP#£P, then there are
infinitely many incomparable problems in NP. (Specifically, the equivalence relationship induced
by polynomial time interreducibility splits into infinitely many equivalence classes.) So there is no
hope for a taxonomy of computational problems!

One may give up completely upon hearing this terrible news; or like some brave researchers
(authors of this article included) try to find a way around this obstacle. The big barrier in find-
ing complete classifications of the computational complexity of problems is the generality of the
computational problems considered. These problems are so general as to include the classification
task itself, and thus allow diagonalization and then follows a host of impossibility results. Thus, to
make some positive steps in the direction of classification, one has to limit one’s scope and restrict
the class of problems considered to a relatively simple (but still infinitely large) class. Results of
such a nature—that consider restricted subclass of problems in well-studied complexity classes, and
give simple rules that can be applied to extract the computational complexity of every problem in
the class—are what we call complexity classifications. In this article we will survey some of these
classifications (and ahem ... plug for a research monograph [7] written by the authors on this topic).

1.1 Brief History

The first complexity classification result is a beautiful result due to Schaefer [20]. Schaefer gen-
eralizes the classical 3-SAT problem naturally to allow other forms of simple Boolean constraints
on Boolean variables. For each class of constraints allowed, he derives a different computational
problem, whose complexity he examines. Schaefer’s paper is a well-referenced one in the theory
literature. Most often it is cited for showing that “not-all-equal-three-sat” or “one-in-three-sat” is
NP-complete. These are just minor corollaries to his main result which pins down the complexity



of every one of the problems considered. On purely technical grounds, this result is non-trivial. A
reader wishing to verify this, may try proving the NP-hardness of “one-in-three-sat” on his/her own
and seeing the level of complexity that enters! But the paper actually tackles much harder issues.
For example, the exact nature of the “constraints” used in specifying a constraint satisfaction prob-
lem seem to be a feature of an instance, rather than of a computational problem, and yet as we well
know, complexity is a characteristic of the problem and not an instance. Dealing with such issues
requires significant care, and Schaefer deals with them naturally. In the process, Schaefer derives,
completely naturally, a subclass of NP that exhibits an amazing dichotomy—every problem in this
class is either in P, or is NP-complete.

There seems to have been no follow-up work on Schaefer’s through the eighties, but the nineties
saw a diverse collection of researchers motivated by varying interests following up on Schaefer’s
work. Dichotomy or, more generally, classification results are of interest for a multiple reasons. On
the one hand they give a compact presentation of known results. So it is reasonable to ask what
classes (other than NP) contain classes that exhibit dichotomy. This issue motivated the work of
Creignou et al. [4, 5, 6] and Hunt et al. [9]. Within NP, one can wonder if larger classes exhibit
dichotomy—this issue was considered by Feder and Vardi [8] and Jeavons et al. [11]. Further, the
reductions used in these classification results become interesting in their own, and this motivated
the study of Hunt et al. [10], as also the monograph by the authors [7]. In fact, a tangential
result along these lines shows how such reductions may even be found by an automated search (see
Trevisan et al. [23]). Khanna et al. [15] show how to use classification results to unify and extend
many results in the study of the approximability of optimization problems. We will discuss these
results in some detail shortly. First we introduce constraint satisfaction problems.

2 Constraint Satisfaction Problems

We introduce constraint satisfaction problems informally by recalling the prototypical example,
namely 3-SAT. An instance ¢ of 3-SAT consists of m clauses Cy,...,C,, on n Boolean variables
x1,...,Tn. Bach clause is a disjunction of up to 3 literals, where a literal is just a variable, or its
negation. An assignment to the n variables to either “true” or “false” induces an assignment to the
literals naturally. Such an assignment satisfies a clause C; if at least one of the literals contained
in the clause is set to true. It satisfies the formula if all clauses are satisfied. Thus each clause
becomes a constraint on the assignment and the computational problem is that of deciding if there
exists an assignment that satisfies all constraints.

