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Abstract

We present extensions of some recent geometric proofs of the well-known Johnson bound.
Our extensions apply to arbitrary alphabets (while previous proofs were given only for the binary
case). Our extensions yield a “weighted” version of the Johnson bound equally easily — the
weighted version is of interest in light of the recent developments on soft-decision list decoding
algorithms.

1 Introduction

We present extensions to the well-known Johnson bound in coding theory. The Johnson bound is a
classical bound that provides an upper bound on the number of codewords in any Hamming ball of
up to a certain radius (the radius till which the bound holds is a function of the minimum distance
of the code). Such a bound is used in the Elias-Bassalygo upper bound on the dimension of codes
with certain minimum distance, and is of interest to list decoding of codes.

Proofs of the Johnson bound seem to come in one of two flavors. The original proof and some
of its derivates follows a linear algebra based argument [5, 6, 3, 10, 11], while more recent proofs,
most notably [7, 4, 1] are more geometric. Our proof follows the latter spirit, extending these proofs
to the case of general alphabets. (A more technical comparison of our proof with existing ones is
given later, after outlining some formal definitions).

Moreover, we also prove a weighted version of the Johnson bound which is of interest to some
questions raised by the recent investigations on soft-decision list decoding algorithms. Our result
gives some improvements over the earlier results in this vein from [12], and furthermore sheds
some light on the features of a weight vector that give the most information to a soft-decision list
decoding algorithm.
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2 Our Results

2.1 Notation

We identify the elements of a g-ary alphabet with the integers 1,2,...,¢ in some canonical way.
Let [q] = {1,2,...,q}. For x,y € [q]", the Hamming distance between x and y, denoted A(x,y),
is the number of positions where x and y differ. For r € [¢]” and 0 < e < n, the Hamming ball of
radius e around r is defined by By(r,e) = {x € [¢]" : A(r,x) < e}.

The key quantity to study in our context is the following. Let Af(n,d,e) denote the maxi-
mum number of points that may be placed in some ball By(r,e) such that all pairwise distances
between the points are at least d. More formally, Af(n,d,e) = max{|S|: S C By(r,e) for some r €
[q]" and Vx,y € S, A(x,y) > d}.} Clearly for any code C C [¢]" of minimum distance d, Ay(n,d,e)
is an upper bound on the number of codewords of C that can lie in a Hamming ball of radius e.?
Our objective, therefore, is to obtain an upper bound on the function A}(n,d,e) and we do so
below.

2.2 Our Main Result

Theorem 1 Let C be any q-ary code of blocklength n and minimum distance d = (1 —1/q)(1 —0)n
for some 0 < § < 1. Let e = (1 —1/q)(1 —y)n for some 0 <y < 1 and let v € [q]" be arbitrary.
Then, provided v > /3, we have
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Furthermore, for the case when v = V/§, we have |By(r,e) NC| < 2n(g — 1) — 1.

Corollary 2 Let g,n,d be arbitrary positive integers with d < (1 —1/q)n. Let e > 1 be any integer
that satisfies the condition

e<<1—$)<1— 1—%-%)” (1)

nd

"nd — 2e(n — —2(gf1))

Furthermore, if e equals the R.H.S of Condition (1) then Aj(n,d,e) <2n(q—1) —1.

Then we have

}e (2)

A (n,d,e) < min{n(q —1)

Comparison with Previous Bounds: The second upper bound on Aj(n,d,e) in (2) is the
“classical” version of Johnson bound for the g-ary case (cf. [9]; proofs appear, for instance, in
[10, 11]). The new aspect of our result is the n(q — 1) upper bound. For the case ¢ = 2, this result
was known. Specifically, Elias [3] proved that if d is odd, then A(n,d,e) < n as long as e satisfies

'We use the notation A (n,d,e) instead of the apparently more natural choice Aq(n,d,e) because the notation
Ag(n,d,e) in coding theory literature normally refers to the maximum number of points that may be placed on
the surface of (instead of within) the ball By(r,e) with pairwise distances at least d. To avoid confusion with this
standard terminology, we use Ay (n,d, e) instead. We clearly have A4(n,d,e) < A (n,d, ), and thus any upper bound
we derive on Aj(n,d,e) also applies to Aq(n,d,e).

