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2 Our Results2.1 NotationWe identify the elements of a q-ary alphabet with the integers 1; 2; : : : ; q in some anonial way.Let [q℄ = f1; 2; : : : ; qg. For x;y 2 [q℄n, the Hamming distane between x and y, denoted �(x;y),is the number of positions where x and y di�er. For r 2 [q℄n and 0 � e � n, the Hamming ball ofradius e around r is de�ned by Bq(r; e) = fx 2 [q℄n : �(r;x) � eg.The key quantity to study in our ontext is the following. Let A0q(n; d; e) denote the maxi-mum number of points that may be plaed in some ball Bq(r; e) suh that all pairwise distanesbetween the points are at least d. More formally, A0q(n; d; e) = maxfjSj : S � Bq(r; e) for some r 2[q℄n and 8x;y 2 S; �(x;y) � dg.1 Clearly for any ode C � [q℄n of minimum distane d, A0q(n; d; e)is an upper bound on the number of odewords of C that an lie in a Hamming ball of radius e.2Our objetive, therefore, is to obtain an upper bound on the funtion A0q(n; d; e) and we do sobelow.2.2 Our Main ResultTheorem 1 Let C be any q-ary ode of bloklength n and minimum distane d = (1� 1=q)(1� Æ)nfor some 0 < Æ < 1. Let e = (1 � 1=q)(1 � )n for some 0 <  < 1 and let r 2 [q℄n be arbitrary.Then, provided  > pÆ, we havejBq(r; e) \ Cj � minfn(q � 1); 1� Æ2 � Æ g :Furthermore, for the ase when  = pÆ, we have jBq(r; e) \ Cj � 2n(q � 1)� 1.Corollary 2 Let q; n; d be arbitrary positive integers with d < (1� 1=q)n. Let e � 1 be any integerthat satis�es the ondition e < �1� 1q��1�s1� qq � 1 � dn�n : (1)Then we have A0q(n; d; e) � minfn(q � 1); ndnd� 2e(n� qe2(q�1) )g : (2)Furthermore, if e equals the R.H.S of Condition (1) then A0q(n; d; e) � 2n(q � 1)� 1.Comparison with Previous Bounds: The seond upper bound on A0q(n; d; e) in (2) is the\lassial" version of Johnson bound for the q-ary ase (f. [9℄; proofs appear, for instane, in[10, 11℄). The new aspet of our result is the n(q� 1) upper bound. For the ase q = 2, this resultwas known. Spei�ally, Elias [3℄ proved that if d is odd, then A02(n; d; e) � n as long as e satis�es1We use the notation A0q(n; d; e) instead of the apparently more natural hoie Aq(n; d; e) beause the notationAq(n; d; e) in oding theory literature normally refers to the maximum number of points that may be plaed onthe surfae of (instead of within) the ball Bq(r; e) with pairwise distanes at least d. To avoid onfusion with thisstandard terminology, we use A0q(n; d; e) instead. We learly have Aq(n; d; e) � A0q(n; d; e), and thus any upper boundwe derive on A0q(n; d; e) also applies to Aq(n; d; e).2The minimum distane of a ode C is de�ned as the minimum Hamming distane between two distint elementsof C. 2
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Figure 1: Geometri piture behind proof of Theorem 1Condition (1). For even d, however, A02(n; d; e) = O(n2) was the best known bound that was madeexpliit till the reent work of Agrell, Vardy and Zeger [1℄, who showed that A02(n; d; e) � n for alld; e that satisfy Condition (1). 3For the ase of q > 2, to the best of our knowledge, the only known upper bound on A0q(n; d; e)seems to be the seond bound in Equation (2) and our upper bound of n(q � 1) seems to be new.Proof Idea: The proof follows a \geometri" approah. We identify elements of [q℄n with vetorsin Rnq by replaing the symbol i (1 � i � q) by the unit vetor of length q with a 1 in position i.This allows us to embed the odewords and the \reeived" word r into Rnq . Next, by appropriatelyshifting the set of vetors orresponding to the odewords that are lose to r, we get a set of vetorssuh that the inner produt of any