
SMALL PCPS WITH LOW QUERY

COMPLEXITY

Prahladh Harsha and Madhu Sudan

Abstract. Most known constructions of probabilistically checkable
proofs (PCPs) either blow up the proof size by a large polynomial, or
have a high (though constant) query complexity. In this paper we give a
transformation with slightly-super-cubic blowup in proof size, with a low
query complexity. Specifically, the verifier probes the proof in 16 bits
and rejects every proof of a false assertion with probability arbitrarily
close to 1

2 , while accepting corrects proofs of theorems with probabil-
ity one. The proof is obtained by revisiting known constructions and
improving numerous components therein. In the process we abstract a
number of new modules that may be of use in other PCP constructions.

Keywords. NP completeness, probabilistic proof systems, holographic
proofs.
Subject classification. 68Q15

1. Introduction

Probabilistically checkable proofs (PCP) have played a major role in proving
the hardness of approximation of various combinatorial optimization problems.
Constructions of PCPs have been the subject of active research in the last ten
years. In the last decade, there have been several “efficient” construction of
PCPs which in turn have resulted in tighter inapproximability results. Arora
et al. (1998) showed that it is possible to transform any proof into a proba-
bilistically checkable one of polynomial size, such that it is verifiable with a
constant number of queries. Valid proofs are accepted with probability one
(this parameter is termed the completeness of the proof), while any purported
proof of an invalid assertion is rejected with probability 1/2 (this parameter is
the soundness of the proof). Neither the proof size, nor the query complexity
is explicitly described there; however the latter is estimated to be around 106.

§A preliminary version of this appeared in STACS 2001, 18th Annual Symposium on
Theoretical Aspects of Computer Science, Afonso Ferreira & Horst Reichel, editors,
volume 2010 of Lecture Notes in Computer Science, 327–338. Springer-Verlag, Dresden,
Germany.

2 Harsha & Sudan

Subsequently much success has been achieved in improving the parameters
of PCPs, constructing highly efficient proof systems either in terms of their
size or their query complexity. The best result in terms of the former is a
result of Polishchuk & Spielman (1994). They show how any proof can be
transformed into a probabilistically checkable proof with only a mild blowup in
the proof size, of n1+ε for arbitrarily small ε > 0 and that is checkable with only
a constant number of queries. This number of queries however is of the order
of O(1/ε2), with the constant hidden by the big-Oh being some multiple of the
query complexity of Arora et al. (1998). On the other hand, H̊astad (1997a)
has constructed PCPs for arbitrary NP statements where the query complexity
is a mere three bits (for completeness almost 1 and soundness 1/2). However
the blowup in the proof size of H̊astad’s PCPs has an exponent proportional
to the query complexity of the PCP of Arora et al. (1998). Thus neither
of these “nearly-optimal” results provides simultaneous optimality of the two
parameters. It is reasonable to wonder if this inefficiency in the combination of
the two parameters is inherent; and our paper is motivated by this question.

We examine the size and query complexity of PCPs jointly and obtain
a construction with reasonable performance in both parameters. The only
previous work that mentions the joint size vs. query complexity of PCPs is a
work of Friedl & Sudan (1995), who indicate that NP has PCPs with nearly
quadratic size complexity and in which the verifier queries the proof for 165 bits.
The main technical ingredient in their proof was an improved analysis of the
“low-degree test”. Subsequent to this work, the analysis of low-degree tests has
been substantially improved. Raz & Safra (1997) and Arora & Sudan (1997a)
have given highly efficient analysis of different low-degree tests. Furthermore,
techniques available for “proof composition” have improved, as also have the
construction for terminal “inner verifiers”. In particular, the work of H̊astad
(1997b), has significantly strengthened the ability to analyze inner verifiers
used at the final composition step of PCP constructions.

In view of these improvements, it is natural to expect the performance of
PCP constructions to improve. Our work confirms this expectation. However,
our work exposes an enormous number of complications in the natural path
of improvement. We resolve most of these, with little loss in performance and
thereby obtain the following result: Satisfiability has a PCP verifier that makes
at most 16 oracle queries to a proof of size at most n3+o(1), where n is the size of
the instance of satisfiability. Satisfiable instances have proofs that are accepted
with probability one, while unsatisfiable instances are accepted with probability
arbitrarily close to 1/2. (See Theorem 2.2.)

We also raise several technical questions whose positive resolution may lead

Small PCPs with low query complexity 3

to a PCP of nearly quadratic size and query complexity of 6. Surprisingly,
no non-trivial limitations are known on the joint size + query complexity of
PCPs. In particular, it is open as to whether nearly linear sized PCPs with
query complexity of 3 exist for NP statements.

2. Overview

We first recall the standard definition of the class PCPc,s[r, q].

Definition 2.1. For functions r, q : Z+ → Z+, a probabilistic oracle machine
(or verifier) V is (r, q)-restricted if on input x of length n, the verifier tosses
at most r(n) random coins and queries an oracle π for at most q(n) bits. We
use the notation V π(x;R) to denote the outcome of verifier V on input string
x, random coins R and with oracle access to π. For c, s ∈ [0, 1], a language
L ∈ PCPc,s[r, q] if there exists an (r, q)-restricted verifier V that satisfies the
following properties on input x.

Completeness: If x ∈ L then there exists π such that V on oracle
access to π accepts with probability at least c. (i.e., ∃π,PrR[V π(x;R) =
accept] ≥ c.)

Soundness: If x 6∈ L then for every oracle π, the verifier V accepts with
probability strictly less than s. (i.e., ∀π,PrR[V π(x;R) = accept] < s.)

While our principal interest is in the size of a PCP and not in the ran-
domness, it is well-known that the size of a probabilistically checkable proof
(or more precisely, the number of distinct queries to the oracle π) is at most
2r(n)+q(n). Thus the size is implicitly governed by the randomness and query
complexity of a PCP. The main result of this paper is the following.

Theorem 2.2. For every ε, µ > 0,

SAT ∈ PCP1, 1
2

+µ [(3 + ε) log n, 16] .

Remark. Actually the constants ε and µ above can be replaced by some o(1)
functions; but we don’t derive them explicitly.

It follows from the parameters that the associated proof is of size at most
O(n3+ε).

Cook (1988) showed that any language in NTIME(t(n)) could be reduced
to SAT in O(t(n) log t(n)) time such that instances of size n are mapped to

4 Harsha & Sudan

Boolean formulae of size at most O(t(n) log t(n)). Combining this with Theo-
rem 2.2, we have that every language in NP has a PCP with at most a slightly
super-cubic blowup in proof size and a query complexity as low as 16 bits.

2.1. MIP and recursive proof composition. As pointed out earlier, the
parameters we seek are such that no existing proof system achieves them. Hence
we work our way through the PCP construction of Arora et al. (1998) and make
every step as efficient as possible. The key ingredient in their construction (as
well as most subsequent constructions) is the notion of recursive composition
of proofs, a paradigm introduced by Arora & Safra (1998). The paradigm
of recursive composition is best described in terms of multi-prover interactive
proof systems (MIPs).

Definition 2.3. For integer p, and functions r, a : Z+ → Z+, an MIP verifier
V is (p, r, a)-restricted if it interacts with p mutually-non-interacting provers
π1, . . . , πp in the following restricted manner. On input x of length n, V picks
a random r(n)-bit string R and generates p queries q1, . . . , qp and a circuit C
of size at most a(n). The verifier then issues query qi to prover πi. The provers
respond with answers a1, . . . , ap each of length at most a(n) and the verifier
accepts x iff C(a1, . . . , ap) =true. We use the notation V π1,...,πp(x;R) to denote
the outcome of the MIP verifier V on input string x, random string R and with
oracle access to the provers π1, . . . , πp. A language L belongs to MIPc,s[p, r, a]
if there exists a (p, r, a)-restricted MIP verifier V such that on input x:

Completeness: If x ∈ L then there exist π1, . . . , πp such that V ac-
cepts with probability at least c. (i.e., ∃π1, . . . , πp,PrR[V π1,...,πp(x;R) =
accept] ≥ c.)

Soundness: If x 6∈ L then for every π1, . . . , πp, V accepts with probabil-
ity less than s. (i.e., ∀π1, . . . , πp,PrR[V π1,...,πp(x;R) = accept] < s.)

It is easy to see that MIPc,s[p, r, a] is a subclass of PCPc,s[r, pa] and thus
it is beneficial to show that SAT is contained in MIP with nice parameters.
However, much stronger benefits are obtained if the containment has a small
number of provers, even if the answer size complexity (a) is not very small.
This is because the verifier’s actions can usually be simulated by a much more
efficient verification procedure, one with much smaller answer size complexity,
at the cost of a few more provers. Results of this nature are termed proof com-
position lemmas; and the efficient simulators of the MIP verification procedure
are usually called “inner verification procedures”.

Small PCPs with low query complexity 5

The next three lemmas divide the task of proving Theorem 2.2 into smaller
subtasks. The first gives a starting MIP for satisfiability, with 3 provers, but
poly-logarithmic answer size. We next give the composition lemma that is used
in the intermediate stages. The final lemma gives our terminal composition
lemma – the one that reduces answer sizes from some slowly growing function
to a constant.

Lemma 2.4. For every ε, µ > 0, there exists a polynomial p such that

SAT ∈ MIP1,µ[3, (3 + ε) log n, p(log n)]

Lemma 2.4 is proven in Section 3. This lemma is critical to bounding the
proof size. This lemma follows the proof of a similar one (the “parallelization”
step) in Arora et al. (1998); however various aspects are improved. We show
how to incorporate advances made by Polishchuk & Spielman (1994), and how
to take advantage of the low-degree test of Raz & Safra (1997). Most impor-
tantly, we show how to save a quadratic blowup in this phase that would be
incurred by a direct use of the parallelization step in Arora et al. (1998).

The first composition lemma we use is an off-the-shelf product due to Arora
& Sudan (1997b). Similar lemmas are implicit in the works of Bellare et al.
(1993) and Raz & Safra (1997).

Lemma 2.5 (Arora & Sudan 1997b). For every ε > 0 and p < ∞, there exist
constants c1, c2, c3 such that for every r, a : Z+ → Z+,

MIP1,ε[p, r, a] ⊆ MIP1,ε1/(2p+2) [p+ 3, r + c1 log a, c2(log a)c3].

The next lemma shows how to truncate the recursion. This lemma is proved
in Section 4 using a “Fourier-analysis” based proof, as in H̊astad (1997b). This
is the first time that this style of analysis has been applied to MIPs with more
than 2 provers. All previous analyses seem to have focused on composition
with canonical 2-prover proof systems at the outer level. Our analysis reveals
surprising complications (see Section 4 for details) and forces us to use a large
number (seven) of extra bits to effect the truncation.

Lemma 2.6. For every ε > 0 and p < ∞, there exists a γ > 0 such that for
every r, a : Z+ → Z+,

MIP1,γ[p, r, a] ⊆ PCP1, 1
2

+ε[r +O (2pa) , p+ 7].

6 Harsha & Sudan

Proof of Theorem 2.2. The proof is straightforward given the above lem-
mas. We first apply Lemma 2.4 to get a 3-prover MIP for SAT, then apply
Lemma 2.5 twice to get a 6- and then a 9-prover MIP for SAT. The answer
size in the final stage is poly log log log n. Applying Lemma 2.6 at this stage we
obtain a 16-query PCP for SAT; and the total randomness in all stages remains
(3 + ε) log n. �

2.2. Organization of the paper. In Section 3, we prove Lemma 2.4. For
this purpose, we present the Polynomial Constraint Satisfaction problem in
Section 3.3 and discuss its hardness. We then discuss the Low degree Test in
Section 3.5. Most aspects of the proofs in Section 3 are drawn from previous
works of Arora et al. (1998); Arora & Sudan (1997a); Polishchuk & Spielman
(1994); Raz & Safra (1997). In Section 4, we present the proof of Lemma 2.6.
In Section 5 we suggest possible approaches for improvements in the joint size-
query complexity of PCPs.

3. A randomness efficient MIP for SAT

In this section, we use the term “length-preserving reductions”, to refer to
reductions in which the length of the target instance of the reduction is nearly-
linear (O(nβ) for β arbitrarily close to 1) in the length of the source instance.
More precisely, for β > 1, an β-length-preserving reduction is a reduction that
runs in polynomial time and produces target instances of size at most O(nβ).

To prove membership in SAT, we first transform SAT into an algebraic
problem. This transformation comes in two phases. First we transform it to
an algebraic problem (that we call AP for lack of a better name) in which the
constraints can be enumerated compactly. Then we transform it to a promise
problem on polynomials, called Polynomial Constraint Satisfaction (PCS), with
a large associated gap. We then show how to provide an MIP verifier for the
PCS problem.

Though most of these results are implicit in the literature, we find that ab-
stracting them cleanly significantly improves the exposition of PCPs. The first
problem, AP, could be proved to be NP-hard almost immediately, if one did not
require length-preserving reductions. We show how the results of Polishchuk &
Spielman (1994) imply a length preserving reduction from SAT to this problem.
We then reduce this problem to PCS. This step mimics the sum-check protocol
of Lund et al. (1990). The technical importance of this intermediate step is
the fact that it does not refer to “low-degree” tests in its analysis. Low-degree
tests are primitives used to test if the function described by a given oracle is

Small PCPs with low query complexity 7

close to some (unknown) multivariate polynomial of low-degree. Low-degree
tests have played a central role in the constructions of PCPs. Here we separate
(to a large extent) their role from other algebraic manipulations used to obtain
PCPs/MIPs for SAT .

In the final step, we show how to translate the use of state-of-the-art low-
degree tests, in particular the test of Raz & Safra (1997), in conjunction with
the hardness of PCS to obtain a 3-prover MIP for SAT. This part follows
a proof of Arora et al. (1998) (their parallelization step); however a direct
implementation would involve 6 log n randomness, or an n6 blow up in the size
of the proof. Part of this is a cubic blow up due to the use of the low-degree
test and we are unable to get around this part. Direct use of the parallelization
also results in a quadratic blowup of the resulting proof. We save on this by
creating a variant of the parallelization step of Arora et al. (1998) that uses
higher dimensional varieties instead of 1-dimensional ones.

