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tWe present extensions of some re
ent geometri
 proofs of the well-known Johnson bound.Our extensions apply to arbitrary alphabets (while previous proofs were given only for the binary
ase). Our extensions yield a \weighted" version of the Johnson bound equally easily | theweighted version is of interest in light of the re
ent developments on soft-de
ision list de
odingalgorithms.1 Introdu
tionWe present extensions to the well-known Johnson bound in 
oding theory. The Johnson bound is a
lassi
al bound that provides an upper bound on the number of 
odewords in any Hamming ball ofup to a 
ertain radius (the radius till whi
h the bound holds is a fun
tion of the minimum distan
eof the 
ode). Su
h a bound is used in the Elias-Bassalygo upper bound on the dimension of 
odeswith 
ertain minimum distan
e, and is of interest to list de
oding of 
odes.Proofs of the Johnson bound seem to 
ome in one of two 
avors. The original proof and someof its derivates follows a linear algebra based argument [5, 6, 3, 10, 11℄, while more re
ent proofs,most notably [7, 4, 1℄ are more geometri
. Our proof follows the latter spirit, extending these proofsto the 
ase of general alphabets. (A more te
hni
al 
omparison of our proof with existing ones isgiven later, after outlining some formal de�nitions).Moreover, we also prove a weighted version of the Johnson bound whi
h is of interest to somequestions raised by the re
ent investigations on soft-de
ision list de
oding algorithms. Our resultgives some improvements over the earlier results in this vein from [12℄, and furthermore shedssome light on the features of a weight ve
tor that give the most information to a soft-de
ision listde
oding algorithm.�Supported in part by an IBM Graduate Fellowship.ySupported in part by an MIT-NEC Resear
h Initiation Award, a Sloan Foundation Fellowship and NSF CareerAward CCR-9875511.
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2 Our Results2.1 NotationWe identify the elements of a q-ary alphabet with the integers 1; 2; : : : ; q in some 
anoni
al way.Let [q℄ = f1; 2; : : : ; qg. For x;y 2 [q℄n, the Hamming distan
e between x and y, denoted �(x;y),is the number of positions where x and y di�er. For r 2 [q℄n and 0 � e � n, the Hamming ball ofradius e around r is de�ned by Bq(r; e) = fx 2 [q℄n : �(r;x) � eg.The key quantity to study in our 
ontext is the following. Let A0q(n; d; e) denote the maxi-mum number of points that may be pla
ed in some ball Bq(r; e) su
h that all pairwise distan
esbetween the points are at least d. More formally, A0q(n; d; e) = maxfjSj : S � Bq(r; e) for some r 2[q℄n and 8x;y 2 S; �(x;y) � dg.1 Clearly for any 
ode C � [q℄n of minimum distan
e d, A0q(n; d; e)is an upper bound on the number of 
odewords of C that 
an lie in a Hamming ball of radius e.2Our obje
tive, therefore, is to obtain an upper bound on the fun
tion A0q(n; d; e) and we do sobelow.2.2 Our Main ResultTheorem 1 Let C be any q-ary 
ode of blo
klength n and minimum distan
e d = (1� 1=q)(1� Æ)nfor some 0 < Æ < 1. Let e = (1 � 1=q)(1 � 
)n for some 0 < 
 < 1 and let r 2 [q℄n be arbitrary.Then, provided 
 > pÆ, we havejBq(r; e) \ Cj � minfn(q � 1); 1� Æ
2 � Æ g :Furthermore, for the 
ase when 
 = pÆ, we have jBq(r; e) \ Cj � 2n(q � 1)� 1.Corollary 2 Let q; n; d be arbitrary positive integers with d < (1� 1=q)n. Let e � 1 be any integerthat satis�es the 