two distint vetors from this set is non-positive. By a standardgeometri upper bound on the ardinality of suh a set of vetors, we get the required upper boundon the number of odewords that are \lose" to r.A idea extends proofs for the binary ase, given by [4, 7, 1℄, where an appropriate embedding ofthe binary odewords in Rn and an appropriate shifting of vetors was used to establish \Johnson-style" bounds by appealing to bounds on spherial odes, i.e., bounds on the ardinality of a setof unit vetors in real spae with a spei�ed minimum angle between any pair of vetors. It maybe noted that the generaliztion to the ase of general alphabets is not anonial. Of the severalpotential approahes, our proof hits upon the right path.Proof of Theorem 1: Assume without loss of generality that r = hq; q; : : : ; qi, i.e is the symbolq repeated n times. Let C1; C2; : : : ; Cm be all the odewords of C that lie within Bq(r; e) wheree = (1 � 1=q)(1 � )n. Our goal is to get an upper bound on m provided  is large enough. Thebound m � 1�Æ2�Æ is well known, but we reprove it here sine we an dedue it for almost free fromthe tehnique we use to establish the upper bound m � nq.3Atually, Agrell et al. laim their result only for A2(n; d; e), but their proof will work for the ase of A02(n; d; e)as well. 3



We assoiate a vetor in Rnq with r and with eah odeword Ci. (Atually these vetors will alllie in an n(q�1)-dimensional subspae of Rnq , and this will used later in the proof, but it is easiestto speify these vetors as embedded in Rnq .) Eah vetor is to be viewed as having n bloks eahhaving q omponents (the n bloks orrespond to the n odeword positions). For 1 � l � q, denoteby êl the q-dimensional unit vetor with 1 in the lth position and 0 elsewhere. For 1 � i � m,the vetor i assoiated with the odeword Ci has in its jth blok the omponents of the vetorêCi[j℄ (Ci[j℄ is the jth symbol of Ci, treated as an integer between 1 and q). The vetor assoiatedwith the reeived word r, whih we also denote r by abuse of notation, is de�ned similarly. Let1 2 Rnq be the all 1's vetor. Now de�ne v = �r+ (1��)q 1 for a parameter 0 � � � 1 to be spei�edlater in the proof. Note that eah i and v all lie in the spae de�ned by the intersetion of the n\hyperplanes" f H0j : Pq̀=1 xj;` = 1 g for 1 � j � n. Hene the vetors (i � v), for 1 � i � m,all lie in H = Tnj=1Hj where Hj = fx 2 Rnq : Pq̀=1 xj;` = 0g. It is easy to see that H is ann(q � 1)-dimensional subspae of Rnq . We thus onlude that the vetors (i � v), 1 � i � m, alllie in an n(q � 1)-dimensional spae.The idea behind the rest of the proof is the following. We will pik � so that the nq-dimensionalvetors (i�v), for 1 � i � m, have all pairwise dot produts less than 0. Geometrially speaking,we shift the origin O to O0 where OO0 = v, and require that relative to the new origin thevetors orresponding to the odewords have pairwise angles whih are greater than 90 degrees(see Figure 1). By a simple geometri fat (stated in Lemma 3 below), it will then follow that thenumber of odewords m is at most the dimension n(q � 1) of the spae in whih these vetors alllie. For 1 � i �m, let ei = �(r; Ci). Note that ei � e for every i. Nowhi;vi = �hi; ri+ (1� �)q hi;1i = �(n� ei) + (1� �)nq � �(n� e) + (1� �)nq (3)hv;vi = �2n+ 2(1 � �)�nq + (1� �)2nq = nq + �2�1� 1q )n (4)hi; ji = n��(Ci; Cj) � n� d : (5)Using (3), (4) and (5), we get for i 6= jhi � v; j � vi � 2�e � d+ �1� 1q�(1� �)2n (6)whih using e = (1� 1=q)(1 � )n and d = (1� 1=q)(1 � Æ)n simpli�es tohi � v; j � vi � �1� 1q�n�Æ + �2 � 2�� (7)Thus as long as  > 12� Æ� + �� we will have