3.1. A compactly described algebraic NP-hard problem.

Definition 3.1. For functions m,h : Z+ → Z+, the problem APm,h has as its
instances (1n, H, T, ψ, ρ1, . . . , ρ6) where: H is a field of size h(n), ψ : H7 → H
is a constant degree polynomial, T is an arbitrary function from Hm to H and
the ρi’s are linear maps from Hm to Hm, for m = m(n). (T is specified by a
table of values, and ρi’s by m×m matrices.) (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h

if there exists an assignment A : Hm → H such that for every x ∈ Hm,
ψ(T (x), A(ρ1(x)), . . . , A(ρ6(x))) = 0.

The above problem is just a simple variant of standard constraint satis-
faction problems, the only difference being that its variables and constraints
are now indexed by elements of Hm. The only algebra in the above problem
is in the fact that the functions ρi, which dictate which variables participate
in which constraint, are linear functions. The following statement, abstracted
from Polishchuk & Spielman (1994), gives the desired hardness of AP.

Lemma 3.2. There exists a constant c such that for every β > 1 and any pair
of functions m,h : Z+ → Z+ satisfying h(n)m(n)−c ≥ n and h(n)m(n) = O(nβ),
SAT reduces to APm,h under β-length-preserving reductions.

Lemma 3.2 is a reformulation of the result proved in Polishchuk & Spielman
(1994) and Spielman (1995) in a manner that is convenient for us to work
with. We prove this lemma in Section 3.2. We note that Szegedy (1999) has
given an alternate abstraction of the result of Polishchuk & Spielman (1994);
Spielman (1995). His abstraction focuses on some different aspects of the result

8 Harsha & Sudan

of Polishchuk & Spielman (1994) and Spielman (1995) and does not suffice for
our purposes.

3.2. Hardness of AP problem. The proof of Lemma 3.2 is along the lines
of Polishchuk & Spielman (1994) and Spielman (1995). In the following two
subsections, we (re-)present the machinery required to prove the lemma and
finally provide a proof of the lemma in Section 3.2.3.

3.2.1. De Bruijn Graph Coloring Problem.

Definition 3.3. The de Bruijn graph Bn is a directed graph on 2n vertices
in which each vertex is represented by a n-bit binary string. The vertex
represented by (x1, . . . , xn) has edges pointing to the vertices represented by
(x2, . . . , xn, x1) and (x2, . . . , xn, x1 ⊕ 1), where a⊕ b denotes the sum of a and
b modulo 2.

We then define a wrapped de Bruijn graph to be the product of a de Bruijn
graph and a cycle.

Definition 3.4. The wrapped de Bruijn graph Bn is a directed graph on
5n · 2n vertices in which each vertex is represented by a pair consisting of
an n-bit binary string and a number modulo 5n. The vertex represented by
((x1, . . . , xn), a) has edges pointing to the vertices ((x2, . . . , xn, x1), a + 1) and
((x2, . . . , xn, x1 ⊕ 1), a+ 1), where the addition a+ 1 is performed modulo 5n.

Similarly, one can define the extended de Bruijn graph (on (5n+1) ·2n vertices)
to be the product of the de Bruijn graph (on 2n vertices) and a line graph
(on 5n + 1 vertices). For ease of notation, let us define for any vertex v,
%1(v) and %2(v) to be the two neighbors of v in the wrapped de Bruijn graph.
Polishchuk & Spielman (1994) and Spielman (1995) show how to reduce SAT to
the following coloring problem on the wrapped de Bruijn graph using standard
packet routing techniques (see Leighton (1992)).

Definition 3.5. The problem de-Bruijn-graph-Color has as its instances
(Bn, T) where Bn is a wrapped de Bruijn graph on 5n · 2n vertices and T :
V (Bn) → C1 is a coloring of the vertices of Bn (T is specified by a table of
values). (Bn, T) ∈ de-Bruijn-graph-Color if there exists another coloring
A : V (Bn)→ C2 such that for all vertices v ∈ V (Bn),

ϕ(T (v), A(v), A(%1(v)), A(%2(v))) = 0

where C1, C2 are two sets of colors independent of n and ϕ : C1 × C3
2 → Z+ is

a function independent of n.

Small PCPs with low query complexity 9

Similar to length-preserving reductions, we can define the term “length-efficient
reductions”, to refer to reductions in which the length of the target instance of
the reduction is at most an extra logarithmic factor off the length of the source
instance (i.e., O(n log n)). Spielman (1995) proves the following statement
regarding the hardness of the above problem.

Proposition 3.6 (Spielman 1995, Remark 4.3.3). SAT reduces to
de-Bruijn-graph-Color under length-efficient reductions.

3.2.2. Algebraic Description of De Bruijn Graphs. In this section, we
shall give a very simple algebraic description of the de Bruijn graphs.

Definition 3.7. A Galois graph Gn is a directed graph on 2n vertices in
which each vertex is node is identified with an element of GF (2n). Let α
be a generator1 of GF (2n). The vertex represented by γ ∈ GF (2n) has edges
pointing to the vertices represented by αγ and αγ + 1.

Claim 3.8. The Galois graph Gn is isomorphic to the de Bruijn graph Bn.

A proof of this claim can be found in (Spielman 1995, Lemma 4.3.5).

Claim 3.9. Let m divide n and α be a generator of GF (2n/m). Then the graph
on

GF (2n/m)×GF (2n/m)× . . .×GF (2n/m)︸ ︷︷ ︸
m times

in which the vertex represented by (σ1, . . . , σm) has edges pointing to the ver-
tices represented by

(σ2, . . . , σm, ασ1) and (σ2, . . . , σm, ασ1 + 1)

is isomorphic to the de Bruijn graph Bn.

Proof. By Claim 3.8, the given graph is isomorphic to the graph on binary
strings of length n in which the vertex

(b1, . . . , b n
m
, b n

m
+1, . . . , b2 n

m
, . . . , b(m−1) n

m
+1, . . . , bn)

1A generator of GF (2n) is an element α ∈ GF (2n) such that α2n−1 = 1 and αk 6= 1 for
any 1 ≤ k < 2n− 1. Every element in GF (2n) can be represented by a unique polynomial in
α of degree at most n− 1 with coefficients from {0, 1}.

10 Harsha & Sudan

has edges pointing to the vertices given by

(b n
m

+1, . . . , b2 n
m
, . . . , b(m−1) n

m
+1, . . . , bn, b2, . . . , b n

m
, b1)

and

(b n
m

+1, . . . , b2 n
m
, . . . , b(m−1) n

m
+1, . . . , bn, b2, . . . , b n

m
, b1 ⊕ 1)

Shuffling the order of bi’s, we observe that this graph is isomorphic to the graph
in which the vertex represented by

(b1, b n
m

+1, . . . , b(m−1) n
m

+1, b2, b n
m

+2, . . . , b(m−1) n
m

+2, . . . , bm, b2m, . . . , bn)

has edges pointed towards the vertices

(b n
m

+1, . . . , b(m−1) n
m

+1, b2, b n
m

+2, . . . , b(m−1) n
m

+2, . . . , bm, b2m, . . . , bn, b1)

and

(b n
m

+1, . . . , b(m−1) n
m

+1, b2, b n
m

+2, . . . , b(m−1) n
m

+2, . . . , bm, b2m, . . . , bn, b1 ⊕ 1)

which is identical to the de Bruijn graph. �

Using the above result, we can now give a simple algebraic description of the
extended de Bruijn graphs.

Proposition 3.10. Let m divide n and α be a generator of H = GF (2n/m).
Let C = {1, α, . . . , α5n} and C ′ = {1, α, . . . , α5n−1}. Then the extended de
Bruijn graph on (5n+ 1) · 2n vertices is isomorphic to the graph on Hm × C in
which each vertex in (x1, . . . , xm, y) ∈ Hm × C ′ has edges pointed towards the
vertices

(x2, . . . , xm, αx1, αy)

and

(x2, . . . , xm, αx1 + 1, αy)

For ease of notation, if v ∈ Hm × C, then let %1(v) and %2(v) denote the two
neighbors of v. Or even more generally, for any v = (x1, . . . , xm, y) ∈ Hm+1,
define

%1(x1, . . . , xm, y) 7→ (x2, . . . , xm, αx1, αy)(3.11)

%2(x1, . . . , xm, y) 7→ (x2, . . . , xm, αx1 + 1, αy)(3.12)

Small PCPs with low query complexity 11

3.2.3. Proof of Lemma 3.2. Instead of showing that SAT is reducible to
APm,h, we shall show that SAT is reducible under length preserving reductions
to another problem AP′m,h. It would then follow from the definition of AP and
AP′ that SAT is reducible to APm,h under length preserving reductions.

Definition 3.13. For functions m,h : Z+ → Z+, the problem AP′m,h has
as its instances (1n, H, T, ψ, ρ1, . . . , ρ5, ρ) where: H is a field of size h(n),
ψ : H7 → H is a constant degree polynomial, T is an arbitrary function from
Hm−1 to H, the ρi’s are linear maps from Hm to Hm−1 and ρ : Hm → H
is a linear map for m = m(n). (T is specified by a table of values, ρi’s by
m×(m−1) matrices and ρ by a m×1 matrix.) (1n, H, T, ψ, ρ1, . . . , ρ) ∈ AP′m,h
if there exists an assignment A : Hm−1 → H such that for every x ∈ Hm,
ψ(T (ρ1(x)), A(ρ1(x)), . . . , A(ρ5(x)), ρ(x)) = 0.

Proposition 3.14. For every β > 1 and any pair of functions m,h : Z+ → Z+

satisfying h(n)m(n)−2 ≥ n and h(n)m(n) = O
(
nβ
)
, SAT reduces to AP′m,h under

β-length-preserving reductions.

Proof. Let φ be any instance of SAT of size n. By Proposition 3.6, we have
that φ can be reduced to an instance (Bn′ , T) of de-Bruijn-graph-Color
. As the reduction is length-efficient, we have that 5n′ · 2n′ = O(n log n) or
N ≈ n where N = 2n

′
. Let β > 1 and m,h be any two functions satisfying the

requisites of Proposition 3.14. Let m′(n) = m(n) − 2. Let α be a generator
of the field GF (2n/m

′
). Now as h(n)m(n)−2 ≥ n, there exists a field H of size

h(n) such that the field GF (2n/m
′
) can be embedded in H. Now, as seen from

Section 3.2.2, we can view the graph Bn′ as a graph on Hm′ and the graph Bn′
as a graph on Hm′ × C where C = {1, α, . . . , α5n}. As C ⊆ GF (2n/m

′
) ⊆ H, we

can further view Bn′ as a graph on Hm′+1, where the neighborhood functions
%1, %2 are as defined in (3.11) and (3.12). We can also view the set of colors C1

and C2 as embedded in the field H. With such an embedding, we can consider
the map T : V (Bn′)→ C1 as a map T : Hm′+1 → H.

Consider the following choice of linear transformations ρi : Hm → Hm′+1

(recall m′ = m− 2) For any (x̄, y, z) ∈ Hm where x̄ ∈ Hm′ , y, z ∈ H

◦ ρ1 : (x̄, y, z) 7→ (x̄, y).

◦ ρ2 : (x̄, y, z) 7→ %1(x̄, y).

◦ ρ3 : (x̄, y, z) 7→ %2(x̄, y).

◦ ρ4 : (x̄, y, z) 7→ (x̄, 1).

12 Harsha & Sudan

◦ ρ5 : (x̄, y, z) 7→ (x̄, α5n).

Also define ρ : Hm → H such that ρ : (x̄, y, z) 7→ z. Note each of the ρi’s are
linear transformations. Now consider the polynomials defined as follows:

◦ ϕ1 : H4 → H satisfying ϕ1|C1×C3
2

= ϕ. i.e., the restriction of ϕ1 on

the subset C1 × C3
2 of the domain is the same as the function ϕ in the

definition of de-Bruijn-graph-Color .

◦ ϕ2 : H2 → H such that ϕ2(a, b) = 0 iff a = b. (i.e., ϕ2 checks if its two
inputs are equal.)

◦ ϕ3 : H → H such that ϕ3 evaluates to 0 iff its input belongs to the set
C2.
(i.e., ϕ3(x) =

∏
c∈C2

(x− c))

◦ ϕ4 : H → H such that ϕ4 evaluates to 0 iff its input belongs to the set
C1.
(i.e., ϕ4(x) =

∏
c∈C1

(x− c))

Clearly, ϕi’s can be defined such that they are all of constant degree where the
degree depends only on the cardinality of the sets C1 and C2.

Now consider the polynomial ψ : H7 → H defined as follows

ψ(a, b, c, d, e, f, t) = ϕ1(a, b, c, d) + ϕ2(e, f)t+ ϕ3(b)t2 + ϕ4(a)t3

Note that ψ is also a constant degree polynomial. By construction of ψ, we
have that
ψ(T (ρ1(z)), A(ρ1(z)), A(ρ2(z)), A(ρ3(z)), A(ρ4(z)), A(ρ5(z)), ρ(z)) = 0, ∀z ∈
Hm iff the corresponding instance (Bn′ , T) ∈ de-Bruijn-graph-Color ,
which happens iff φ ∈ SAT. Note

(1) ϕ1 checks if the condition ϕ is satisfied by vertices of the graph.

(2) ϕ2 checks if the first and last column of the extended graph is the same
(and hence the graph can be viewed as a wrapped graph).

(3) Finally, ϕ3 and ϕ4 checks if the colors assigned by the function A and T
are indeed valid colors. (i.e., T (v) ∈ C1 and A(v) ∈ C2.)