Schaefer considered a generalized family of satisfiability problems, where problems differed in
the nature of constraints that were allowed. Care has to be taken to separate out the template
of the constraints allowed, from their applications to some ordered subset of all variables. The
basic templates that are allowed specify the satisfiability problem, while a specific instance consists
of a collection of applications of such constraints. For example, by restricting all clauses to have
length at most 2—a restriction that changes the problem—we get the 2-SAT problem, which is
significantly easier. Other possible constraint satisfaction problems could include the problem
where every constraint is a linear constraint over GF(2), or where every constraint “monotone” is
a clause involving only positive literals. Both variants give constraint satisfaction problems in P.
However if we allow a mix of linear constraints and monotone constraints then we get an NP-hard
problem! Schaefer studied all such constraint satisfaction problems, which he called “generalized
satisfiability problems” collectively. He gave simple rules showing which ones were NP-hard and



which ones were in P, and further showed there were no intermediate problems.

To formally define the class of problems that Schaefer considered, we have to formalize the
notion of constraints and applications. We do so below. Here onwards we represent Boolean values
by 0 and 1, with 0 representing the logical false.

Definition 2.1 (Constraints and Constraint Families) A constraint is just a function f :
{0,1}* — {0,1} given by a truth table, for some finite k. The arity of such a constraint is k.
A constraint family F is a finite collection of constraints.

Definition 2.2 (Constraint applications) Given n Boolean variables x1,...,x, and a con-
straint f : {0,1}* — {0,1}, a function C : {0,1}" — {0,1} is an application of f to x1,..., 2, if
there exists indices i1,...,i, € {1,...,n} such that C(x1,...,7,) = f(xi, ..., 2;,). °

An application C is satisfied by an assignment to the variables if the constraint evaluates to 1 on
the assignment. We are now ready to define the generalized satisfiability problems of Schaefer [20)].

Definition 2.3 For a constraint family F, the generalized satisfiability problem, SAT(F), is the
problem whose instances consist of m applications of constraints from F to n Boolean variables
T1,...,Tn, and the goal is to decide if there exists an assignment to x1,...,x, satisfying all con-
straints.

As an example, let us consider the family that leads to the 3-SAT problem: For j < i, let
OR; ; denote the function OR; j(z1,...,2;) =21 Vo2 V- Vr; V oz V-V, Let F3gaT =
{OR3,,0R31,0R32,0R33}. Then 3-SAT is the problem SAT(F3_ gaT). Note that negations do
not come for free in this world—so it takes four different functions to cover all different types of
clauses.

We now start to describe Schaefer’s dichotomy theorem. To motivate this theorem, recall that
there are examples of families F for which SAT(F) is in P, while others for which SAT(F) is NP-
hard. Below, we list a collection of different reasons why a SAT(F) problem may be easy. As should
be expected, these reasons identify something special in the family F.

e A constraint f is 0-valid if f(0,...,0) = 1. A family F is 0-valid if all functions in F are
O-valid. Similarly f is 1-valid if f(1,...,1) = 1 and F is 1-valid if all functions in F are
1-valid.

e A constraint f is bijunctive if it can be expressed as a 2-CNF formula. A family is bijunctive
if all its members are bijunctive.

e A constraint is affine if it can be expressed as a conjunction of linear constraints over GF(2).
A family is affine if all its members are affine.

e A constraint is weakly positive if it can be expressed as a CNF formula with at most one
negated literal in each clause. A family is weakly positive it all its elements are weakly
positive. Similarly, a constraint is weakly negative if it can be expressed as a CNF formula
with at most one unnegated literal in each clause. A family is weakly negative it all its
elements are weakly negative.

®Khanna et al. [15] take a somewhat more stringent view on these indices and insist that 41,...,ix should be
distinct. This gives them a more refined collection of problems with ability to separate e.g., the exact 3-sat problem
from the 3-sat problem. Here we will allow i;’s to be repeated.



Schaefer notes that if F is 0-valid or 1-valid or bijunctive or affine or weakly positive or weakly
negative then SAT(F) can be decided in polynomial time. The amazing theorem of Schaefer, is
that for any family that does not fall in one of the above categories, the SAT(F) problem is hard!