all pairwise dot produts to be negative just as wewanted. We pik � to minimize ( Æ� +�), or in other words we set � = pÆ. Now as long as  > pÆ,we will have hi � v; j � vi < 0 for all 1 � i < j � m. To omplete the proof, we note that (forthe hoie � = pÆ), for every 1 � i � m, hi � v;vi � (1�1=q)npÆ(�pÆ) > 0 provided  > pÆ.Now applying Part (iii) of Lemma 3, with the setting vi = i � v and u = vjH, the projetion of vonto the subspae H, implies that m � n(q � 1) (reall that the vetors (i � v), 1 � i � m, all liein H and dim(H) = n(q � 1)).We now prove that if  > pÆ, thenm � 1�Æ2�Æ . For this we set � = . Now from Equation (7) wehave hi � v; j � vi � (1 � 1=q)n(Æ � 2). Thus if  > pÆ, we have hi � v; j � vi < 0. Now for4



eah i, 1 � i � m, we have ki�vk2 = hi � v; i � vi � 2�e+(1�1=q)(1��)2n = (1�1=q)n(1�2)for the hoie � = . Denoting by wi the unit vetor i�vki�vk , we thus havehwi;wji � �2 � Æ1� 2 (8)for 1 � i < j � m. By a well-known geometri fat (see Lemma 4 for the simple proof), it followsthat the number of suh vetors, m, is at most (1 + 1�22�Æ ) = 1�Æ2�Æ , as desired.To handle the ase when  = pÆ, we have hi � v; j � vi � 0 for all 1 � i < j � m, and alsohi � v;vi � 0 for eah i = 1; 2; : : : ;m. Now applying Part (ii) of Lemma 3, we getm � 2n(q�1)�1.22.3 Geometri LemmasWe now state the geometri fats that were used in the above proof.Lemma 3 Let v1; : : : ;vm be non-zero vetors in RN suh that hvi;vji � 0 for all 1 � i < j � m.Then the following hold:(i) m � 2N .(ii) Suppose that there exists a non-zero u 2 RN suh that hu;vii � 0 for i = 1; 2; : : : ;m. Thenm � 2N � 1.(iii) Suppose there exists an u 2 RN suh that hu;vii > 0 for i = 1; 2; : : : ;m. Then m � N .A proof of Part (i) of the above lemma an be found, for instane, in [2, Chapter 10, page 71℄.The proofs of the other two parts are similar. For ompleteness, we present a self-ontained proofof the above lemma in Appendix A.Lemma 4 Let " > 0 be a positive real and let w1;w2; : : : ;wm be m unit vetors suh thathwi;wji � �" for all 1 � i < j � m. Then m � 1 + 1" .Proof: We have0 � h mXi=1 wi; mXi=1 wii = mXi=1hwi;wii+ 2 X1�i<j�mhwi;wji � m�m(m� 1)" ;whih gives m � 1 + 1=". 22.4 Generalization in Presene of WeightsFor appliations to \soft-deision" list deoding algorithms, it is of interest to prove a version of theJohnson bound in the presene of weights on odeword symbols. A version of suh a bound appearsfor instane in [12℄. Here we state the weighted version of the Johnson bound that follows from ourproof tehnique. The bound in Part (i) of the theorem generalizes the result of Corollary 2. Theresult from Part (ii) applies under a more general ondition than Condition (1) (or even Condition(9)), but the upper bound is itself is slightly weaker (sine it is (nq � 1) instead of n(q � 1)).5



Theorem 5 Let C � [q℄n be a ode of bloklength n and minimum distane d. Let fwi;j : 1 �i � n; 1 � j � qg be an arbitrary set of non-negative real weights. De�ne Wi = Pqj=1wi;j andW (2)i =Pqj=1w2i;j, Wtot =Pi;j wi;j, and W (2)tot =Pi;j w2i;j. Then:(i) The number of odewords C 2 C that satisfynXi=1 wi;CiWi > nq +vuut�n(1� 1q )� d�� nXi=1 W (2)iW 2i � nq � : (9)is at most n(q � 1).(ii) The number of odewords C 2 C that satisfynXi=1 wi;Ci > Wtotq +s�n(1� 1q )� d��W (2)tot � (Wtot)2nq � (10)is at most (nq � 1).