We have thus shown that (1n, H, T, ψ, ρ1, . . . , ρ5, ρ) ∈ AP′m,h ⇐⇒ φ ∈ SAT.
Moreover the above reduction is β-length-preserving (since hm = O

(
nβ
)
).

Thus, proved. �

Small PCPs with low query complexity 13

3.3. Polynomial constraint satisfaction. We next present an instance of
an algebraic constraint satisfaction problem. This differs from the previous
one in that its constraints are “wider”, the relationship between constraints
and variables that appear in it is arbitrary (and not linear), and the hardness
is not established for arbitrary assignment functions, but only for low-degree
functions. All the above changes only make the problem harder, so we ought
to gain something – and we gain in the gap of the hardness. The problem is
shown to be hard even if the goal is only to separate satisfiable instances from
instances in which only ε fraction of the constraints are satisfiable. We define
this gap version of the problem first.

Definition 3.15. For ε : Z+ → R+, and m, b, q : Z+ → Z+ the promise prob-
lem GapPCSε,m,b,q has as instances (1n, d, k, s,F;C1, . . . , Ct), where d, k, s ≤
b(n) are integers and F is a field of size q(n) and Cj = (Aj;x

(j)
1 , . . . , x

(j)
k) is an

algebraic constraint, given by an algebraic circuit Aj of size s on k inputs and

x
(j)
1 , . . . , x

(j)
k ∈ Fm, for m = m(n).

◦ [Completeness] (1n, d, k, s,F;C1, . . . , Ct) is a YES instance if there exists
a polynomial p : Fm → F of degree at most d such that for every j ∈
{1, . . . , t}, the constraint Cj is satisfied by p, i.e., Aj(p(x

(j)
1), . . . , p(x

(j)
k))

= 0.

◦ [Soundness] (1n, d, k, s,F;C1, . . . , Ct) is a NO instance if for every poly-
nomial p : Fm → F of degree at most d it is the case that at most ε(n) · t
of the constraints Cj are satisfied.

Lemma 3.16. There exist constants c1, c2 such that for every β > 1 and ev-
ery choice of functions ε,m, b, q satisfying (b(n)/m(n))m(n)−c1 ≥ n, q(n)m(n) =
O
(
nβ
)

and q(n) ≥ c2b(n)/ε(n), SAT reduces to GapPCSε,m,b,q under β-length-
preserving reductions.

(The problem APm,h is used as an intermediate problem in the reduction.
However we don’t mention this in the lemma, since the choice of parameters
m,h may confuse the statement further.) A proof of Lemma 3.16 can be found
in Section 3.4. This proof is inspired by the sum-check protocol used in Lund
et al. (1990), which was also used in Babai et al. (1991). The specific steps in
our proof follow the proof in Sudan (1992).

14 Harsha & Sudan

3.4. Hardness of Polynomial Constraint Satisfaction. In this section,
we prove Lemma 3.16. In order to prove the hardness of GapPCSε,m,b,q, we shall
use another related problem Polynomial Evolution (PE) as an intermediary
problem between AP and GapPCS. In Section 3.4.1, we describe the problem
Polynomial Evolution and analyze its hardness. Finally, in Section 3.4.2, we
prove Lemma 3.16.

3.4.1. Polynomial Evolution.

Definition 3.17. A polynomial construction rule R over a field F on m vari-
ables is a circuit which takes an oracle for a polynomial p : Fm → F and returns
a new polynomial q : Fm → F, defined by q , Rp(x).

Polynomial Evolution involves checking whether there exists a polynomial p :
Fm → F such that when a given sequence of construction rules are composed
on this polynomial, the resulting polynomial is identically zero. More formally,

Definition 3.18. For functions b,m, q : Z+ → Z+, the problem PEm,b,q has as
instances (1n, d,F;R1, . . . , Rl) where d ≤ b(n) are integers, F is a finite field of
size q(n) and the Ri’s are polynomial construction rules over F on m variables.
(1n, d,F;R1, . . . , Rl) ∈ PEm,b,q if there exists a polynomial p0 : Fm → F of
degree at most d such that the sequence of polynomials pi defined by pi , Rpi−1

for i = 1 . . . l satisfies pl ≡ 0 (i.e., pl is identically zero.)

If qm is polynomial in the description of the instance, then clearly PEm,b,q ∈ NP.
We shall prove the following statement regarding the hardness of PEm,b,q.

Lemma 3.19. There exists a constant c ∈ Z+ such that for every β > 1 and
functions m,h, q : Z+ → Z+ satisfying q ≥ cmh and qm = O

(
hβm

)
, APm,h

reduces to PEm,mh,q under β-length-preserving reductions.

Let (1n, H, T, ψ, ρ1, . . . , ρ6) be an instance of APm,h. Suppose β > 1 and F
be a field of size q(n) where q and β satisfy the requirements of Lemma 3.19
such that H ⊆ F. Let c be the degree of the polynomial ψ : H7 → H. (Recall
that by definition of APm,h, c is a constant.)

Any assignment S : Hm → H can be interpolated to obtain a polynomial
Ŝ : Fm → F of degree at most |H| in each variable (and hence a total degree of at
most m|H|) such that Ŝ|Hm = S. (i.e., the restriction of Ŝ to Hm coincides with
the function S.) Conversely, any polynomial Ŝ : Fm → F can be interpreted
as an assignment from Hm to F by considering the function restricted to the
sub-domain Hm.

Small PCPs with low query complexity 15

Based on the instance (1n, H, T, ψ, ρ1, . . . , ρ6), we will construct a sequence
of (m + 1) polynomial construction rules which transform a polynomial p0

to the zero polynomial iff the assignment given by A = p0|Hm satisfies the
instance (1n, H, T, ψ, ρ1, . . . , ρ6). The first rule takes as input a polynomial
po : Fm → F of degree mh and outputs a polynomial p1 : Fm → F of degree
cmh which is 0 on Hm iff the corresponding assignment p0|Hm satisfies the
instance (1n, H, T, ψ, ρ1, . . . , ρ6). The remaining m rules follow the sum-check
protocol of Lund et al. (1990) and “amplify” the zero-set of the polynomial p1

so that the resulting polynomials are zero on larger and larger sets. The final
polynomial pm+1 : Fm → F will be identically zero iff the original polynomial
p1 was zero on Hm and hence, iff (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h.

The first polynomial construction rule R1 encodes the polynomial ψ : H7 →
H of constant degree c, the function T : Hm → H and the linear transforma-
tions ρi : Hm → Hm. Let T̂ : Fm → F be interpolation of T such that
the restriction coincides with the function T . Also let ψ̂ : F7 → F be the
extension of the polynomial ψ to the domain F7. (i.e., If ψ : H7 → H is
given by ψ(x1, . . . , x7) =

∑
ai1,...,i7x

i1
1 . . . x

i7
7 , then ψ̂ : F7 → F is the same

polynomial ψ(x1, . . . , x7) =
∑
ai1,...,i7x

i1
1 . . . x

i7
7 .) Note ψ̂ is also of degree c.

Also let ρ̂i : Fm → Fm represent the extension of the linear transformation
ρi : Hm → Hm to the domain Fm (i.e., if ρi is the linear map given by x̄ 7→ Ax̄
where x̄ ∈ Hm and A is a m×m matrix with elements from H, then ρ̂i is the
linear map given by x̄ 7→ Ax̄ where x̄ ∈ Fm) The rule R1 is defined as follows:

p1(x1, .., xm) , ψ̂(T̂ (x1, .., xm), p0(ρ̂1(x1, .., xm)), . . . , p0(ρ̂6(x1, .., xm)))

When p0 = Â for some assignment A : Hm → H, then for (x1, . . . , xm) ∈ Hm,

p1(x1, .., xm) = ψ(T (x1, .., xm), A(ρ1(x1, .., xm)), . . . , A(ρ6(x1, .., xm)))

Thus, p1|Hm ≡ 0 iff the polynomial p0 represents an assignment A that satisfies
the instance (1n, H, T, ψ, ρ1, . . . , ρ6). Note that if p0 is a polynomial of degree
mh, then p1 is a polynomial of degree at most cmh where c is the degree of the
polynomial ψ.

Now to the remaining rules. It is to be noted that only rule R1 actually
depends on the instance, the other rules are generic rules which follow the sum-
check protocol in Lund et al. (1990). As mentioned earlier, these rules make
the zero-set of the polynomials larger and larger.

For starters, let us first work on a univariate polynomial, p : F → F. Let
H = {h1, . . . , h|H|} be an enumeration of the elements in H. Consider the

16 Harsha & Sudan

construction rule that works as follows:

q(r) ,
|H|∑
j=1

p(hj)r
j

Clearly, if p(h) = 0 for all h ∈ H, then q ≡ 0 on F. Conversely, if ∃h ∈
H, p(h) 6= 0, then q is a non-zero polynomial and hence is not identically zero.

Now, for multivariate polynomials, we shall mimic the above construction.
Consider the sequence of polynomials construction rules defined as follows. For
i = 1, . . . ,m, rule Ri+1 works as follows:

pi+1

(
←− r̄ −→︸ ︷︷ ︸
i−1 variables

, ri,←− x̄ −→︸ ︷︷ ︸
m−i variables

)
,

|H|∑
j=1

pi

(
←− r̄ −→︸ ︷︷ ︸, hj,←− x̄ −→︸ ︷︷ ︸) rji

By the same reasoning as in the univariate case, we have that

pi+1|Fi×Hm−i ≡ 0 ⇐⇒ pi|Fi−1×Hm−i+1 ≡ 0

Thus, pm+1 ≡ 0 iff p1|Hm = 0. But p1|Hm ≡ 0 iff p0|Hm satisfies (1n, H, T, ψ, ρ1,
. . . , ρ6). Thus, the rules we have constructed satisfy

(1n,mh,F;R1, . . . , Rm+1) ∈ PEm,mh,q ⇐⇒ (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h

Since qm = O((hm)β)), the above reduction is β-length-preserving. Thus,
Lemma 3.19 is proved.

We can in fact prove a stronger statement regarding the hardness of the PE
instance, we have created.

Proposition 3.20. Suppose, we have an instance (1n, d,F;R1, . . . , Rm+1) of
PEm,mh,q constructed from an instance (1n, H, T, ψ, ρ1, . . . , ρ6) of APm,h as
mentioned above.

[Completeness] If (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h, then there exists
a polynomial p0 : Fm → F of degree at most mh such that the se-
quence of polynomials constructed by applying the rules R1, . . . , Rm+1

(i.e., pi = Rpi−1 for i = 1 . . .m + 1) satisfy pm+1 ≡ 0. Moreover, each of
the polynomials p1, . . . , pm+1 are of degree at most cmh.

[Soundness] If there exists a polynomial p0 : Fm → F of degree at most
mh and polynomials p1, . . . , pm+1 of degree at most cmh each, such that

Pr
x̄∈Fm

[pi(x̄) = Rpi−1] >
(c+ 1)mh

q
, i = 1, . . . ,m+ 1

Pr
x̄∈Fm

[pm+1(x̄) = 0] >
(c+ 1)mh

q

Small PCPs with low query complexity 17

then, (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h.

For the proof of this proposition, we shall need Schwartz’s Lemma.

Lemma 3.21 (Schwartz 1980). For any finite field F, if p, q : Fm → F are two
distinct polynomials of degree at most d each, then

Pr
x̄∈Fm

[p(x̄) = q(x̄)] <
d

|F|
Proof of Proposition 3.20. The proof for the Completeness part of the
proposition directly follows from the manner in which the rules are constructed.

For the soundness part, we note that the rule R1 increases the degree of
the polynomial by at most a factor of c and each of the other rules Ri has the
effect of changing the degree with respect to the (i− 1)th variable to at most h
and not increasing the degree with respect to any of the other variables. This
implies that each of the polynomials R

pi−1

i have degree at most (c+ 1)mh. By
Schwartz’s Lemma, it now follows that pi ≡ R

pi−1

i for i = 1, . . . ,m + 1 and
pm+1 ≡ 0. But this implies that p0|Hm satisfies (1n, H, T, ψ, ρ1, . . . , ρ6). Thus,
proved. �

3.4.2. Hardness of Gap PCS. We first reduce AP to GapPCS

Lemma 3.22. There exists a constant c such that every β > 1 and all functions
q,m, h, b, ε : Z+ → Z+ satisfying q(n) ≥ b(n)/ε(n), b(n) ≥ 2cm(n)h(n) and
q(n)m(n)+1 = O

(
h(n)βm(n)

)
, APm,h reduces to GapPCSε,m+1,b,q under β-length-

preserving reductions.

Proof. Let (1n, H, T, ψ, ρ1, . . . , ρ6) be any instance of APm,h. Using the
reduction in the proof of Lemma 3.19, we obtain the instance (1n, d,F;R1,
. . . , Rm+1). From this instance, we shall build an instance (1n, d, k, s,F;C1,
. . . , Ct) of GapPCSε,m+1,b,q as specified below.

Let c be the same constant that appears in Lemma 3.19. Let p0 be the
polynomial of degree at most mh that occurs in the proof of the statement
“(1n, d,F;R1, . . . , Rm+1) ∈ PEm,b,q”. Also let p1, . . . , pm+1 be the polynomials
defined by the rules R1, . . . , Rm+1 (i.e, pi = R

pi−1

i). Note that the pi’s are of
degree at most cmh. We first bundle together the polynomials p0, . . . , pm+1

into a single polynomial p : Fm+1 → F. Let {f0, . . . , fq−1} be an enumeration
of the elements in F. Let Fm+1 = {f0, . . . , fm+1}. For each i = 0, . . . ,m + 1,
let δi : F→ F be the unique polynomial of degree at most m+ 1 satisfying

δi(x) =

{
1 if x = fi

0 if x ∈ Fm+1 − fi

18 Harsha & Sudan

Polynomial p : Fm+1 → F is defined as follows: For (v, x̄) ∈ Fm+1 where v ∈ F
and x̄ ∈ Fm,

p(v, x̄) =
m+1∑
i=0

δi(v)pi(x̄)

Since each of the polynomials p0, . . . , pm+1 is of degree at most cmh, the poly-
nomial p is of degree at most cmh+m ≤ 2cmh ≤ b.