ondition e < �1� 1q��1�s1� qq � 1 � dn�n : (1)Then we have A0q(n; d; e) � minfn(q � 1); ndnd� 2e(n� qe2(q�1) )g : (2)Furthermore, if e equals the R.H.S of Condition (1) then A0q(n; d; e) � 2n(q � 1)� 1.Comparison with Previous Bounds: The se
ond upper bound on A0q(n; d; e) in (2) is the\
lassi
al" version of Johnson bound for the q-ary 
ase (
f. [9℄; proofs appear, for instan
e, in[10, 11℄). The new aspe
t of our result is the n(q� 1) upper bound. For the 
ase q = 2, this resultwas known. Spe
i�
ally, Elias [3℄ proved that if d is odd, then A02(n; d; e) � n as long as e satis�es1We use the notation A0q(n; d; e) instead of the apparently more natural 
hoi
e Aq(n; d; e) be
ause the notationAq(n; d; e) in 
oding theory literature normally refers to the maximum number of points that may be pla
ed onthe surfa
e of (instead of within) the ball Bq(r; e) with pairwise distan
es at least d. To avoid 
onfusion with thisstandard terminology, we use A0q(n; d; e) instead. We 
learly have Aq(n; d; e) � A0q(n; d; e), and thus any upper boundwe derive on A0q(n; d; e) also applies to Aq(n; d; e).2The minimum distan
e of a 
ode C is de�ned as the minimum Hamming distan
e between two distin
t elementsof C. 2
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Figure 1: Geometri
 pi
ture behind proof of Theorem 1Condition (1). For even d, however, A02(n; d; e) = O(n2) was the best known bound that was madeexpli
it till the re
ent work of Agrell, Vardy and Zeger [1℄, who showed that A02(n; d; e) � n for alld; e that satisfy Condition (1). 3For the 
ase of q > 2, to the best of our knowledge, the only known upper bound on A0q(n; d; e)seems to be the se
ond bound in Equation (2) and our upper bound of n(q � 1) seems to be new.Proof Idea: The proof follows a \geometri
" approa
h. We identify elements of [q℄n with ve
torsin Rnq by repla
ing the symbol i (1 � i � q) by the unit ve
tor of length q with a 1 in position i.This allows us to embed the 
odewords and the \re
eived" word r into Rnq . Next, by appropriatelyshifting the set of ve
tors 
orresponding to the 
odewords that are 
lose to r, we get a set of ve
torssu
h that the inner produ
t of any two distin
t ve
tors from this set is non-positive. By a standardgeometri
 upper bound on the 
ardinality of su
h a set of ve
tors, we get the required upper boundon the number of 
odewords that are \
lose" to r.A idea extends proofs for the binary 
ase, given by [4, 7, 1℄, where an appropriate embedding ofthe binary 
odewords in Rn and an appropriate shifting of ve
tors was used to establish \Johnson-style" bounds by appealing to bounds on spheri
al 
odes, i.e., bounds on the 
ardinality of a setof unit ve
tors in real spa
e with a spe
i�ed minimum angle between any pair of ve
tors. It maybe noted that the generaliztion to the 
ase of general alphabets is not 
anoni
al. Of the severalpotential approa
hes, our proof hits upon the right path.Proof of Theorem 1: Assume without loss of generality that r = hq; q; : : : ; qi, i.e is the symbolq repeated n times. Let C1; C2; : : : ; Cm be all the 
odewords of C that lie within Bq(r; e) wheree = (1 � 1=q)(1 � 
)n. Our goal is to get an upper bound on m provided 
 is large enough. Thebound m � 1�Æ
2�Æ is well known, but we reprove it here sin
e we 
an dedu
e it for almost free fromthe te
hnique we use to establish the upper bound m � nq.3A
tually, Agrell et al. 