2The minimum distance of a code C is defined as the minimum Hamming distance between two distinct elements
of C.



Figure 1: Geometric picture behind proof of Theorem 1

Condition (1). For even d, however, A)(n,d,e) = O(n?) was the best known bound that was made
explicit till the recent work of Agrell, Vardy and Zeger [1], who showed that A% (n,d,e) < n for all
d, e that satisfy Condition (1). 3

For the case of ¢ > 2, to the best of our knowledge, the only known upper bound on Aj(n, d, e)
seems to be the second bound in Equation (2) and our upper bound of n(qg — 1) seems to be new.

Proof Idea: The proof follows a “geometric” approach. We identify elements of [¢]” with vectors
in R™ by replacing the symbol i (1 <4 < ¢) by the unit vector of length ¢ with a 1 in position .
This allows us to embed the codewords and the “received” word r into R™*?. Next, by appropriately
shifting the set of vectors corresponding to the codewords that are close to r, we get a set of vectors
such that the inner product of any two distinct vectors from this set is non-positive. By a standard
geometric upper bound on the cardinality of such a set of vectors, we get the required upper bound
on the number of codewords that are “close” to r.

A idea extends proofs for the binary case, given by [4, 7, 1], where an appropriate embedding of
the binary codewords in R” and an appropriate shifting of vectors was used to establish “Johnson-
style” bounds by appealing to bounds on spherical codes, i.e., bounds on the cardinality of a set
of unit vectors in real space with a specified minimum angle between any pair of vectors. It may
be noted that the generaliztion to the case of general alphabets is not canonical. Of the several
potential approaches, our proof hits upon the right path.

Proof of Theorem 1: Assume without loss of generality that r = (q,q,...,q), i.e is the symbol
q repeated n times. Let Cy,Cs,...,C), be all the codewords of C that lie within By(r,e) where
e=(1-1/¢)(1 —y)n. Our goal is to get an upper bound on m provided ~ is large enough. The
bound m < 71.:‘56 is well known, but we reprove it here since we can deduce it for almost free from
the technique we use to establish the upper bound m < ng.

3 Actually, Agrell et al. claim their result only for Ax(n,d,e), but their proof will work for the case of Ab(n,d,e)
as well.



We associate a vector in R"? with r and with each codeword C;. (Actually these vectors will all
lie in an n(g — 1)-dimensional subspace of R™, and this will used later in the proof, but it is easiest
to specify these vectors as embedded in R™.) Each vector is to be viewed as having n blocks each
having ¢ components (the n blocks correspond to the n codeword positions). For 1 <[ < ¢, denote
by é; the g-dimensional unit vector with 1 in the [th position and 0 elsewhere. For 1 < i < m,
the vector c¢j associated with the codeword C; has in its jth block the components of the vector
éc,(j) (Cilj] is the jth symbol of Cj, treated as an integer between 1 and ¢). The vector associated
with the received word r, which we also denote r by abuse of notation, is defined similarly. Let
1 € R™ be the all 1’s vector. Now define v = ar+ @1 for a parameter 0 < a <1 to be specified
later in the proof. Note that each ¢; and v all lie in the space defined by the intersection of the n
“hyperplanes” { H’ : 370 xj, =1} for 1 < j < n. Hence the vectors (c; — v), for 1 <i < m,
all lie in H = (\j_, H; where H; = {x € R : iy xje = 0}. It is easy to see that H is an
n(q — 1)-dimensional subspace of R"?. We thus conclude that the vectors (¢; —v), 1 < i < m, all
lie in an n(q — 1)-dimensional space.