For each x ∈ Fm, construct constraint Cx as follows:

Cx =
(
pm+1(x) = 0

)
∧
m+1∧
i=1

(pi(x) = R
pi−1

i (x))

(This constraint is to be thought of as a constraint on the single polynomial
p.)

The circuit associated with each constraint Cx checks the polynomial p at
k ≈ (m + 2)(h + 1) ≤ b points and has size s which is of the same order as
k. Since p is of degree d which is at most b, we have constructed an instance
(1n, d, k, s,F;C1, . . . , Ct) of GapPCSε,m+1,b,q where d, k, s ≤ b and t = qm. It fol-
lows from Proposition 3.20, that this instance (1n, d, k, s,F;C1, . . . , Ct) satisfies
the following lemma.

Proposition 3.23. Suppose, we have an instance (1n, d, k, s,F;C1, . . . , Ct) of
GapPCSε,m+1,b,q constructed from an instance (1n, H, T, ψ, ρ1, . . . , ρ6) of APm,h

as mentioned above.

◦ [Completeness] If (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h, then there exists a
polynomial p : Fm+1 → F of degree at most d such that p satisfies all the
constraints Ci (i.e., Ai(p(x

(i)
1 , . . . , p(x

(i)
k) = 0)

◦ [Soundness] If there exist polynomial p : Fm+1 → F of degree at most d
which satisfies at least ε fraction of the constraints, then (1n, H, T, ψ, ρ1,
. . . , ρ6) ∈ APm,h.

The completeness part of this proposition is clear by construction. For
the soundness part, it is to be noted that if at least (c + 1)mh/q fraction of
the constraints are satisfied, then the soundness condition in Proposition 3.20
implies that (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h. The only observation to be made
is that ε ≥ b/q ≥ 2cmh/q ≥ (c+ 1)mh/q.

This proposition completes the proof of the lemma.
�

Lemma 3.16 now follows from Lemma 3.2 and Lemma 3.22.

Small PCPs with low query complexity 19

3.5. Low-degree tests. Using GapPCS it is easy to produce a simple prob-
abilistically checkable proof for SAT. Given an instance of SAT, reduce it to
an instance I of GapPCS ; and provide as proof the polynomial p : Fm → F as
a table of values. To verify correctness a verifier first “checks” that p is close
to some polynomial and then verifies that a random constraint Cj is satisfied
by p. Low-degree tests are procedures designed to address the first part of this
verification step – i.e., to verify that an arbitrary function f : Fm → F is close
to some (unknown) polynomial p of degree d.

Low-degree tests have been a subject of much research in the context of
program checking and PCPs. For our purposes, we need tests that have very
low probability of error. Two such tests with analyses are known, one due
to Raz & Safra (1997) and another due to Rubinfeld & Sudan (1996) (with
low-error analysis by Arora & Sudan (1997b)) For our purposes the test of Raz
and Safra is more efficient. We describe their results first and then compare its
utility with the result in Arora & Sudan (1997b).

A plane in Fm is a collection of points parametrized by two variables. Specif-
ically, given a, b, c ∈ Fm the plane ℘a,b,c = {℘a,b,c(t1, t2) = a+t1b+t2c|t1, t2 ∈ F}.
Several parameterizations are possible for a given plane. We assume some
canonical one is fixed for every plane, and thus the plane is equivalent to
the set of points it contains. The low-degree test uses the fact that for any
polynomial p : Fm → F of degree d, the function p℘ : F2 → F given by
p℘(t1, t2) = p(℘(t1, t2)) is a bivariate polynomial of degree d. The verifier tests
this property for a function f by picking a random plane through Fm and ver-
ifying that there exists a bivariate polynomial that has good agreement with f
restricted to this plane. The verifier expects an auxiliary oracle fplanes that gives
such a bivariate polynomial for every plane. This motivates the test below.

Low-Degree Test (Plane-Point Test)

Input: A function f : Fm → F and an oracle fplanes, which for each plane
in Fm gives a bivariate degree d polynomial.

1. Choose a random point in the space x ∈R Fm.

2. Choose a random plane ℘ passing through x in Fm.

3. Query fplanes on ℘ to obtain the polynomial h℘. Query f on x.

4. Accept iff the value of the polynomial h℘ at x agrees with f(x).

It is clear that if f is a degree d polynomial, then there exists an oracle fplanes

such that the above test accepts with probability 1. It is non-trivial to prove

20 Harsha & Sudan

any converse and Raz & Safra (1997) give a strikingly strong converse. Below
we work their statement into a form that is convenient for us.

First some more notation. Let LDTf,fplanes(x, ℘) denote the outcome of the
above test on oracle access to f and fplanes. Let f, g : Fm → F have agreement
δ if Prx∈Fm [f(x) = g(x)] = δ.

Theorem 3.24. There exist constants c0, c1 such that for every positive real
δ, integers m, d and field F satisfying |F| ≥ c0d(m/δ)c1 , the following holds: Fix
f : Fm → F and fplanes. Let {P1, . . . , Pl} be the set of all m-variate polynomials
of degree d that have agreement at least δ/2 with the function f : Fm → F.
Then

Pr
x,℘

[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) = accept] ≤ δ.

Remarks:

1. The actual theorem statement of Raz & Safra (1997) differs in a few
aspects. The main difference being that the exact bound on the agreement
probability described is different; and the fact that the claim may only
say that if the low-degree test passes with probability greater than δ, then
there exists some polynomial that agrees with f in some fraction of the
points. A proof of reduction of the above theorem from the statement of
Raz & Safra (1997) can be found in Section 3.5.1.

2. The cubic blowup in our proof size occurs from the oracle fplanes which
has size cubic in the size of the oracle f . A possible way to make the
proof shorter would be to use an oracle for f restricted only to lines. (i.e.,
an analogous line-point test to the above test) The analysis of Arora &
Sudan (1997b) does apply to such a test. However they require the field
size to be (at least) a fourth power of the degree; and this results in a
blowup in the proof to (at least) an eighth power. Note that the above
theorem only needs a linear relationship between the degree and the field
size.

3.5.1. Reduction of Theorem 3.24 from Raz and Safra. The statement
of Raz & Safra (1997) regarding the Plane-point low-degree test is as follows:

Theorem 3.25 (Raz & Safra 1997, Theorem 7). There exist constants c0, c1,
c2 and c3 such that for every δ > 0, integers m, d and field F satisfying |F| ≥
c0d(m/δ)c1 , the following holds: Let f : Fm → F be any function. If there

Small PCPs with low query complexity 21

exists an oracle fplanes satisfying Prx,℘[LDTf,fplanes(x, ℘) = accept] ≥ δ, then
there exists a polynomial p : Fm → F of degree at most d such that p and f
agree on at least δc2/c3 fraction of the points.

The above theorem statement of Raz & Safra (1997) relates the probabil-
ity of a function f passing the low degree test with the agreement of f with
some polynomial of low degree. The form of the statement which will be most
convenient for us to work with is one which states that the probability of the
low degree test passing on points at which f does not agree with any of the
polynomials it has high agreement with is very low. By now transformations
between these two forms of the low-degree test are standard (cf. Arora & Sudan
(1997b); Raz & Safra (1997)). Below we follow the standard steps which go
through a sequence of stronger forms culminating in Theorem 3.24.

Lemma 3.26. Let c0, c1, c2, c3 be the constants that appear in Theorem 3.25.
For every positive real δ, integers m, d and field F satisfying |F| ≥ c0d(m/δ)c1 ,
the following holds: Fix f : Fm → F and fplanes. Let {P1, . . . , Pl} be the set
of all m-variate polynomials of degree d that have agreement at least δc2/2c3

with the function f : Fm → F. Then

Pr
x,℘

[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) = accept] ≤ δ.

Proof. Suppose, Prx,℘[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) =
accept] > δ. Let S ⊆ Fm be the set of all points in Fm at which f does not
agree with any of P1, . . . , Pl. Then by our hypothesis, f |S passes the low-degree
test (Plane-point test) with probability at least δ. We can now extend f |S to
a function g : Fm → F on the entire domain Fm by setting the value of g at
points not in S randomly. As g passes the low degree test with probability at
least δ, by Theorem 3.25, we have that there exists a polynomial P : Fm → F
of degree at most d that agrees with g on at least δc2/c3 fraction of the points
in Fm. The points of agreement of P with g must be concentrated in S as
the value of g at points in Fm − S is random. Note the a random function
has agreement approximately 1/|F| with every degree d polynomial. Thus, P
agrees with f |S on at least δc2

2c3
|Fm| points in S. As f is different from each of

P1, . . . , Pl in S, this polynomial P must be different from P1, . . . , Pl. Thus, we
have a polynomial other than P1, . . . , Pl that agrees with f on δc2/2c3 fraction
of points in Fm. But this is a contradiction as {P1, . . . , Pl} is the set of all
polynomial that have at least δc2/2c3 agreement with f . �

Now, for some more notation. Fix f : Fm → F and an oracle fplanes. Let
the success probability of a point x ∈ Fm be defined as the fraction of planes ℘

22 Harsha & Sudan

passing through x such that the value of the polynomial fplanes(℘) at x agrees
with f(x). The success probability of a plane ℘ is defined to be the fraction of
points x on the plane ℘ such that fplanes(℘) at x agrees with f(x). Note, by
this definition

Ex∈Fm [Success probability of x] = E
℘−plane[Success probability of ℘]

= Pr
x,℘

[LDTf,fplanes = accept]

We are now ready to prove the next stronger form of Theorem 3.25.

Lemma 3.27. There exist constants c, c′ such that for every positive real δ,
integers m, d and field F satisfying |F| ≥ cd(m/δ)c

′
, the following holds: Let

f : Fm → F be any function. If there exists a oracle fplanes satisfying

Pr
x,℘

[LDTf,fplanes(x, ℘) = accept] ≥ δ

then there exists a polynomial p : Fm → F of degree at most d such that p and
f agree on at least 3δ/4 fraction of the points.

Proof. Let ℘ be a random plane. Since E
℘−plane [Success probability of ℘]

is at least δ, it follows by an averaging argument that with probability at least
δ/8, the success probability of ℘ is at least 7δ/8. In other words, if for a
random plane ℘, E(℘) denotes the event that there exists a bivariate polynomial
g℘ : F2 → F of degree at most d that agrees with f on at least 7δ/8 fraction of
the points on ℘, then

(3.28) Pr
℘

[E(℘)] ≥ δ

8

Let c0, c1, c2, c3 be the constants that appear in Theorem 3.25. Let P1, . . . , Pl be

all the polynomials of degree at most d that agree with f on at least 1
2c3

(
δ2

20

)c2
fraction of the points of Fm. Note that l ≤ 4c3

(
20
δ2

)c2 . Define ρ1, . . . , ρl such
that ρi = Prx∈Fm [Pi(x) = f(x)] (i.e., agreement of Pi and f). If we show that
there exists an i such that ρi ≥ 3δ/4, we would be done. We will assume the
contrary and obtain a contradiction to (3.28).

Suppose for all i = 1, . . . , l, ρi < 3δ/4. Let ℘ be any plane such that the
event E(℘) occurs. Then, the bivariate polynomial g℘ that is described in the
event E(℘) should satisfy one of the following.

Case (i): g℘ /∈ {P1|℘, . . . , Pl|℘}. (i.e., g℘ is not the restriction of any of the
Pi’s to the plane ℘.)

Small PCPs with low query complexity 23

Case (ii): g℘ ∈ {P1|℘, . . . , Pl|℘}. (i.e., g℘ is the restriction of one of the Pi’s
to the plane ℘.)

In case (i), we have that ℘ is a plane whose success probability is at least
7δ/8 and moreover, on at least 7δ/8 − ld/|F| fraction of the points on ℘, the
polynomial g℘ agrees with f but not with any of P1, . . . , Pl. By Lemma 3.26, if
|F| ≥ c0d(20m/δ2)c1 , then at most δ2/20 fraction of the points in Fm are such
that f does not agree with P1, . . . , Pl but the low degree test passes at that
point. Thus, by an averaging argument it follows that

Pr
℘

[Case (i) occurs] ≤ δ2

20(7δ
8
− ld
|F|)

If |F| > 22c2+55c2+1c3d/3δ
c2+1, then |F| > 40ld/3δ and the above probability is

less than δ/16. Thus, if F is chosen in such a manner, the probability of case(i)
happening is less than δ/16.

In case (ii), for i = 1, . . . , l, define the random variable γi to denote the
fraction of points on the random plane ℘ at which Pi agrees with f . We have
that for each i, E℘[γi] = ρi. An application of Chebyshev’s inequality tells us
that for each i = 1, . . . , l,

Pr
℘

[
γi − ρi >

δ

8

]
≤ 64ρi
δ2|F|2

As we have by our assumption that ρi < 3δ/4, we have that

Pr
℘

[
∃i, γi >

7δ

8

]
≤ l × 64ρi

δ2|F|2
≤ 22c2+85c2c3

|F|2δ2c2+1

If we choose F such that |F| ≥ 2c2+65c2/2
√
c3/δ

c2+1, then the above prob-
ability is less than δ/16. Note that the probability on the LHS is an upper
bound on the Pr℘[Case (ii) occurs]. Thus, case (ii) happens with probability
less than δ/16.