Theorem 2.4 ([20]) For every constraint family F, the generalized satisfiability problem SAT (F)
is either in P or is NP-complete. Furthermore SAT(F) is in P if F is 0-valid or 1-valid or bijunctive
or affine or weakly positive or weakly negative, and is NP-complete otherwise.

We will describe some of the essence of the proof later; we first describe some of the subsequent
works in detail.

3 Extending and Generalizing Schaefer’s Results

Schaefer’s result inspired many researchers to study various other complexity classes restricted to
constraint satisfaction problems. Here we list some of the directions of work, and the underlying
motivations.

e Satisfiability, in some appropriate variant, is the commonest example of a complete problem
for many classes including PSPACE, #P, etc. So it is natural to expect that these classes
will also contain a subclass of problems that are variants of generalized satisfiability problems
and that these problems will exhibit a dichotomy. This direction has been investigated in a
number of different works including those of Hunt, Marathe and Stearns [9], Creignou [4],
Kavvadias and Sideri [12], Creignou and Hermann [6], Creignou and Hébrard [5], Reith and
Vollmer [19], Bohler, Hemaspaandra, Reith, and Vollmer [2].

Together, these results give dichotomy theorems for subclasses of a wide variety of complexity
classes including #P, PSPACE, MAX SAT etc. In almost all cases, the easy problems in the
dichotomy are not the same as the easy cases of Schaefer’s problems—making these results
quite non-trivial.

e Within NP, can we find larger classes of problems can exhibit dichotomy? Jeavons et al. [11]
examine this issue by expanding the scope of satisfiability problems to the case of non-Boolean
variables. Note that as the domain of the variables becomes larger, the scope of constraint
satisfaction problems gets richer, and so classification theorems are harder (the more the
problems, the harder the classification). Jeavons et al. do not obtain classification theorems,
and the issue of whether a dichotomy occurs even for constraint satisfaction problems on
ternary variables, remains open to this date.

e Feder and Vardi [8] take an opposite path to the search for the “largest” subclass of NP that
might exhibit dichotomy. They approach the issue from the syntactic perspective. Starting
with Fagin’s syntactic characterization of NP, they work their way down the syntax, ruling out
various operators in the syntactic language and converge upon a syntactic subclass of NP—
termed “monotone monadic strict NP without inequality”—that might exhibit dichotomy.
They show that without all their restrictions, the ensuing class is too general for a dichotomy
to apply (in particular, Ladner’s theorem remains applicable). With all the restrictions, they
do not obtain a dichotomy, but they do show every problem in their class is equivalent (under
randomized polynomial time reductions) to constraint satisfaction problems on some finite
(but non-Boolean domains), thereby converging to the problems studied by Jeavons et al.



e One way to interpret constraint satisfaction problems, and dichotomy theorems is that these
give a bird’s-eye view of central phenomena within complexity classes. This perspective
is especially useful in the study of the approximability of NP-hard optimization problems,
where approximability comes in too many flavors and it is hard to summarize salient phe-
nomena. Khanna et al. [15], following up on Creignou’s work [4], show how to use variants of
Boolean constraint satisfaction problems to summarize a wide variety of recent approxima-
bility /inapproximability results, while also obtaining complete classification results. These
results are not dichotomies any more, since optimization problems admit more than two pos-
sibilities in terms of their approximability. However, the ensuing classifications manage to
classify the approximability of problems into one of a finite number of distinct flavors. (Mak-
ing this precise requires work and the reader is pointed to the actual paper [15] to get more
details.)

e Another interesting feature that is highlighted nicely by this “bird’s eyeview” of complexity
is the nature of reductions that we see “most often”. Often the same “reduction”, say be-
tween 3-SAT and “not-all-equal-3-sat”, can be used to show NP-hardness, #P-hardness, or
PSPACE-hardness etc. of appropriate variants of the not-all-equal-3-sat problem. This phe-
nomenon is pervasive, and applies to reductions used between many pairs of problems. In the
world of constraint satisfaction problems, this phenomenon can be articulated and explained
formally. This has been done in several ways in the literature. For instance, in the monograph
by the authors [7], the central theme is abstracted in the form of implementations or gadget
reductions (following [15]) and then used to prove all classification results in a unified way.
In fact, once the scope is identified, it is even possible to “search” for such a reduction using
a computer, as shown by Trevisan et al. [23]. In a different direction, Hunt et al. [9, 21, 10],
show how the existence of reductions with a collection of locality properties, simultaneously
implies reductions between corresponding pairs of all variants of two given problems.