The idea behind the rest of the proof is the following. We will pick « so that the ng-dimensional
vectors (c; — v), for 1 < i < m, have all pairwise dot products less than 0. Geometrically speaking,
we shift the origin O to O' where OO’ = v, and require that relative to the new origin the
vectors corresponding to the codewords have pairwise angles which are greater than 90 degrees
(see Figure 1). By a simple geometric fact (stated in Lemma 3 below), it will then follow that the
number of codewords m is at most the dimension n(q — 1) of the space in which these vectors all
lie.

For 1 <i <m, let ¢; = A(r, C;). Note that e; < e for every i. Now

@v) = ol + D) man—e) + 1 -0t om0+ 1-a) @)
q q q
= o’n — a)a’ PN LA, —ln
(vv) = @lnt2(l—a)ar +(1-afs ="+ (1 ) (4)
(Ci,Cj> = n—- A(CZ,CJ) S n—d. (5)
Using (3), (4) and (5), we get for i # j
(ci—v,cj—v)§2ae—d—l—(1—$>(1—a)2n (6)

which using e = (1 — 1/¢)(1 —y)n and d = (1 — 1/q)(1 — 0)n simplifies to

(ci—v,c;—v) < (1—3)71(54—012—2017) (7)

Thus as long as v > %(g + oz) we will have all pairwise dot products to be negative just as we

wanted. We pick « to minimize (g + a), or in other words we set o = V6. Now as long as v > /9,
we will have (c; —v,cj —v) <0 for all 1 <7 < j < m. To complete the proof, we note that (for
the choice o = V/3), for every 1 <i < m, (¢; — v,v) > (1 —1/¢)nVé(y —V/§) > 0 provided v > /4.
Now applying Part (iii) of Lemma 3, with the setting vi = ¢; — v and u = vy, the projection of v
onto the subspace H, implies that m < n(qg — 1) (recall that the vectors (¢c; — v), 1 <14 < m, all lie
in # and dim(H) = n(qg — 1)).

We now prove that if ¥ > /8, then m < 712__55. For this we set a = . Now from Equation (7) we
have (¢; — v,c; —v) < (1 — 1/g)n(5 — 7?). Thus if v > v/§, we have (c; — v,cj — v) < 0. Now for




eachi, 1 < i < m, we have ||c;—v|? = (¢; — v, ¢; — v) < 2ae+(1-1/q)(1—a)?n = (1-1/q)n(1—~?)

\4

for the choice a@ = 7. Denoting by w; the unit vector Hci;', we thus have

ci—v]|
2
y° =90
(wi, wj) < — (8)
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for 1 <i < j < m. By a well-known geometric fact (see Lemma 4 for the simple proof), it follows
i O )
5) T 2=h0

To handle the case when v = V8, we have (ci—v,c;—v) <Oforalll<i<j<m,andalso
(¢ —v,v) > 0foreachi =1,2,...,m. Now applying Part (ii) of Lemma 3, we get m < 2n(q—1)—1.
O

as desired.

that the number of such vectors, m, is at most (1 + }y;z

2.3 Geometric Lemmas

We now state the geometric facts that were used in the above proof.

Lemma 3 Let vy,...,vm be non-zero vectors in RY such that (vi,vj) <0 forall1 <i<j<m.
Then the following hold:

(i) m < 2N.

(ii) Suppose that there exists a non-zero u € RN such that (u,v;i) >0 fori=1,2,...,m. Then
m < 2N — 1.

(iii) Suppose there exists an u € RY such that (u,vi) >0 fori=1,2,...,m. Then m < N.

A proof of Part (i) of the above lemma can be found, for instance, in [2, Chapter 10, page 71].
The proofs of the other two parts are similar. For completeness, we present a self-contained proof
of the above lemma in Appendix A.