Let c, c′ be sufficiently large constants such that |F| ≥ cd(m/δ)c
′
implies the

three inequalities |F| ≥ c0d(20m/δ2)c1 , |F| > 22c2+55c2+1c3d/3δ
c2+1 and |F| ≥

2c2+65c2/2
√
c3/δ

c2+1. In this case we have that Pr℘[E(℘)] = Pr℘[Case (i)] +
Pr℘[Case (i)] < δ/16 + δ/16 = δ/8. This contradicts (3.28). Hence, there
does exist a i such that ρi ≥ 3δ/4. Thus, for this i, the polynomial Pi and f
agree on at least 3δ/4 fraction of the points in Fm. �

Theorem 3.24 is then obtained from Lemma 3.27 by mimicking the proof of
Lemma 3.26 from Theorem 3.25.

24 Harsha & Sudan

3.6. Putting them together. As pointed out earlier a simple PCP for
GapPCS can be constructed based on the low-degree test. A proof would be
an oracle f representing the polynomial and the auxiliary oracle fplanes. The
verifier performs a low-degree test on f and then picks a random constraint
Cj and verifies that Cj is satisfied by the assignment f . But the naive imple-
mentation would make k queries to the oracle f and this is too many queries.
The same problem was faced by Arora et al. (1998) who solved it by running
a curve through the k points and then asking a new oracle fcurves to return
the value of f restricted to this curve. This solution cuts down the number of
queries to 3, but the analysis of correctness works only if |F| ≥ kd. In our case,
this would impose an additional quadratic blowup in the proof size and we
would like to avoid this. We do so by picking r-dimensional varieties (algebraic
surfaces) that pass through the given k points. This cuts down the degree to
rk1/r. However some additional complications arise: The variety needs to pass
through many random points, but not at the expense of too much randomness.
We deal with these issues below.

A variety V : Fr → Fm is a collection of m functions, V = 〈V1, . . . ,Vm〉, Vi :
Fr → F. A variety is of degree D if all the functions V1, . . . ,Vm are polynomials
of degree D. For a variety V and function f : Fm → F, the restriction of f to V
is the function f |V : Fr → F given by f |V(a1, . . . , ar) = f(V(a1, . . . , ar)). Note
that the restriction of a degree d polynomial p : Fm → F to an r-dimensional
variety V of degree D is an r-variate polynomial of degree Dd.

Let S ⊆ F be of cardinality k1/r. Let z1, . . . , zk be some canonical ordering
of the points in Sr. Let V(0)

S,x1,...,xk
: Fr → Fm denote a canonical variety of degree

r|S| that satisfies V(0)
S,x1,...,xk

(zi) = xi for every i ∈ {1, . . . , k}. Let ZS : Fr → F
be the function given by ZS(y1, . . . , yr) =

∏r
i=1

∏
a∈S(yi − a); i.e. ZS(zi) = 0.

Let α = 〈α1, . . . , αm〉 ∈ Fm. Let V(1)
S,α be the variety 〈α1ZS, . . . , αmZS〉. We

will let VS,α,x1,...,xk be the variety V(0)
S,x1,...,xk

+ V(1)
S,α. Note that if α is chosen

at random, VS,α,x1,...,xk(zi) = xi for zi ∈ Sr and VS,α,x1,...,xk(z) is distributed
uniformly over Fm if z ∈ (F − S)r. These varieties will replace the role of
the curves of Arora et al. (1998). We note that Dinur et al. also use higher
dimensional varieties in the proof of PCP-related theorems (Dinur et al. 1999).
(They call these structures manifolds instead of varieties.) Their use of varieties
is for purposes quite different from ours.

We are now ready to describe the MIP verifier for GapPCSε,m,b,q. (Hence-
forth, we shall assume that t, the number of constraints in GapPCSε,m,b,q in-
stance is at most q2m. In fact, for our reduction from SAT (Lemma 3.16), t is
exactly equal to qm.)

Small PCPs with low query complexity 25

MIP Verifierf,fplanes,fvarieties(1n, d, k, s,F;C1, . . . , Ct).

Notation: r is a parameter to be specified. Let S ⊆ F be such that
|S| = k1/r.

1. Pick a, b, c ∈ Fm and z ∈ (F− S)r at random.

2. Let ℘ = ℘a,b,c. Use b, c to compute j ∈ {1, . . . , t} at random (i.e.,
j is fixed given b, c, but is distributed uniformly when b and c are
random.) Compute α such that V(z) = a for V = V

S,α,x
(j)
1 ,...,x

(j)
k

.

3. Query f(a), fplanes(℘) and fvarieties(V). Let g = fplanes(℘) and h =
fvarieties(V).

4. Accept if all the conditions below are true:

(a) g and f agree at a.

(b) h and f agree at a.

(c) Aj accepts the inputs h(z1), . . . , h(zk).

Complexity: Clearly the verifier V makes exactly 3 queries. Also, exactly
3m log q+ r log q random bits are used by the verifier. The answer sizes are no
more than O((drk1/r + r)r log q) bits.

Now to prove the correctness of the verifier. Clearly, if the input instance
is a YES instance then there exists a polynomial P of degree d that satisfies all
the constraints of the input instance. Choosing f = P and constructing fplanes

and fvarieties to be restrictions of P to the respective planes and varieties, we
notice that the MIP verifier accepts with probability one.

To prove the soundness of the verifier, we first need to bound the number
of polynomials of degree d that have a fairly large agreement with a function
f : Fm → F.

Claim 3.29. Let f : Fm → F be any function. Suppose integer d > 0 and

fraction δ are such that δ > 2
√

d
q

where q = |F|. Then there are at most 2
δ

polynomials of degree d that have agreement at least δ with f .

A proof of this claim can be found in (Arora & Sudan 1997b, Proposition 7).
We are now ready to bound the soundness of the verifier.

Claim 3.30. Let δ be any constant that satisfies the conditions of Theo-

rem 3.24 and δ ≥ 4
√

d
q

where q = |F|. Then the soundness of the MIP Verifier

is at most

δ +
4ε

δ
+

4rk
1
r d

δ(q − k 1
r)
.

26 Harsha & Sudan

Proof. Let P1, . . . , Pl be all the polynomials of degree d that have agreement
at least δ/2 with f . Note that as δ/2 ≥ 2

√
d/q, we have from Claim 3.29 that

l ≤ 4/δ. Now suppose, the MIP Verifier had accepted a NO instance. Then
one of the following events must have taken place.

Event 1: f(a) /∈ {P1(a), . . . , Pl(a)} and LDTf,fplanes(a, ℘) = accept.
We have from Theorem 3.24, that Event 1 could have happened with
probability at most δ.

Event 2: There exists an i ∈ {1, . . . , l}, such that constraint Cj is satisfiable

with respect to polynomial Pi. (i.e., Aj(Pi(x
(j)
1), . . . , Pi(x

(j)
k)) = 0).

As the input instance is a NO instance of GapPCSε,m,b,q, this events
happens with probability at most lε ≤ 4ε/δ.

Event 3: For all i ∈ {1, . . . , l} , Pi|V 6= h, but the value of h at a is contained
in {P1(a), . . . , Pl(a)}.
To bound the probability of this event happening, we reinterpret the
randomness of the MIP verifier. First pick b, c, α ∈ Fm. From this we
generate the constraint Cj and this defines the variety V = V

S,α,x
(j)
1 ,...,x

(j)
k

.

Now we pick z ∈ (F − S)r at random and this defines a = V(z). We
can bound the probability of the event in consideration after we have
chosen V , as purely a function of the random variable z as follows. Fix
any i and V such that Pi|V 6= h. Note that the value of h at a equals
h(z) (by definition. of a, z and V). Further Pi(a) = Pi|V(z). But z is
chosen at random from (F − S)r. By Schwartz’s lemma (Lemma 3.21),
the probability of agreement on this domain is at most rk1/rd/(|F|− |S|).
Using the union bound over the i’s we get that this event happens with
probability at most lrk1/rd/(|F| − |S|) ≤ 4rk

1
r d/δ(q − k 1

r).

We thus have that the probability of one of the above events occurring is at
most δ + 4ε/δ + 4rk

1
r d/δ(q − k 1

r).
We would be done if we show that if none of the three events occur, then

the MIP verifier rejects. Suppose none of the three events took place. In other
words, all the following happened

◦ f(a) ∈ {P1(a), . . . , Pl(a)} or LDTf,fplanes(a, ℘) = reject. We could as well
assume that f(a) ∈ {P1(a), . . . , Pl(a)} for in the other case (i.e., LDT
rejects), the verifier also rejects.

◦ For all i, Aj
(
Pi(x

(j)
1 , . . . , Pi(x

(j)
k)
)
6= 0.

Small PCPs with low query complexity 27

◦ ∃i, Pi|V = h or the value of h at a is not contained in {P1(a), . . . , Pl(a)}.

If h at a is not one of P1(a), . . . , Pl(a), then the MIP verifier rejects as f(a) ∈
{P1(a), . . . , Pl(a)}. So, if the MIP verifier had accepted, it should be the case

that ∃i, Pi|V = h. But as ∀i, Aj(Pi(x(j)
1 , . . . , Pi(x

(j)
k) 6= 0, the verifier is bound

to reject in this case too. Thus, if none of the the three events occurred, then
the verifier should have rejected. �

We can now complete the construction of a 3-prover MIP for SAT and give the
proof of Lemma 2.4.

Proof of Lemma 2.4. Choose δ = µ
3
. Let c0, c1 be the constants that

appear in Theorem 3.24. Choose ε′ = ε/2 where ε is the soundness of the
MIP, we wish to prove. Choose ε = min{δµ/12, ε′/3(9 + c1), (5 + c1)/4}. Let n

be the size of the SAT instance. Let m = ε log n/ log log n, b = (log n)3+ 1
ε and

q = (log n)9+c1+ 1
ε . Note that this choice of parameters satisfies the requirements

of Lemma 3.16 for β = 1 + (9 + c1)ε ≤ (1 + ε′/3). Hence, SAT reduces to
GapPCSε,m,b,q under (1 + ε′/3)-length-preserving reductions. Combining this
reduction with the MIP verifier for GapPCS, we have a MIP verifier for SAT.
Also δ satisfies the requirements of Claim 3.30. Thus, this MIP verifier has
soundness as given by Claim 3.30. Recall that k, d ≤ b(n) = (log n)3+ 1

ε from
the definition of GapPCSε,m,b,q. Setting r = 1

ε
, we have that for sufficiently

large n,

4rk
1
r d/δ(q − k

1
r) ≤ 8rk

1
r d/qδ ≤ 8b1+ε/qδε ≤ 8/δε(log n)5+c1−3ε ≤ µ/3

Hence, the soundness of the MIP verifier is at most δ + 4ε/δ + µ/3 ≤ µ. The
randomness used is exactly 3m log q + r log q which with the present choice of
parameters is (3 + ε′) log n + poly log n ≤ (3 + ε) log n. The answer size is
O((brb1/r + r)r) log q) bits which for our choice of parameters is O((9 + c1 +
1
ε
)
(

1
ε

) 1
ε log2/ε3 n) (i.e., poly log n). Thus, SAT ∈ MIP1,µ[(3+ε) log n, poly log n].

�

4. Constant query inner verifier for MIPs

In this section, we truncate the recursion by constructing a constant query
“inner verifier” for a p-prover interactive proof system. An inner verifier is a
subroutine designed to simplify the task of an MIP verifier. Say an MIP verifier
Vout, on input x and random string R, generated queries q1, . . . , qp and a linear
sized circuit C. In the standard protocol the verifier would send query qi to

28 Harsha & Sudan

prover Πi and receive some answer ai. The verifier accepts if C(a1, . . . , ap) =
true. An inner verifier reduces the answer size complexity of this protocol by
accessing oracles A1, . . . , Ap, which are supposedly encodings of the responses
a1, . . . , ap, and an auxiliary oracle B, and probabilistically verifying that the
Ai’s really correspond to some commitment to strings a1, . . . , ap that satisfy
the circuit C. The hope is to get the inner verifier to do all this with very
few queries to the oracles A1, . . . , Ap and B and we do so with one (bit) query
each to the Ai’s and seven queries to B. For encoding the responses a1, . . . , ap,
we use the long code of Bellare et al. (1998). We then adapt the techniques of
H̊astad (1996, 1997b) to develop and analyze a protocol for the inner verifier.

4.1. Long Code. In this section, we represent all Boolean values by {−1, 1},
with −1 representing true and 1 representing false. This is done so that the
Boolean xor operation becomes integer multiplication. For any finite set U , let
FU denote the set of all functions f : U → {−1, 1}. The long code of a string
a ∈ U is the string EUa of length 2|U|, whose entries are indexed by the functions
f ∈ FU , such that EUa (f) = f(a). For indexing purposes, a fixed (but arbitrary)
ordering of the functions in FU is used. With this association in mind, we use
the words “function”, “string”, “table” and “oracle” interchangeably. We say
that a string A indexed by functions f ∈ FU is folded if A(f) = −A(−f)
for every f ∈ FU . Long codes are folded. We shall assume that all strings
are folded. This can be done if we employ the following access mechanism
suggested in Bellare et al. (1998). Let u be some fixed (but arbitrary) string
in the set U . Now FU can be divided into 2 sets F1

U and F2
U as follows:

F1
U = {f ∈ FU |f(u) = 1}
F2
U = {f ∈ FU |f(u) = −1}

Note that FU is the disjoint union of F1
U and F2

U . These sets satisfy the nice
property that for any function f ∈ FU either f ∈ F1

U or −f ∈ F1
U but not both.

Given any string A which is the truth-table of a function A : FU → {−1, 1}, to
find the value of A(f) for any f ∈ FU , we do the following. If f ∈ F1

U , then we
lookup A(f) in the string A. Otherwise, we lookup A(−f) and infer the value
of A(f) by negating A(−f). (i.e., A(f) = −A(−f))

In what follows, we will be using the long code to encode members of two
sets A and B (defined below). In practice, to use a long code f = EUa in a
protocol, we should be able to generate a random function in FU (i.e., in FA
and FB in our case). For this purpose, we assume that the set U is a subset
of {0, 1}l for some l and that the elements of U can be enumerated in time

Small PCPs with low query complexity 29

exponential in l. The sets A and B that we would be using in the protocol will
satisfy these properties.