As the reader may realize, not all the work above has led to classification theorems, and in
some cases it is not even the target of the research. The research that has led to dichotomies or
classifications, is the focus of a recent monograph by the authors [7]. The primary focus of this
monograph is to extract the common themes behind the proof of the many classification results.
Below we summarize some of the common themes and give an example of how a classification
theorem may be obtained.

4 Basic Tools

One of the surprising aspects of dealing with constraint satisfaction problems is that even though
there exist so many variations of the main theme; the tools used for dealing with them are essentially
the same. In order to establish a complexity classification theorem, our goal is to obtain results
of the form: “If all constraints in a given constraint family F satisfy a certain property P, then a
canonical algorithm can be applied to solve the problem efficiently. Otherwise, the constraints in
F that do not satisfy the property can be used to show that the constraint satisfaction problem
associated with F is hard”. Typically, most of the effort is involved in establishing the latter part,
that is, the hardness result. We briefly describe here a basic framework for establishing the hardness
results.



The central mechanism for establishing hardness of a problem is via reductions. Since problems
in our framework are specified via underlying constraint sets, the notion of a reduction between
problems essentially corresponds to transformation between constraint sets. Towards this end, a
natural notion is the idea of implementation which is a mechanism for showing that the behavior
of a given constraint can be “implemented” by some collection of functions. This notion was
explicitly formalized in [13] and its variants have been implicitly used by other researchers (see [1],
[6], and [23], for instance). The precise definition of implementation depends on the specific class
of constraint satisfaction problems that we are examining. As a concrete example, let us consider
the class SAT(F). We say that a constraint family F implements a function f(Z) if there exists
an instance of SAT(F) defined over ¥ and possibly an auxiliary set of variables i such that (a)
for any assignment & such that f(Z) is true, there exists an assignment to ¢ that satisfies all
constraints, and (b) for any assignment & such that f(Z) is false, no assignment to ¥ can satisfy all
constraints. For instance, the family {XOR} implements the function XNOR(z1,x2) through the
constraint applications {XOR(z1,y), XOR(z2,y)}. It is easy to verify that if a constraint family F
implements functions in a known hard set F’, then SAT(F) is hard as well.

The next step is to identify conditions under which one constraint family can implement func-
tions in another constraint family. The main idea is to characterize various properties of interest
such that absence of a property allows us to identify a witness that certifies absence of the prop-
erty. For example, a constraint is affine if and only if for all satisfying assignments si, so and
s3, the assignment s1 @ so @ s3 is also satisfying. This property follows from a classical and well-
known characterization of affine subspaces in linear algebra. So given a function f that is not
affine, we know that there exist assignments sj, so and s3 (not necessarily distinct) such that
f(s1) = f(s2) = f(s3) =1 and f(s1 @ s2 ® s3) = 0. We can use such a witness to show that any
non-affine f always implements some known hard constraint family. Once we have developed a
basic toolkit of such implementations, we can use it to obtain classification theorems in a variety
of settings.

5 An Example Classification Theorem

We now briefly illustrate the above ideas by presenting a classification theorem for #SAT (F), the
problem of counting the number of assignments satisfying a given constraint satisfaction problem.
We will outline the proof of a FP/#P dichotomy result for this class. (Recall that FP is the
class of functions computable in P, and #P is the counting counterpart of NP.) The notion
of implementation used here requires an additional property, namely, whenever f(Z) is true, there
exists a unique assignment to i that satisfies all the constraints. We refer to such an implementation
as a faithful implementation and it is easy to see that a faithful implementation preserves the number
of solutions. Notice that the implementation of the XNOR function described above is a faithful
implementation.