Lemma 4 Let ¢ > 0 be a positive real and let wi,wa,..., Wy be m unit vectors such that
(wi,wj) < —¢ forall1 <i<j<m. Thenmgl—l—%,

Proof: We have

m m m
0< (Zwi,Zwi> =Z(wi,wi>+2 Z (wi,wj) <m —m(m—1)e,
=1 =1 i—1 1<i<j<m
which gives m <1+ 1/e. O

2.4 Generalization in Presence of Weights

For applications to “soft-decision” list decoding algorithms, it is of interest to prove a version of the
Johnson bound in the presence of weights on codeword symbols. A version of such a bound appears
for instance in [12]. Here we state the weighted version of the Johnson bound that follows from our
proof technique. The bound in Part (i) of the theorem generalizes the result of Corollary 2. The
result from Part (ii) applies under a more general condition than Condition (1) (or even Condition
(9)), but the upper bound is itself is slightly weaker (since it is (ng — 1) instead of n(g — 1)).



Theorem 5 Let C C [¢]" be a code of blocklength n and minimum distance d. Let {w;; : 1 <

i <m;l < j <q} be an arbitrary set of non-negative real weights. Define W; = 2321 w;j and
2 2
Wi( ) = 321 w?,]v Wiot = D2, j Wi,j, and Wt(ot) =i w?yj. Then:

(i) The number of codewords C € C that satisfy

is at most n(q — 1).

(11) The number of codewords C € C that satisfy

S > Wt \/ (n01 - by - ) (w2 - Wl w0
=1

q nq

is at most (nq — 1).

(15i) For any integer L > 2, the number of codewords C € C that satisfy

Soner 2 Bt g (- ) ) (i - )
1=1

q ng
1s at most L.

Proof: We do not give a full proof here, rather we indicate the only changes that must be made
to the proof of Theorem 1 in order to prove our claim. For Part (i), the only modification required
in the proof of Theorem 1 is to pick r so that its (7,)’th component, for 1 <7 <mnand 1 <j <gq,

equals u‘;",: . The vector v is defined as before to be ar + @1 for
n(l—1/q) —d
- w® :
> wr /e

Once once again all the vectors (¢; — v) lie in an n(q — 1)-dimensional subspace of R™. It can be
proved as in the proof of Theorem 1 that these vectors have pairwise non-positive dot products,
which gives the desired n(¢ — 1) upper bound on the number of codewords.

For Parts (ii) and (iii), we pick r so that its (7,7)’th component for 1 <7 <nand 1 < j <g,

equals T{,ﬁ;i , and the rest of the proof follows that of Theorem 1. Note that Wi, /q is the expected
value of ), w;,, for a random vector r € [¢]", and (Wt(ft) — %) is proportional to the variance

of the w; ;’s. Thus, the above theorem states that the number of codewords which have weighted
agreement bounded away from the expectation by a certain number of standard deviations is small.
The upper bound of (ng — 1) (instead of n(q — 1)) in Part (ii) of above theorem arises since we are
only able to ensure that the vectors (c; — v) all lie in an (ng — 1)-dimensional subspace (namely
that defined by 3~ . z; ; = 0), and not an n(q — 1)-dimensional subspace as in Part (i). O

A bound similar to Theorem 5 can also be worked out for the case when the different codeword
symbols belong to different alphabets (say the ith symbol belongs to an alphabet of size g;). Such
a bound is of interest for certain codes like the Chinese Remainder Code [12].



Acknowledgments

We would like to thank an anonymous referee for crucial pointers to the works [1, 4, 7] and numerous
other suggestions.

References

[1] E. Agrell, A. Vardy and K. Zeger. Upper bounds for constant-weight codes. IEEE Transactions
on Information Theory, 46 (2000), pp. 2373-2395.

[2] B. Bollobas. Combinatorics, Cambridge University Press, Cambridge, U.K, 1986.

[3] P. Elias. Error-correcting codes for List decoding. IEEE Trans. Info. Theory, 37 (1), pp. 5-12,
1991.

4] T. Ericson and V. Zinoviev. Spherical codes generated by binary partitions of symmetric
g
pointsets. IEEE Trans. on Information Theory, 41 (1995), pp. 107-129.