4.2. Details of the Inner Verifier. We now return to the description of
our inner verifier. We start with some notation. Let A = {+1,−1}a and
B = {(a1, . . . , ap)|C(a1, . . . , ap) = −1}. Let πi be the projection function πi :
B → A which maps (a1, . . . , ap) to ai. By abuse of notation, for β ⊆ B, let
πi(β) denote {πi(x)|x ∈ β}. Queries to the oracle Ai will be functions f ∈ FA.
Queries to the oracle B will be functions g ∈ FB. The inner verifier expects
the oracles to provide the long codes of the strings a1, . . . , ap, i.e., Ai = EAai
and B = EBa1,...,ap

. Of course, we can not assume these properties; they need
to be verified explicitly by the inner verifier. We will however assume that the
encodings are folded. We are now ready to specify the inner verifier.

Vinner
A1,...,Ap,B(A,B, π1, . . . , πp).

1. For each each i ∈ {1, . . . , p}, choose fi ∈ FA at random.

2. Choose f, g1, g2, h1, h2 ∈ FB at random and independently.

3. Let g = f (g1 ∧ g2) (
∏
fi ◦ πi)) and h = f (h1 ∧ h2) (

∏
fi ◦ πi)).

4. Read the following bits from the oracles A1, . . . , Ap, B

yi = Ai(fi) , for each i ∈ {1, . . . , p}.
w = B(f).

u1 = B(g1);u2 = B(g2)

v1 = B(h1); v2 = B(h2)

z1 = B(g); z2 = B(h)

5. Accept iff

w

p∏
i=1

yi = (u1 ∧ u2)z1 = (v1 ∧ v2)z2

4.3. Analysis of Inner Verifier. Suppose the strings a1, . . . , ap are such
that C(a1, . . . , ap) = −1. Let the tables Ai be the long codes of the strings
a1, . . . , ap ∈ A for each i = 1, . . . , p. Also let table B be the long code of
(a1, . . . , ap) ∈ B. It is clear that the inner verifier Vinner accepts these tables
with probability 1. This proves the completeness part of Vinner. We shall prove
the soundness of Vinner by showing that if the acceptance probability of the
inner verifier is sufficiently high then the tables A1, . . . , Ap are non-trivially
close to the encoding of strings a1, . . . , ap that satisfy C(a1, . . . , ap) = −1. For
this purpose, we would need some machinery from Fourier analysis.

30 Harsha & Sudan

4.3.1. Fourier Transforms. In this section, we present linear functions,
Fourier transforms as introduced by H̊astad (1996, 1997b). These are tools
that come handy in the analysis of long codes. A function A : FU → {−1, 1} is
said to be linear iff A(f)A(g) = A(fg) for all f, g ∈ FU . There are 2|U| linear
functions, one corresponding to each set α ⊆ U , defined as follows.

χα(f) =
∏
a∈α

f(a)

(By convention, a product ranging over an empty set is 1.) At this point it
is worthwhile noting that if the string A is the the long code of a ∈ U , i.e.,
A = EUa , then A = χ{a}. In other words, long codes are precisely the linear
functions corresponding to singleton sets.

The function A : FU → {−1, 1} can be viewed as a real-valued function
A : FU → R. The set of all real-valued functions of the form A : FU → R form
a vector space (over the reals) of dimension 2|U|. We could define the following
inner product between functions A,A′ in this space.

〈A,A′〉 1

2|U|

∑
f∈FU

A(f)A′(f) = Ef∈FU [A(f)A′(f)]

The set of linear functions, i.e., the set {χα : α ⊆ U}, form a complete orthonor-
mal basis for this space under the above inner product. Thus any function
A : FA → R in this space has the following Fourier expansion.

A(f) =
∑
α⊆U

Âαχα(f)

where Âα = 〈A,χα〉 is the Fourier coefficient of A with respect to α. Parseval’s
identity tells us that 〈A,A〉 =

∑
α Â

2
α. Thus, for every function A : FU →

{−1, 1}, we have that
∑

α Â
2
α = 1.

For working with Fourier coefficients and linear functions, the following
three standard properties come pretty handy.

χα(f)χα(g) = χα(fg)(4.1)

χα(f)χα′(f) = χα4α′(f)(4.2)

Ef∈FU [χα(f)] =

{
1 if α = ∅
0 otherwise

(4.3)

where α4α′ represents the symmetric difference of the sets α and α′ which is
the set of elements contained in one of the sets α, α′ but not both. (Proofs of
these properties can be found in H̊astad (1997b))

Small PCPs with low query complexity 31

If a function A : FU → {−1, 1} is folded, then Âα = 0 for every α ⊆ U
such that |α| is even. (A proof of this fact can be found in H̊astad (1997b).)
In particular, Âα = 0, if α = ∅. We would like to mention here that the only
property of folding that is usually used is Â∅ = 0, but in this paper we would
be making essential use of the fact that Âα = 0 for all α such that |α| is even.

4.3.2. Soundness of Inner verifier. In what follows, we let Âi,α denote the
Fourier coefficient of the tableAi with respect to the set α. The following lemma
lays out the precise soundness condition in terms of the Fourier coefficients of
the oracles A1, . . . , Ap.

Claim 4.4. For every ε > 0, there exists a δ > 0 such that if the inner verifier
Vinner

A1,...,Ap,B(A,B, π1, . . . , πp) accepts with probability at least 1
2
+ε, then there

exist a1, . . . , ap ∈ A such that C(a1, . . . , ap) = −1 and |Âi,{ai}| ≥ δ for every
i ∈ {1, . . . , p}.

Proof. Let δ be some constant dependent on ε(to be decided later.) As-
sume that there do not exist a1, . . . , ap ∈ A such that C(a1, . . . , ap) = −1 and

|Âi,{ai}| ≥ δ for every i ∈ {1, . . . , p}. On restating this assumption, we get
that for every β ⊆ B such that |β| = 1, there exists a i ∈ {1, . . . , p} such
that |Âi,πi(β)| < δ. To prove the lemma, it is sufficient if we show that for
every choice of ε there exists a particular choice of δ, such that this assumption
implies that the acceptance probability of Vinner is less than 1

2
+ ε.

Let ACC be the indicator random variable denoting the acceptance condi-
tion of the inner verifier. Hence, E[ACC] denotes the acceptance probability
of the inner verifier. We shall divide the task of proving this claim into several
phases, given by Sub-Claims 4.5—4.10.

Sub-Claim 4.5.

E[ACC] =
1

4
+

1

2
T1 +

1

4
T2

where

T1 = E

[
w (u1 ∧ u2) z1

p∏
i=1

yi

]
; T2 = E

[
(u1 ∧ u2) (v1 ∧ v2) z1z2

]
Proof of Sub-Claim 4.5. The acceptance condition of the verifier Vinner

is given by the following expression.

ACC =
1

4

(
1 + w(u1 ∧ u2)z1

p∏
i=1

yi

)(
1 + w(v1 ∧ v2)z2

p∏
i=1

yi

)

32 Harsha & Sudan

The acceptance probability of Vinner is thus exactly equal to the following ex-
pression.

E[ACC] = E

[
1

4

(
1 + w (u1 ∧ u2) z1

p∏
i=1

yi

)(
1 + w (v1 ∧ v2) z2

p∏
i=1

yi

)]

where the expectation is taken over the random choices of the functions fi, f ,
g1, g2, h1 and h2. By linearity of expectation, this simplifies to

E[ACC] =
1

4
+

1

4
E

[
w (u1 ∧ u2) z1

p∏
i=1

yi

]
+

1

4
E

[
w (v1 ∧ v2) z2

p∏
i=1

yi

]

+
1

4
E

[
(u1 ∧ u2) (v1 ∧ v2) z1z2

]

Recall that yi = Ai(fi), w = B(f), u1 = B(g1), u2 = B(g2), v1 = B(h1),
v2 = B(h2), z1 = B(g), z2 = B(h). We thus note that

E

[
w (u1 ∧ u2) z1

p∏
i=1

yi

]
= E

[
w (v1 ∧ v2) z2

p∏
i=1

yi

]

Thus, the acceptance probability is given as follows.

E[ACC] =
1

4
+

1

2
E

[
w (u1 ∧ u2) z1

p∏
i=1

yi

]
+

1

4
E

[
(u1 ∧ u2) (v1 ∧ v2) z1z2

]

�

We shall now simplify each of the terms T1 and T2 individually and obtain the
following bounds for T1 and T2.

Sub-Claim 4.6.

T1 ≤
1

2

∑
β⊆B

B̂2
β

p∏
i=1

|Âi,πi(β)|
(

1

2

)|β|(
1 +

∑
β1⊆β

|B̂β1|

)2

Small PCPs with low query complexity 33

Sub-Claim 4.7.

T2 ≤
1

4

∑
β⊆B

B̂2
β

(
1

4

)|β|(
1 +

∑
β1⊆β

|B̂β1|

)4

Proof of Sub-Claim 4.6. Using the fact that a ∧ b = (1 + a+ b− ab)/2,
we expand T1 as follows:

T1 =
1

2
E

[
wz1

p∏
i=1

yi

]
+ E

[
wu1z1

p∏
i=1

yi

]
− 1

2
E

[
wu1u2z1

p∏
i=1

yi

]
The expression for T1 is of the form 1

2
T11 + T12 − 1

2
T13. We shall simplify each

of the terms T11, T12 and T13 individually. Using Fourier expansion, T11 can be
expanded as follows.

T11 = E

[
B(f)B(g)

p∏
i=1

Ai(fi)

]

= E

[(∑
β1⊆B

B̂β1χβ1(f)

)(∑
β2⊆B

B̂β2χβ2(g)

)
p∏
i=1

∑
αi⊆A

Âi,αiχαi(fi)

]
By linearity of expectation, we obtain,

T11 =
∑

β1,β2,αi

B̂β1B̂β2

(
p∏
i=1

Âi,αi

)
E

[
χβ1(f)χβ2(g)

p∏
i=1

χαi(fi)

]
Recalling that g = f(g1 ∧ g2)

∏
fi ◦ πi, we have

T11 =
∑

β1,β2,αi

B̂β1B̂β2

(
p∏
i=1

Âi,αi

)
E

[
χβ1(f)χβ2

(
f(g1 ∧ g2)

p∏
i=1

fi ◦ πi

)
p∏
i=1

χαi(fi)

]
Using property (4.1) that χα(fg) = χα(f)χα(g), we have

T11 =
∑

β1,β2,αi

B̂β1B̂β2

(
p∏
i=1

Âi,αi

)
E

[
χβ1(f)χβ2(f)χβ2(g1 ∧ g2)

p∏
i=1

χβ2 (fi ◦ πi)
p∏
i=1

χαi(fi)

]

34 Harsha & Sudan

The function f, g1, g2 and fi’s are all chosen independently. Hence,

T11 =
∑

β1,β2,αi

B̂β1B̂β2

(
p∏
i=1

Âi,αi

)(
E
[
χβ1(f)χβ2(f)

]
E
[
χβ2(g1 ∧ g2)

]
p∏
i=1

E
[
χβ2 (fi ◦ πi)χαi(fi)

])

From properties (4.2),(4.3), we conclude that E [χβ1(f)χβ2(f)] is 0 if β1 6= β2

and 1 otherwise (i.e., when β1 = β2 = β). Thus,

T11 =
∑
β,αi

B̂2
β

(
p∏
i=1

Âi,αi

)(
E
[
χβ(g1 ∧ g2)

] p∏
i=1

E
[
χβ (fi ◦ πi)χαi(fi)

])

Since g1 and g2 are chosen at random from FB, the expected value of g1 ∧ g2

on any element in B is 1
2
. Hence, E [χβ(g1 ∧ g2)] = E

[∏
x∈β(g1 ∧ g2)(x)

]
=∏

x∈β E [(g1 ∧ g2)(x)] =
(

1
2

)|β|
. We thus obtain,

T11 =
∑
β,αi

B̂2
β

(
1

2

)|β|(p∏
i=1

Âi,αi

)
p∏
i=1

E
[
χβ (fi ◦ πi)χαi(fi)

]

Using properties (4.2),(4.3), as before we conclude that E [χβ (fi ◦ πi)χαi(fi)]
is 0 if αi 6= πi(β) and is 1 otherwise. We thus have the following expression for
T11.

T11 =
∑
β

B̂2
β

p∏
i=1

Âi,πi(β)

(
1

2

)|β|

Analogously, T12 can be simplified to the following expression.

T12 = E

[
B(f)B(g)B(g1)

p∏
i=1

Ai(fi)

]

=
∑
β,β1

B̂2
βB̂β1

(
p∏
i=1

Âi,πi(β)

)
E
[
χβ(g1 ∧ g2)χβ1(g1)

]

Small PCPs with low query complexity 35

Now, let us analyze the expression E
[
χβ(g1 ∧ g2)χβ1(g1)

]
.

E
[
χβ(g1 ∧ g2)χβ1(g1)

]
= E

[∏
x∈β

(g1 ∧ g2)(x)
∏
x∈β1

g1(x)

]
=

∏
x∈β\β1

E [(g1 ∧ g2)(x)]
∏

x∈β1∩β

E [(g1 ∧ g2)g1(x)]

∏
x∈β1\β

E [g1(x)]

=

(
1

2

)|β\β1|(1

2

)|β∩β1| ∏
x∈β1\β

E [g1(x)]

=

(
1

2

)|β| ∏
x∈β1\β

E [g1(x)]

The step before the last one follows from the fact that for any element x ∈ B,
E [(g1 ∧ g2)(x)] = 1

2
and E [(g1 ∧ g2)g1(x)] = 1

2
. Now for any element x ∈ B,

E [g1(x)] = 0. Hence, if β1\β 6= ∅, E [χβ(g1 ∧ g2)χβ1(g1)] = 0. Thus, T12

reduces to the following expression.