laim their result only for A2(n; d; e), but their proof will work for the 
ase of A02(n; d; e)as well. 3



We asso
iate a ve
tor in Rnq with r and with ea
h 
odeword Ci. (A
tually these ve
tors will alllie in an n(q�1)-dimensional subspa
e of Rnq , and this will used later in the proof, but it is easiestto spe
ify these ve
tors as embedded in Rnq .) Ea
h ve
tor is to be viewed as having n blo
ks ea
hhaving q 
omponents (the n blo
ks 
orrespond to the n 
odeword positions). For 1 � l � q, denoteby êl the q-dimensional unit ve
tor with 1 in the lth position and 0 elsewhere. For 1 � i � m,the ve
tor 
i asso
iated with the 
odeword Ci has in its jth blo
k the 
omponents of the ve
torêCi[j℄ (Ci[j℄ is the jth symbol of Ci, treated as an integer between 1 and q). The ve
tor asso
iatedwith the re
eived word r, whi
h we also denote r by abuse of notation, is de�ned similarly. Let1 2 Rnq be the all 1's ve
tor. Now de�ne v = �r+ (1��)q 1 for a parameter 0 � � � 1 to be spe
i�edlater in the proof. Note that ea
h 
i and v all lie in the spa
e de�ned by the interse
tion of the n\hyperplanes" f H0j : Pq̀=1 xj;` = 1 g for 1 � j � n. Hen
e the ve
tors (
i � v), for 1 � i � m,all lie in H = Tnj=1Hj where Hj = fx 2 Rnq : Pq̀=1 xj;` = 0g. It is easy to see that H is ann(q � 1)-dimensional subspa
e of Rnq . We thus 
on
lude that the ve
tors (
i � v), 1 � i � m, alllie in an n(q � 1)-dimensional spa
e.The idea behind the rest of the proof is the following. We will pi
k � so that the nq-dimensionalve
tors (
i�v), for 1 � i � m, have all pairwise dot produ
ts less than 0. Geometri
ally speaking,we shift the origin O to O0 where OO0 = v, and require that relative to the new origin theve
tors 
orresponding to the 
odewords have pairwise angles whi
h are greater than 90 degrees(see Figure 1). By a simple geometri
 fa
t (stated in Lemma 3 below), it will then follow that thenumber of 
odewords m is at most the dimension n(q � 1) of the spa
e in whi
h these ve
tors alllie. For 1 � i �m, let ei = �(r; Ci). Note that ei � e for every i. Nowh
i;vi = �h
i; ri+ (1� �)q h
i;1i = �(n� ei) + (1� �)nq � �(n� e) + (1� �)nq (3)hv;vi = �2n+ 2(1 � �)�nq + (1� �)2nq = nq + �2�1� 1q )n (4)h
i; 
ji = n��(Ci; Cj) � n� d : (5)Using (3), (4) and (5), we get for i 6= jh
i � v; 
j � vi � 2�e � d+ �1� 1q�(1� �)2n (6)whi
h using e = (1� 1=q)(1 � 
)n and d = (1� 1=q)(1 � Æ)n simpli�es toh
i � v; 
j � vi � �1� 1q�n�Æ + �2 � 2�
� (7)Thus as long as 
 > 12� Æ� + �� we will have all pairwise dot produ
ts to be negative just as wewanted. We pi
k � to minimize ( Æ� +�), or in other words we set � = pÆ. Now as long as 
 > pÆ,we will have h
i � v; 
j � vi < 0 for all 1 � i < j � m. To 
omplete the proof, we note that (forthe 
hoi
e � = pÆ), for every 1 � i � m, h
i � v;vi � (1�1=q)npÆ(
�pÆ) > 0 provided 
 > pÆ.Now applying Part (iii) of Lemma 3, with the setting vi = 
i � v and u = vjH, the proje
tion of vonto the subspa
e H, implies that m � n(q � 1) (re
all that the ve
tors (
i � v), 1 � i � m, all liein H and dim(H) = n(q � 1)).We now prove that if 
 > pÆ, thenm � 1�Æ
2�Æ . For this we set � = 
. Now from Equation (7) wehave h
i � v; 
j � vi � (1 � 1=q)n(Æ � 
2). Thus if 
 > pÆ, we have h
i � v; 
j � vi < 0. Now for4



ea
h i, 1 � i � m, we have k
i�vk2 = h
i � v; 
i � vi � 2�e+(1�1=q)(1��)2n = (1�1=q)n(1�
2)for the 
hoi
e � = 
. Denoting by wi the unit ve
tor 
i�vk
i�vk , we thus havehwi;wji � �
2 � Æ1� 
2 (8)for 1 � i < j � m. By a well-known geometri
 fa
t (see Lemma 4 for the simple proof), it followsthat the number of su
h ve
tors, m, is at most (1 + 1�
2
2�Æ ) = 1�Æ
2�Æ , as desired.To handle the 
ase when 
 = pÆ, we have h
i � v; 
j � vi � 0 for all 1 � i < j � m, and alsoh