[5] S. M. Johnson. A new upper bound for error-correcting codes. IEEE Trans. on Info. Theory,
8 (1962), pp. 203-207.

[6] S. M. Johnson. Improved asymptotic bounds for error-correcting codes. IEEE Trans. on Info.
Theory, 9 (1963), pp. 198-205.

[7] V. L. Levenshtein. Universal bounds for codes and designs. Chapter 6 in Handbook of Coding
Theory, V. S. Pless and W. C. Huffman (eds), Elsevier, 1998, pp. 499-648.

[8] F.J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1981.

[9] Handbook of Coding Theory, Volume I, V. S. Pless and W. C. Huffman, Editors, North-Holland,
1998.

[10] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries: the highly noisy
case. Proc. of FOCS 95.

[11] V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes. Proc.
of the 32nd Annual ACM Symposium on Theory of Computing, May 2000, pp. 181-190.

[12] V. Guruswami, A. Sahai and M. Sudan. “Soft-decision” decoding of Chinese Remainder Codes.
Proc. of the 41st IEEE Symposium on Foundations of Computer Science, November 2000, pp.
159-168.

[13] M. Sudan. List Decoding: Algorithms and Applications. SIGACT News, 31 (2000), pp. 16-27.

A Proof of Lemma 3

Proof: We first prove (iii). Suppose for contradiction that m > N + 1. Then since the vectors
Vi,...,Vvm all lie in RV they must be linearly dependent. Let S C [m] be a non-empty set of
minimum size for which a relation of the form ), ¢ a;vi = 0 holds with each a; # 0. We claim
that the a¢;’s must all be positive or all be negative. Indeed, if not, by collecting terms with positive



a;’s on one side and those with negative a;’s on the other, we will have an equation of the form
YicT+ GiVi = EjeT— bjv; = w (for some vector w) where T and T~ are disjoint non-empty sets
with Tt UT~ = S, and all a;,b; > 0. By the minimality of S, w # 0 and hence (w,w) > 0.
On the other hand (w,w) = (3 ;cp+ aivi, D jep- bjvy) = 32; ; aibj(vi, vj) < 0 since a;b; > 0 and
(vi,vj) <0 for each ¢ € T and j € T~. This contradiction shows that we may assume that a; > 0
forall¢ € S.

Now 7 ;a;vi = 0, so that Y 7, a;{(u,v;) = 0. But this is impossible since for each i we
have a; > 0 and (u,v;) > 0. We have thus arrived at a contradiction, and therefore we must have
m < N.

To prove (ii), we use induction on N. The statement clearly holds for N = 1. For N > 1,
we proceed exactly as above. If mm < N, we have nothing to prove, so assume m > N so that
Vi,...,Vm are linearly independent, and as above, let S C [m] be a non-empty set of minimum size
for which a relation of the form ) ;5 a;vi = 0 holds with each a; # 0. Assume for definiteness that
S ={1,2,...,s}. We thus have the linear dependence Y ; ; a;vi = 0 with each a; > 0, and since
this is a minimum sized linear dependence, vy, ..., vy must span a subspace W of RV of dimension
(s —1).

Since > 7, a;vi = 0, we have .7 , a;(vi,vy) = 0 for each £ = s+ 1,...,m. Since a; > 0 for
1 < i < sand (v, vg) <0, it must be therefore be the case that v; is orthogonal to vy for all 4, ¢ with
1<i<sands </f<m. A similar argument shows u is orthogonal to v; for each 7 = 1,2,...,s.
Thus the vectors Vg 1,...,Vm and u all lie in W+ which has dimension equal to (N — s +1). Since
s > 1, the induction hypothesis applied to these vectors implies that m —s <2(N —s+1) — 1, or
in other words m < 2N — s+ 1 < 2N — 1, as desired.

Finally (i) follows immediately from (ii). Indeed, apply (ii) with vectors vi,...,vm—1 and —vp,
playing the role of u. This implies m — 1 < 2N — 1, or in other words m < 2N. O