(iii) For any integer L � 2, the number of odewords C 2 C that satisfynXi=1 wi;Ci � Wtotq +s�n(1� 1q )� d+ dL��W (2)tot � (Wtot)2nq � (11)is at most L.Proof: We do not give a full proof here, rather we indiate the only hanges that must be madeto the proof of Theorem 1 in order to prove our laim. For Part (i), the only modi�ation requiredin the proof of Theorem 1 is to pik r so that its (i; j)'th omponent, for 1 � i � n and 1 � j � q,equals wi;jWi . The vetor v is de�ned as before to be �r+ (1��)q 1 for� =vuutn(1� 1=q)� dPi W (2)iW 2i � n=q :One one again all the vetors (i � v) lie in an n(q � 1)-dimensional subspae of Rnq . It an beproved as in the proof of Theorem 1 that these vetors have pairwise non-positive dot produts,whih gives the desired n(q � 1) upper bound on the number of odewords.For Parts (ii) and (iii), we pik r so that its (i; j)'th omponent for 1 � i � n and 1 � j � q,equals nwi;jWtot , and the rest of the proof follows that of Theorem 1. Note that Wtot=q is the expetedvalue of Pi wi;ri for a random vetor r 2 [q℄n, and (W (2)tot � (Wtot)2nq ) is proportional to the varianeof the wi;j's. Thus, the above theorem states that the number of odewords whih have weightedagreement bounded away from the expetation by a ertain number of standard deviations is small.The upper bound of (nq� 1) (instead of n(q� 1)) in Part (ii) of above theorem arises sine we areonly able to ensure that the vetors (i � v) all lie in an (nq � 1)-dimensional subspae (namelythat de�ned by Pi;j xi;j = 0), and not an n(q � 1)-dimensional subspae as in Part (i). 2A bound similar to Theorem 5 an also be worked out for the ase when the di�erent odewordsymbols belong to di�erent alphabets (say the ith symbol belongs to an alphabet of size qi). Suha bound is of interest for ertain odes like the Chinese Remainder Code [12℄.6
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ai's on one side and those with negative ai's on the other, we will have an equation of the formPi2T+ aivi =Pj2T� bjvj = w (for some vetor w) where T+ and T� are disjoint non-empty setswith T+ [ T� = S, and all ai; bj > 0. By the minimality of S, w 6= 0 and hene hw;wi > 0.On the other hand hw;wi = hPi2T+ aivi;Pj2T� bjvji = Pi;j aibjhvi;vji � 0 sine aibj > 0 andhvi;vji � 0 for eah i 2 T+ and j 2 T�. This ontradition shows that we may assume that ai > 0for all i 2 S.Now Psi=1 aivi = 0, so that Psi=1 aihu;vii = 0. But this is impossible sine for eah i wehave ai > 0 and hu;vii > 0. We have thus arrived at a ontradition, and therefore we must havem � N .To prove (ii), we use indution on N . The statement learly holds for N = 1. For N > 1,we proeed exatly as above. If m � N , we have nothing to prove, so assume m > N so thatv1; : : : ;vm are linearly independent, and as above, let S � [m℄ be a non-empty set of minimum sizefor whih a relation of the formPi2S aivi = 0 holds with eah ai 6= 0. Assume for de�niteness thatS = f1; 2; : : : ; sg. We thus have the linear dependene Psi=1 aivi = 0 with eah ai > 0, and sinethis is a minimum sized linear dependene, v1; : : : ;vs must span a subspae W of RN of dimension(s� 1).Sine Psi=1 aivi = 0, we have Psi=1 aihvi;v`i = 0 for eah ` = s + 1; : : : ;m. Sine ai > 0 for1 � i � s and hvi;v`i � 0, it must be therefore be the ase that vi is orthogonal to v` for all i; ` with1 � i � s and s < ` � m. A similar argument shows u is orthogonal to vi for eah i = 1; 2; : : : ; s.Thus the vetors vs+1; : : : ;vm and u all lie in W? whih has dimension equal to (N � s+1). Sines > 1, the indution hypothesis applied to these vetors implies that m� s � 2(N � s+ 1)� 1, orin other words m � 2N � s+ 1 � 2N � 1, as desired.Finally (i) follows immediately from (ii). Indeed, apply (ii) with vetors v1; : : : ;vm�1 and �vmplaying the role of u. This implies m� 1 � 2N � 1, or in other words m � 2N . 2
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