i � v;vi � 0 for ea
h i = 1; 2; : : : ;m. Now applying Part (ii) of Lemma 3, we getm � 2n(q�1)�1.22.3 Geometri
 LemmasWe now state the geometri
 fa
ts that were used in the above proof.Lemma 3 Let v1; : : : ;vm be non-zero ve
tors in RN su
h that hvi;vji � 0 for all 1 � i < j � m.Then the following hold:(i) m � 2N .(ii) Suppose that there exists a non-zero u 2 RN su
h that hu;vii � 0 for i = 1; 2; : : : ;m. Thenm � 2N � 1.(iii) Suppose there exists an u 2 RN su
h that hu;vii > 0 for i = 1; 2; : : : ;m. Then m � N .A proof of Part (i) of the above lemma 
an be found, for instan
e, in [2, Chapter 10, page 71℄.The proofs of the other two parts are similar. For 
ompleteness, we present a self-
ontained proofof the above lemma in Appendix A.Lemma 4 Let " > 0 be a positive real and let w1;w2; : : : ;wm be m unit ve
tors su
h thathwi;wji � �" for all 1 � i < j � m. Then m � 1 + 1" .Proof: We have0 � h mXi=1 wi; mXi=1 wii = mXi=1hwi;wii+ 2 X1�i<j�mhwi;wji � m�m(m� 1)" ;whi
h gives m � 1 + 1=". 22.4 Generalization in Presen
e of WeightsFor appli
ations to \soft-de
ision" list de
oding algorithms, it is of interest to prove a version of theJohnson bound in the presen
e of weights on 
odeword symbols. A version of su
h a bound appearsfor instan
e in [12℄. Here we state the weighted version of the Johnson bound that follows from ourproof te
hnique. The bound in Part (i) of the theorem generalizes the result of Corollary 2. Theresult from Part (ii) applies under a more general 
ondition than Condition (1) (or even Condition(9)), but the upper bound is itself is slightly weaker (sin
e it is (nq � 1) instead of n(q � 1)).5



Theorem 5 Let C � [q℄n be a 
ode of blo
klength n and minimum distan
e d. Let fwi;j : 1 �i � n; 1 � j � qg be an arbitrary set of non-negative real weights. De�ne Wi = Pqj=1wi;j andW (2)i =Pqj=1w2i;j, Wtot =Pi;j wi;j, and W (2)tot =Pi;j w2i;j. Then:(i) The number of 
odewords C 2 C that satisfynXi=1 wi;CiWi > nq +vuut�n(1� 1q )� d�� nXi=1 W (2)iW 2i � nq � : (9)is at most n(q � 1).(ii) The number of 
odewords C 2 C that satisfynXi=1 wi;Ci > Wtotq +s�n(1� 1q )� d��W (2)tot � (Wtot)2nq � (10)is at most (nq � 1).(iii) For any integer L � 2, the number of 
odewords C 2 C that satisfynXi=1 wi;Ci � Wtotq +s�n(1� 1q )� d+ dL��W (2)tot � (Wtot)2nq � (11)is at most L.Proof: We do not give a full proof here, rather we indi
ate the only 
hanges that must be madeto the proof of Theorem 1 in order to prove our 
laim. For Part (i), the only modi�
ation requiredin the proof of Theorem 1 is to pi
k r so that its (i; j)'th 
omponent, for 1 � i � n and 1 � j � q,equals wi;jWi . The ve
tor v is de�ned as before to be �r+ (1��)q 1 for� =vuutn(1� 1=q)� dPi W (2)iW 2i � n=q :On
e on
e again all the ve
tors (
i � v) lie in an n(q � 1)-dimensional subspa
e of Rnq . It 
an beproved as in the proof of Theorem 1 that these ve
tors have pairwise non-positive dot produ
ts,whi
h gives the desired n(q � 1) upper bound on the number of 
odewords.For Parts (ii) and (iii), we pi
k r so that its (i; j)'th 
omponent for 1 � i � n and 1 � j � q,equals nwi;jWtot , and the rest of the proof follows that of Theorem 1. Note that Wtot=q is the expe
tedvalue of Pi wi;ri for a random ve
tor r 2 [q℄n, and (W (2)tot � (Wtot)2nq ) is proportional to the varian
eof the wi;j's. Thus, the above theorem states that the number of 
odewords whi
h have weightedagreement bounded away from the expe
tation by a 
ertain number of standard deviations is small.The upper bound of (nq� 1) (instead of n(q� 1)) in Part (ii) of above theorem arises sin
e we areonly able to ensure that the ve
tors (
i � v) all lie in an (nq � 1)-dimensional subspa
e (namelythat de�ned by Pi;j xi;j = 0), and not an n(q � 1)-dimensional subspa