T12 =
∑
β

∑
β1⊆β

B̂2
βB̂β1

p∏
i=1

Âi,πi(β)

(
1

2

)|β|
Using a similar analysis, T13 can be simplified to the following expression.

T13 =
∑
β⊆B

∑
β1,β2⊆β

B̂2
βB̂β1B̂β2

p∏
i=1

Âi,πi(β)(−1)|β1∩β2|
(

1

2

)|β|
Recalling that T1 = 1

2
T11 + T12 − 1

2
T13, we have the following.

T1 =
1

2

∑
β⊆B

B̂2
β

p∏
i=1

Âi,π(β)

(
1

2

)|β|
+
∑
β⊆B

∑
β1⊆β

B̂2
βB̂β1

p∏
i=1

Âi,πi(β)

(
1

2

)|β|
−1

2

∑
β⊆B

∑
β1,β2⊆β

B̂2
βB̂β1B̂β2

p∏
i=1

Âi,πi(β)(−1)|β1∩β2|
(

1

2

)|β|
Upper bounding each term by its absolute value, we obtain the following in-

36 Harsha & Sudan

equality.

T1 ≤
1

2

∑
β⊆B

B̂2
β

p∏
i=1

|Âi,π(β)|
(

1

2

)|β|
+
∑
β⊆B

∑
β1⊆β

B̂2
β|B̂β1|

p∏
i=1

|Âi,πi(β)|
(

1

2

)|β|
+

1

2

∑
β⊆B

∑
β1,β2⊆β

B̂2
β|B̂β1B̂β2|

p∏
i=1

|Âi,πi(β)|
(

1

2

)|β|

=
1

2

∑
β⊆B

B̂2
β

p∏
i=1

|Âi,πi(β)|
(

1

2

)|β|(
1 +

∑
β1⊆β

|B̂β1|

)2

�

The upper bound for T2 (in Sub-Claim 4.7) is obtained by an analogous analysis.
Recalling that E[ACC] = 1

4
+ 1

2
T1 + 1

4
T2, we have,

E[ACC] ≤ 1

4
+

1

4

∑
β

B̂2
β

(
p∏
i=1

|Âi,πi(β)|
(1 + γβ)2

2|β|
+

1

4

(1 + γβ)4

4|β|

)

where γβ denotes
∑

β1⊆β |B̂β1 |.
We shall now show that E[ACC] < 1

2
+ δ

2
using the following three facts.

(i) If |β| = 1, then there exists an i ∈ {1, . . . , p} such that |Âi,πi(β)| < δ.
(assumption made at the beginning of proof of claim)

(ii) If |β| is even, then |B̂β| = 0. (due to folding.)

(iii)
∑

β B̂
2
β = 1 (Parseval’s identity)

The following observations come useful in bounding E[ACC].

◦ The contribution due to terms where |β| is even is zero on account of (ii).

◦ The contribution due to terms where |β| is large is small due to the 2|β|

and 4|β| in the denominator. (in our case, |β| ≥ 5 is large enough for the
analysis to go through.)

◦ The contribution due to terms where |β| = 1 is small since |Ai,π(β)| < δ.

We handle the intermediate case of |β| = 3 explicitly. This intuition is made
concrete in the following Sub-Claims. Define η1, η3, η5 as follows.

η1 =
∑
|β|=1

B̂2
β η3 =

∑
|β|=3

B̂2
β η5 =

∑
|β|≥5

B̂2
β

Note that η1 + η3 + η5 = 1 from (ii) and (iii).

Small PCPs with low query complexity 37

Sub-Claim 4.8. For any β ⊆ B, define

Ωβ = B̂2
β

(
p∏
i=1

|Âi,πi(β)|
(1 + γβ)2

2|β|
+

1

4

(1 + γβ)4

4|β|

)

then facts (i), (ii) and (iii) imply

∑
β:|β|=1

Ωβ < 2η1δ + η1

(1 +
√
η1)4

16

∑
β:|β|=3

Ωβ ≤ η3

(
1 +
√

1− η1 +
√

3η1

)2

8
+ η3

(
1 +
√

1− η1 +
√

3η1

)4

256∑
β:|β|≥5

Ωβ ≤
25

32
η5 +

54

46
η5

Proof of Sub-Claim 4.8. We first make the following observations based
on (i), (ii) and (iii).

◦ If |β| = 1, then γβ = |B̂β| ≤
√
η1. Hence, (1 + γβ)2/2|β| ≤ 2 and

(1 + γβ)4/4|β| ≤ (1 +
√
η1)4/4.

◦ When |β| = 3, γβ = |B̂β| +
∑3

i=1 |B̂{ui}| where β = {u1, u2, u3}. Thus,
γβ is maximized when all the weight is concentrated on the four terms in

the above expression (i.e., B̂2
β +

∑3
i=1 B̂

2
{ui} = 1) and when the weight is

distributed equally across the singleton sets {ui}’s. This happens when
|B̂β| =

√
1− η1 and |B̂{ui}| =

√
η1/3. Thus, in this case, γβ ≤ 1 +√

1− η1 +
√

3η1.

◦ Finally to the case when |β| ≥ 5. We know from Cauchy’s inequality that

(
∑m

i=1 pi)
2 ≤ m

∑m
i=1 p

2
i . Thus, γβ =

∑
β′⊆β |B̂β′| ≤

√
2|β|−1

∑
β′⊆β B̂

2
β′ ≤

2(|β|−1)/2. Note that we have only 2|β|−1 terms in the summation as
B̂β′ = 0 when |β′| is even due to folding. Thus, (1 + γβ)2/2|β| ≤ (1 +
2(|β|−1)/2)2/2|β| = (2−|β|/2 + 2−1/2)2 ≤ 25/32 since |β| ≥ 5.

These observations lead to the bounds indicated in Sub-Claim 4.8. �

38 Harsha & Sudan

With Sub-Claim 4.8 and fact (ii), we have that

E[ACC] <
1

4
+

1

4

[
2η1δ + η1

(1 +
√
η1)4

16
+ η3

(
1 +
√

1− η1 +
√

3η1

)2

8

+ η3

(
1 +
√

1− η1 +
√

3η1

)4

256
+

(
25

32
+

54

46

)
η5

]

≤ 1

4
+
δ

2
+

1

4

[
η1

(1 +
√
η1)4

16
+ η3

(
1 +
√

1− η1 +
√

3η1

)2

8

+ η3

(
1 +
√

1− η1 +
√

3η1

)4

256
+

(
25

32
+

54

46

)
η5

]
(since η1 ≤ 1)

=
1

4
+
δ

2
+

1

4
· λ(η1, η3, η5)

where λ(·, ·, ·) is defined suitably. We have thus reduced the upper bound
of E[ACC] to an expression involving just three parameters. Observe that
λ(η1, η3, η5) is of the form λ1(η1) + η3λ2(η1) + Cη5 where λ1, λ2 are the ap-
propriate functions and C a constant. Since η1 + η3 + η5 = 1, for any fixed
η1,

λ2(η1) < C =⇒ λ(η1, η3, η5) ≤ λ1(η1) + C(1− η1)

λ2(η1) ≥ C =⇒ λ(η1, η3, η5) ≤ λ1(η1) + (1− η1)λ2(η1)

Using the above observation and the fact that
√

1− η1 ≤ 1− η1/2 for |η1| ≤ 1,
we have the following bound for λ(η1, η3, η5).

Sub-Claim 4.9. For any η1, η3, η5 ∈ R+ such that η1 + η3 + η5 = 1, we have

λ(η1, η3, η5) ≤ max
x∈[0,1]

{
p(x)
q(x)

where p, q are polynomials defined as follows:

p(x) = x2 (1 + x)4

16
+

(
25

32
+

54

46

)
(1− x2)

q(x) = x2 (1 + x)4

16
+ (1− x2)

(
(2− x2

2
+
√

3x)2

8
+

(2− x2

2
+
√

3x)4

256

)
Finally, we shall bound the value of polynomials p, q for x ∈ [0, 1] to obtain the
following sub-claim

Small PCPs with low query complexity 39

Sub-Claim 4.10. For x ∈ [0, 1],

p(x), q(x) ≤ 1

where p, q are polynomials as defined in Sub-Claim 4.9

This Sub-Claim is proved in Section 4.3.3. From Sub-Claim 4.9 and Sub-
Claim 4.10, we have E[ACC] < 1

2
+ δ

2
. Thus choosing δ = 2ε, we have that the

acceptance probability of Vinner is less than 1
2

+ ε, which is what we wanted to
prove. �

4.3.3. Proof of Sub-Claim 4.10. Sub-Claim 4.10 can be checked numeri-
cally for the polynomials p and q. We however give an alternate proof employing
Sturm sequences. Sturm sequences are used to calculate the number of distinct
real zeroes of any polynomial between any two real numbers.

Definition 4.11. Given a polynomial f ∈ R[x], the sturm sequence of f ,
sturm-seq(f), is a sequence of polynomials < f0, f1, . . . , fs > where the poly-
nomials f0, f1, . . . , fs ∈ R[x] are defined as follows:

f0 = f

f1 = f ′ where f ′ is the derivative of f

f0 = f1q1 − f2 where q1 ∈ R[x], deg(f2) < deg(f1)

...
...

fk−2 = fk−1qk−1 − fk where qk−1 ∈ R[x], deg(fk) < deg(fk−1)

...
...

fs−2 = fs−1qs−1 − fs where qs−1 ∈ R[x], deg(fs) < deg(fs−1)

fs−1 = fsqs where qs ∈ R[x]

For any a ∈ R, sturma(f) =< a1, a2, . . . , as > where

ai =

‘+′ iffi(a) > 0

‘−′ iffi(a) < 0

0 otherwise

(i.e., ai is the sign of fi(a)).
For any a ∈ R, #V ara(f) is defined to be the number of sign changes in

the sequence sturma(f). If any 0’s occur in the sequence sturma(f), then we
consider the abbreviated sequence discarding the 0’s.

40 Harsha & Sudan

The following theorem gives the relationship between the number of real roots of
a polynomial f between any two points a and b with #V ara(f) and #V arb(f).

Theorem 4.12. For any polynomial f ∈ R[x] and any two real numbers a <
b ∈ R, the number of distinct roots of the polynomial f in the range (a, b]2 is
given by #V ara(f)−#V arb(f).

A proof of this theorem can be found in Mishra (1993).

We are now ready to prove Sub-Claim 4.10

Proof of Sub-Claim 4.10. We need to show that p(x), q(x) ≤ 1 for x ∈
[0, 1].

Consider the first polynomial p. Let p′(x) = p(x)− 1. Note that p′(1) = 0.
The sturm sign sequence for p′ at the points x = 0 and x = 1 can be shown to
be the following. (Unfortunately, the actual values of the p′i’s at x = 0, 1 are
rational numbers involving too many digits to be printed here.)

sturm0(p′) = < −, 0,+,+,−,−,+ >

sturm1(p′) = < 0,+,+,+,−,−,+ >

Hence #V ar0(p′) = 3 and #V ar1(p′) = 2. Hence the number of distinct real
roots of p′ in (0, 1] is 1. As p′(1) = 0, 1 is the only real root in this range.
Hence, p′(x) ≥ 0 or p′(x) ≤ 0 for all x such that 0 < x ≤ 1. Since p′(0) < 0,
we have that p′(x) ≤ 0 for all x in [0, 1]. Hence, p(x) ≤ 1,∀x ∈ [0, 1].

Now for the other polynomial q. Define q′(x) = q(x)−1. We have q′(1) = 0.
The sturm sign sequence for q′ can be shown to be the following:

sturm0(q′) = < −,+,+,−,+,+,−,−,+,−,− >

sturm1(q′) = < 0,+,−,−,+,+,−,−,−,+,− >

Hence #V ar0(q′) = 6 and #V ar1(q′) = 5. Hence the number of distinct real
roots of q′ in (0, 1] is 1. As q′(1) = 0, 1 is the only real root in this range.
As q′(0) < 0, we have that q′(x) ≤ 0 for all x such that 0 ≤ x ≤ 1. Hence,
q(x) ≤ 1,∀x ∈ [0, 1].

Thus, both p(x) and q(x) are at most 1. This proves Sub-Claim 4.10. �

2(a, b] = {x ∈ R : a < x ≤ b}

Small PCPs with low query complexity 41

4.4. Composed Verifier. There is a natural way to compose a p-prover MIP
verifier Vout with an inner verifier such as Vinner described in the beginning of
this section so as to preserve perfect completeness. In this section, we describe
this composed verifier and thus, prove Lemma 2.6. We show that the number
of queries issued by this composed verifier is exactly that of the inner verifier
while the randomness is the sum of the randomness of the MIP verifier and
the inner verifier. We then discuss the completeness and soundness of this
composed verifier.

Recall the statement of Lemma 2.6. For every ε > 0, we wish to show that
there exists a γ > 0 such that

MIP1,γ[p, r, a] ⊆ PCP1, 1
2

+ε[r +O(2pa), p+ 7](4.13)

Let ε > 0 be an arbitrary number. Choose ε = ε/2. By Claim 4.4, there exists
a δ = δε such that the statement of Claim 4.4 holds. Choose γ = εδ2p. For this
choice of γ, we shall show that (4.13) holds good, thus proving Lemma 2.6.

Let L ∈ MIP1,γ[p, r, a]. Let Vout be the corresponding MIP verifier for L.
The action of the MIP verifier Vout is recalled below.