First observe that most of the tractable problems for the decision task become hard when it
comes to counting. For instance, while the decision problems 2-SAT and Horn-SAT are in P, the
corresponding counting problems #2-SAT and #Horn-SAT are #P-complete (see [24]). Counting
the number of solutions of a linear system over a finite field is as easy as deciding its consistency
via Gaussian elimination. It turns out that this is essentially the only tractable case, as shown in
the following theorem.

Theorem 5.1 ([6]) #SAT(F) is in FP if F is affine, and #SAT(F) is #P-complete otherwise.



If every constraint in F is affine, then an instance of #SAT(F) can be viewed as a system
of linear equations over GF(2). We can use Gaussian elimination to determine the number of
satisfying solutions in polynomial time. On the other hand, to get #P-completeness of non-affine
families, we need some characterization of non-affine families. We start with the following simple
characterization due to Schaefer

Lemma 5.2 A constraint is affine if and only if for all satisfying assignments s1, so and s3, the
assignment s1 @ s @ s3 s also satisfying.

We then use this characterization to get an implementation of one of three basic non-affine
constraints, from any non-affine constraint.

Lemma 5.3 If g is a non-affine constraint then g can faithfully implement (i.e., can implement,
while preserving the number of satisfying assignments) one of the three constraints (z Vy), (ZVy)
or (T V),

This faithful implementation allows to reduce one of the problems #-Positive-2SAT, #-
Implicative-2SAT or #-Negative-2SAT to #SAT(F) while preserving the number of solutions. This
concludes the proof since these three problems are known to be #P-complete.

The full proof of Lemma 5.3 is somewhat long and the reader is referred to [7]. However, we
sketch here the main idea and in particular show how the analysis of infinitely many non-affine
functions g can be reduced to the analysis of finitely many cases.

Proof Sketch of Lemma 5.3: In this case, by Lemma 5.2 above, we know that there exist
assignments s1, s2, s3 such that g(s1) = g(s2) = g(s3) = 1, but g(s1 @ s2 ® s3) = 0. The following
table describes the situation:

90)
$1 0.0 0.0 0..0 0..0 1..1 1.1 1..1 1..1 1
S9 0.0 0.0 1..1 1..1 0.0 0.0 1..1 1..1 1
S3 0.0 1..1 0..0 1.1 0..0 1.1 0.0 1..1 1
s1®sepsy 0.0 1.1 1..1 0.0 1.1 0..0 0..0 1...1 0
Z..2 a..a b.b c.c d.d e.e f.f 0O..0

The crucial thing to notice in the above picture is that there are only eight distinct type of vari-
ables. Using replication of variables within any one of the blocks above (as indicated by the
bottom row), we see that g implements a function h(Z,a,b,c,d, e, f,O) on eight variables with
h(0,0,0,0,1,1,1,1) = h(0,0,1,1,0,0,1,1) = A(0,1,0,1,0,1,0,1) = 1 but ~(0,1,1,0,1,0,0,1) = 0.
Since there are only finitely many functions h, it is possible in principle to give a finite proof
that in each case h implements one of the binary OR function. Of course the number of cases,
2252 is slightly large to fit the margin of this article, or the monograph [7]. Here we will resort
to Fermat’s technique to overcome this obstacle (i.e., no proof). However, the reader can find a
proof in [7] where the cases are explored systematically, as part of the big picture in the study of
implementations, to give a really finite proof of this fact.

6 Conclusion

One of the most important reasons to study constraint satisfaction problems is that it provides an
excellent platform to search for a “formal basis” for “empirical observations”. Statements of the



form “Natural problems in complexity class C exhibit such and such behavior” can be formalized and
proven in this setting, assuming one is willing to live with the assertion that constraint satisfaction
problems are the only natural ones.

A shortcoming in the study of constraint satisfaction problems is that so far classification results
have been restricted to problems over a Boolean domain. As mentioned earlier, the problems in this
framework do extend quite naturally to non-Boolean domains. However, the proofs of classification
do not; and it is open as to whether the theorems do. Jeavons, Cohen and Gyssens [11] have
brought to the fore the link between the algebraic closure properties of the constraints and the
complexity of the corresponding constraint satisfaction problems. Further the work of Feder and
Vardi [8] suggests that this may be the largest class of problems that may exhibit dichotomy, and
further that this class of problems are of significant importance from the syntactic perspective on
complexity. A complete classification result of all constraint satisfaction problems over arbitrary
domains would bring an extremely satisfying conclusion to this line of work, and it would be nice
to see work in this direction.