Vout interacts with p provers, Π1, . . . ,Πp. On an input string x of length

n, Vout picks a r(n)-bit random string R and generates p queries (1, q
(R)
1), . . . ,

(p, q
(R)
p) and a linear sized circuit CR. It then issues query (i, q

(R)
i) to prover Πi

which responds with the answer a
i,q

(R)
i

. Vout accepts iff CR(a
1,q

(R)
1
, . . . , a

p,q
(R)
p

) =

−1.
Let Q be the set of all queries issued by Vout on input string x over all

random strings R. (Note that |Q| ≤ p2r since each random string R uniquely
determines the queries Vout issues to the prover Πi’s) The p provers Π1, . . . ,Πp

that Vout interacts with can be thought of as p functions Πi : Q→ {0, 1}a.
We shall now construct a (r + O(2pa), p + 7)-restricted verifier Vcomp for L

by composing Vout with the inner verifier Vinner specified in Section 4.2. The
proof (or oracle) that Vcomp expects is of the form Γ : {0, 1}∗ → {+1,−1}.

Vcomp
Γ(x)

1. Pick a random string R ∈ {0, 1}r(n).

2. Generate queries (1, q
(R)
1), . . . , (p, q

(R)
p) and circuit CR as Vout would

do on input x and random string R.

3. For each i ∈ {1, . . . , p}, set Ai(·)← Γ(i, q
(R)
i , ·).

4. Set B ← Γ(p+ 1, R, ·).

42 Harsha & Sudan

5. Set A ← {−1,−1}a(n).

6. Set B ← {(a1, . . . , ap)|CR(a1, . . . , ap) = −1}.
7. For each i ∈ {1, . . . , p}, set the projection function πi : B → A such

that (a1, . . . , ap)
πi7−→ ai.

8. Accept iff Vinner
A1,...,Ap,B(A,B, π1, . . . , πp) accepts.

Clearly the number of queries issued by Vcomp is that of Vinner which is p + 7,
while the total randomness is the sum of the randomness of Vout and Vinner

which is r +O(2pa).

4.4.1. Completeness of Composed Verifier. It is easy to verify that
Vcomp has completeness 1. Suppose x ∈ L. By the completeness of Vout, there
exist tables Π1, . . . ,Πp such that PrR[Vout

Π1,...,Πp(x,R) = accept] = 1. For each

R ∈ {0, 1}r, let (1, q
(R)
j1

), . . . , (p, q
(R)
jp

) be the queries issued by Vout on input
string x and random string R. Construct another oracle Πp+1 : {0, 1}r →
{0, 1}ap such that Πp+1(R) = (a

1,q
(R)
1
, . . . , a

p,q
(R)
p

) where a
i,q

(R)
i

= Πi(q
(R)
i) (i.e.,

response of oracle Πi on query q
(R)
i). Now if we construct Γ such that

◦ For each i ∈ {1, . . . , p}, and q ∈ Q, Γ(i, q, ·) is the long code of Πi(q).

◦ For each R ∈ {0, 1}r, Γ(p+ 1, R, ·) is the long code of Πp+1(R).

We note that Vcomp accepts on all random strings. Thus, the completeness is
1.

4.4.2. Soundness of Composed Verifier. The only thing that remains to
be proved is that the soundness of Vcomp is 1

2
+ ε. We prove this by showing

that if Vcomp accepts x with probability at least 1
2

+ ε, i.e.,

Pr
R′

[V Γ(x;R′) = accept] ≥ 1

2
+ ε

(where R′ is the combined randomness of Vout and Vinner) then x ∈ L. By the
soundness condition of the outer MIP verifier Vout, it is sufficient if we show
that there exist provers Π1, . . . ,Πp such that

Pr
R

[V Π1,...,Πp(x;R) = accept] ≥ γ

And the rest of the proof would be devoted to proving this fact.
Consider the following randomized strategy Decode that takes as input a

folded table A and returns an a-bit string x. A is an oracle whose input are
functions of the form f ∈ FA. Recall A = {−1, 1}a.

Small PCPs with low query complexity 43

Decode(A)

1. Choose α ⊆ A with probability Â2
α.

2. Choose an x ∈ α uniformly at random.

3. Return x.

We remark that since
∑

α Â
2
α = 1, the Â2

α’s determine a probability distribution
and hence step 1 is legitimate. Moreover, the procedure will never get stuck in
step 2 because of choosing α = ∅ since Â∅ = 0 (as A is folded.) We thus have
that if |Â{a}| ≥ δ, then Pr[Decode(A) = a] ≥ δ2.

Now imagine constructing the p provers Π1, . . . ,Πp using the randomized
strategy Decode (on the proof Γ of the composed verifier Vcomp) as follows:

For each i ∈ {1, . . . , p} do

For each q ∈ Q do

Set ai,q ← Decode(Γ(i, q, ·)).
Set prover Πi : Q→ {0, 1}a such that Πi(q) = ai,q,∀q ∈ Q.

We shall now show that if Vcomp accepts x on proof Γ with probability at
least 1

2
+ ε, then Vout accepts x on interacting with the p provers Π1, . . . ,Πp as

constructed above with probability at least γ (over the random coin tosses of
Vout and the Decode strategy.)

Let R denote the set of random choices of the MIP verifier Vout that satisfy

Pr
R′′

[Vinner
A1,...,Ap,B(x;R′′) = accept] ≥ 1

2
+
ε

2

where each of Ai(·) = Γ(i, q
(R)
i , ·) and B = Γ(p + 1, R, ·) is as specified in the

working of Vcomp and the probability is taken over the coin tosses R′′ of Vinner.
By an averaging argument, it follows that PrR[R ∈ R] ≥ ε/2. Let ε = ε/2
and δ = δε as mentioned in the beginning of the proof. By the soundness
condition for the inner verifier Vinner (see Claim 4.4), we have that for each

R ∈ R, there exist a
(R)
1 , . . . , a

(R)
p such that CR(a

(R)
1 , . . . , a

(R)
p) = −1 and for

each l ∈ {1, . . . , p}, |Â
i,{a(R)

l }
| ≥ δ. Translating these conditions into the proof

of the composed verifier Vcomp, we have that for each R ∈ R, there exist

a
(R)
1 , . . . , a

(R)
p such that CR(a

(R)
1 , . . . , a

(R)
p) = −1 and for each l ∈ {1, . . . , p},

|(Γ̂(i, q
(R)
i , ·){a(R)

l }
| ≥ δ. We now use these facts to produce p provers Π1, . . . ,Πp

for Vout such that Vout accepts these p provers with probability at least γ.

44 Harsha & Sudan

Reiterating the soundness condition from the inner verifier Vinner, we have
that for each R ∈ R, there exist a

(R)
1 , . . . , a

(R)
p such that CR(a

(R)
1 , . . . , a

(R)
p) = −1

and for each l ∈ {1, . . . , p}, |(Γ̂(i, q
(R)
i , ·)){a(R)

l }
| ≥ δ. Now, let us analyze the

probability of the outer verifier accepting the provers Π1, . . . ,Πp on input string
x, where the provers Πi are constructed from Γ as mentioned before.

Pr
[

Vout
Π1,...,Πp (x;R) = accept

]
= Pr

[
Cr(a1,q

(R)
1
, . . . , a

p,q
(R)
p

) = −1
]

≥ Pr
[
∀i,Πi(q

(R)
i) = a

(R)
i

]
≥ Pr

R
[R ∈ R] · Pr

[
∀i,Πi(q

(R)
i) = a

(R)
i

∣∣∣R ∈ R]
= Pr

R
[R ∈ R] · Pr

[
∀i,Decode

(
Γ(i, q

(R)
i , ·)

)
= a

(R)
i

∣∣∣R ∈ R]
= Pr

R
[R ∈ R] ·

p∏
i=1

Pr
[
Decode

(
Γ(i, q

(R)
i , ·)

)
= a

(R)
i

∣∣∣R ∈ R]
≥ εδ2p

= γ

(all the probabilities are over the random coins of both Vout and the Decode
procedure unless otherwise specified.) Thus, there exists provers Π1, . . . ,Πp

such that Vout accepts with probability at least γ, which in turn implies that
x ∈ L. This completes the proof of the Lemma 2.6

5. Scope for Further Improvements

The following are a few approaches which would further reduce the size-query
complexity in the construction of PCPs described in this paper.

1. An improved low-error analysis of the low-degree test of Rubinfeld &
Sudan (1996) in the case when the field size is linear in the degree of
the polynomial. (It is to be noted that the current best analysis (Arora
& Sudan 1997b) requires the field size to be at least a fourth power of
the degree.) Such an analysis would reduce the proof blowup to nearly
quadratic.

2. It is known that for every ε, δ > 0, MIP1,ε[1, 0, n] ⊆ PCP1−δ, 1
2
[c log n, 3]

from the results of H̊astad (1997a). Traditionally, results of this nature

Small PCPs with low query complexity 45

have led to the construction of inner verifiers for p-prover MIPs and thus
showing that for every δ > 0 and p there exists ε > 0 and c such that

MIP1,ε[p, r, a] ⊆ PCP1−δ, 1
2
[r + c log a, p+ 3].

Proving a result of this nature would reduce the query complexity of
the small PCPs constructed in this paper to 6 (when composed with
Lemma 2.4).

Acknowledgements

Research supported in part by Sloan Foundation, NSF Career Award CCR-
9875511 and CCR-9912342

References

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan & Mario
Szegedy (1998). Proof Verification and the Hardness of Approximation Problems.
Journal of the ACM 45(3), 501–555.

Sanjeev Arora & Shmuel Safra (1998). Probabilistic Checking of Proofs: A
New Characterization of NP. Journal of the ACM 45(1), 70–122.

Sanjeev Arora & Madhu Sudan (1997a). Improved Low Degree Testing and its
Applications. In Proc. 29th ACM Symp. on Theory of Computing, 485–495. El Paso,
Texas.

Sanjeev Arora & Madhu Sudan (1997b). Improved Low Degree Testing and its
Applications. Technical Report TR97-003, Electronic Colloquium on Computational
Complexity. URL http://www.eccc.uni-trier.de/eccc/.

László Babai, Lance Fortnow & Carsten Lund (1991). Non-Deterministic
Exponential Time has Two-Prover Interactive Protocols. Computational Complexity
1, 3–40.

Mihir Bellare, Oded Goldreich & Madhu Sudan (1998). Free Bits, PCPs, and
Nonapproximability—Towards Tight Results. SIAM Journal of Computing 27(3),
804–915.

Mihir Bellare, Shafi Goldwasser, Carsten Lund & Alexander Russell
(1993). Efficient Probabilistically Checkable Proofs and Applications to Approxi-
mation. In Proc. 25th ACM Symp. on Theory of Computing, 294–304. San Diego,
California.

46 Harsha & Sudan

Stephen A. Cook (1988). Short propositional formulas represent nondeterministic
computations. Information Processing Letters 26(5), 269–270.

Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz & Shmuel Safra (1999).
PCP Characterizations of NP: Towards a Polynomially-Small Error-Probability. In
Proc. 31th ACM Symp. on Theory of Computing, 29–40. Atlanta, Georgia.

Katalin Friedl & Madhu Sudan (1995). Some Improvements to Total Degree
Tests. In Proc. 3rd Israel Symposium on Theoretical and Computing Systems, 190–
198. Tel Aviv, Israel.

Johan Håstad (1996). Clique is Hard to Approximate Within n1−ε. In Proc. 37nd
IEEE Symp. on Foundations of Comp. Science, 627–636. Burlington, Vermont.

Johan Håstad (1997a). Some optimal inapproximability results. In Proc. 29th
ACM Symp. on Theory of Computing, 1–10. El Paso, Texas.

Johan Håstad (1997b). Some optimal inapproximability results. Technical Report
TR97-037, Electronic Colloquium on Computational Complexity. URL http://www.
eccc.uni-trier.de/eccc/.

Frank Thomson Leighton (1992). Introduction to Parallel Algorithms and Ar-
chitectures. Morgan Kaufmann Publishers, Inc., San Mateo, CA.

Carsten Lund, Lance Fortnow, Howard Karloff & Noam Nisan (1990).
Algebraic Methods for Interactive Proof Systems. In Proc. 31st IEEE Symp. on
Foundations of Comp. Science, 2–10. St. Louis, Missouri.

Bhubaneshwar Mishra (1993). Algorithmic Algebra. Springer Verlag, New York,
NY.

Alexander Polishchuk & Daniel A. Spielman (1994). Nearly-linear Size Holo-
graphic Proofs. In Proc. 26th ACM Symp. on Theory of Computing, 194–203.
Montréal, Québec, Canada.

Ran Raz & Shmuel Safra (1997). A Sub-Constant Error-Probability Low-Degree
Test, and a Sub-Constant Error-Probability PCP Characterization of NP. In Proc.
29th ACM Symp. on Theory of Computing, 475–484. El Paso, Texas.

Ronitt Rubinfeld & Madhu Sudan (1996). Robust Characterizations of Poly-
nomials with Applications to Program Testing. SIAM Journal of Computing 25(2),
252–271.

Jacob T. Schwartz (1980). Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities. Journal of the ACM 27(4), 701–717.

Small PCPs with low query complexity 47

Daniel Spielman (1995). Computationally Efficient Error-Correcting Codes and
Holographic Proofs. Ph.D. thesis, Massachusetts Institute of Technology.

Madhu Sudan (1992). Efficient Checking of Polynomials and Proofs and the Hard-
ness of Approximation Problems. Ph.D. thesis, University of California, Berkeley.

Mario Szegedy (1999). Many-Valued Logics and Holographic Proofs. In Automata,
Languages and Programming, 26st International Colloquium, Jiŕı Wiedermann,
Peter van Emde Boas & Mogens Nielsen, editors, volume 1644 of Lecture
Notes in Computer Science, 676–686. Springer-Verlag, Prague, Czech Republic.

Manuscript received October 31, 2000

Prahladh Harsha
Laboratory for Computer Science,
Massachusetts Institute of Technology,
545 Technology Square,
Cambridge, MA 02139.
prahladh@mit.edu

Madhu Sudan
Laboratory for Computer Science,
Massachusetts Institute of Technology,
545 Technology Square,
Cambridge, MA 02139.
madhu@mit.edu
http://theory.lcs.mit.edu/~madhu/