References

[1] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability
— towards tight results. STAM Journal on Computing, 27(3):804-915, June 1998.

[2] Elmar Bohler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer. Equivalence prob-
lems for Boolean constraint satisfaction. Technical Report 282, Institut flir Informatik, Uni-
versitdt Wiirzburg, 2001.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In Conference Record of
Third Annual ACM Symposium on Theory of Computing, pages 151-158, Shaker Heights,
Ohio, 3-5 May 1971.

[4] Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. Jour-
nal of Computer and System Sciences, 51(3):511-522, December 1995.

[5] Nadia Creignou and Jean-Jacques Hébrard. On generating all satisfying truth assignments of
a generalized CNF-formula. Theoretical Informatics and Applications, 31(6):499-511, 1997.

[6] Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting problems.
Information and Computation, 125(1):1-12, 25 February 1996.

[7] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complezity Classifications of Boolean
Constraint Satisfaction Problems. SIAM Press, Philadelphia, USA, March 2001.

[8] Tomés Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57-104, January 1998.

[9] Harry B. Hunt III, Madhav V. Marathe, and Richard E. Stearns. Generalized CNF satisfia-
bility problems and non-efficient approximability. Proceedings of the Ninth Annual Structure

in Complexity Theory Conference, pages 356-366, Amsterdam, The Netherlands, 28 June - 1
July, 1994.

[10] Harry B. Hunt III, Richard E. Stearns, and Madhav V. Marathe. Relational representability,
Local reductions, and the Complexity of Generalized Satisfiability Problems. Manuscript, 2000.



[11]
[12]
[13]

[14]

[19]

[20]

[21]
22]

[23]

[24]

Peter Jeavons, David Cohen and Marc Gyssens. Closure properties of constraints Journal of
the ACM, 44(4):527-548, July 1997.

Dimitris Kavvadias and Martha Sideri. The inverse satisfiability problem. SIAM Journal on
Computing, 28(1):152-163, January 1998.

Sanjeev Khanna and Madhu Sudan. The optimization complexity of constraint satisfaction
problems. Stanford University Tech. Note STAN-CS-TN-96-29, 1996.

Sanjeev Khanna, Madhu Sudan, and Luca Trevisan. Constraint satisfaction: The approxima-
bility of minimization problems. In Proceedings 12th Computational Complexity Conference,
IEEE Computer Society Press, pages 282-296, 1997.

Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing (SICOMP), Vol. 30, No. 6,
pp. 1863-1920, 2000.

Sanjeev Khanna, Madhu Sudan, and David P. Williamson. A complete classification of the
approximability of maximization problems derived from Boolean constraint satisfaction. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
11-20, El Paso, Texas, 4-6 May 1997.

Richard E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155-171, January 1975.

Leonid A. Levin. Universal’'nyie perebornyie zadachi (Universal search problems : in Russian).
Problemy Peredachi Informatsii, 9(3):265-266, 1973. A corrected English translation appears
in an appendix to Trakhtenbrot [22].

Steffen Reith and Heribert Vollmer. Optimal satisfiability for propositional calculi and con-
straint satisfaction problems. In Proceedings 25th International Symposium on Mathematical
foundations of Computer Science, volume 1893 of Lecture Notes in Computer Science, pages
640-649. Springer-Verlag, 2000.

Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing, pages 216-226, San Diego, Califor-
nia, 1-3 May 1978.

Richard E. Stearns and Harry B. Hunt III. An algebraic model for combinatorial problems.
SIAM Journal on Computing, 25(2):448-476, April 1996.

Boris Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force search) algorithms.
Annals of the History of Computing 6:384-400, 1984.

Luca Trevisan, Gregory B. Sorkin, Madhu Sudan and David P. Williamson. Gadgets, approx-
imation, and linear programming. STAM Journal on Computing, 29(6): 2074-2097, December
2000.

Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410-421, August 1979.

10