e as in Part (i). 2A bound similar to Theorem 5 
an also be worked out for the 
ase when the di�erent 
odewordsymbols belong to di�erent alphabets (say the ith symbol belongs to an alphabet of size qi). Su
ha bound is of interest for 
ertain 
odes like the Chinese Remainder Code [12℄.6



A
knowledgmentsWe would like to thank an anonymous referee for 
ru
ial pointers to the works [1, 4, 7℄ and numerousother suggestions.Referen
es[1℄ E. Agrell, A. Vardy and K. Zeger. Upper bounds for 
onstant-weight 
odes. IEEE Transa
tionson Information Theory, 46 (2000), pp. 2373-2395.[2℄ B. Bollob�as. Combinatori
s, Cambridge University Press, Cambridge, U.K, 1986.[3℄ P. Elias. Error-
orre
ting 
odes for List de
oding. IEEE Trans. Info. Theory, 37 (1), pp. 5-12,1991.[4℄ T. Eri
son and V. Zinoviev. Spheri
al 
odes generated by binary partitions of symmetri
pointsets. IEEE Trans. on Information Theory, 41 (1995), pp. 107-129.[5℄ S. M. Johnson. A new upper bound for error-
orre
ting 
odes. IEEE Trans. on Info. Theory,8 (1962), pp. 203-207.[6℄ S. M. Johnson. Improved asymptoti
 bounds for error-
orre
ting 
odes. IEEE Trans. on Info.Theory, 9 (1963), pp. 198-205.[7℄ V. I. Levenshtein. Universal bounds for 
odes and designs. Chapter 6 in Handbook of CodingTheory, V. S. Pless and W. C. Hu�man (eds), Elsevier, 1998, pp. 499-648.[8℄ F. J. Ma
Williams and N. J. A. Sloane. The Theory of Error-Corre
ting Codes, North-Holland,Amsterdam, 1981.[9℄ Handbook of Coding Theory, Volume I, V. S. Pless andW. C. Hu�man, Editors, North-Holland,1998.[10℄ O. Goldrei
h, R. Rubinfeld and M. Sudan. Learning polynomials with queries: the highly noisy
ase. Pro
. of FOCS 95.[11℄ V. Guruswami and M. Sudan. List de
oding algorithms for 
ertain 
on
atenated 
odes. Pro
.of the 32nd Annual ACM Symposium on Theory of Computing, May 2000, pp. 181-190.[12℄ V. Guruswami, A. Sahai and M. Sudan. \Soft-de
ision" de
oding of Chinese Remainder Codes.Pro
. of the 41st IEEE Symposium on Foundations of Computer S
ien
e, November 2000, pp.159-168.[13℄ M. Sudan. List De
oding: Algorithms and Appli
ations. SIGACT News, 31 (2000), pp. 16-27.A Proof of Lemma 3Proof: We �rst prove (iii). Suppose for 
ontradi
tion that m � N + 1. Then sin
e the ve
torsv1; : : : ;vm all lie in RN , they must be linearly dependent. Let S � [m℄ be a non-empty set ofminimum size for whi
h a relation of the form Pi2S aivi = 0 holds with ea
h ai 6= 0. We 
laimthat the ai's must all be positive or all be negative. Indeed, if not, by 
olle
ting terms with positive7



ai's on one side and those with negative ai's on the other, we will have an equation of the formPi2T+ aivi =Pj2T� bjvj = w (for some ve
tor w) where T+ and T� are disjoint non-empty setswith T+ [ T� = S, and all ai; bj > 0. By the minimality of S, w 6= 0 and hen
e hw;wi > 0.On the other hand hw;wi = hPi2T+ aivi;Pj2T� bjvji = Pi;j aibjhvi;vji � 0 sin
e aibj > 0 andhvi;vji � 0 for ea
h i 2 T+ and j 2 T�. This 
ontradi
tion shows that we may assume that ai > 0for all i 2 S.Now Psi=1 aivi = 0, so that Psi=1 aihu;vii = 0. But this is impossible sin
e for ea
h i wehave ai > 0 and hu;vii > 0. We have thus arrived at a 
ontradi
tion, and therefore we must havem � N .To prove (ii), we use indu
tion on N . The statement 
learly holds for N = 1. For N > 1,we pro
eed exa
tly as above. If m � N , we have nothing to prove, so assume m > N so thatv1; : : : ;vm are linearly independent, and as above, let S � [m℄ be a non-empty set of minimum sizefor whi
h a relation of the formPi2S aivi = 0 holds with ea
h ai 6= 0. Assume for de�niteness thatS = f1; 2; : : : ; sg. We thus have the linear dependen
e Psi=1 aivi = 0 with ea
h ai > 0, and sin
ethis is a minimum sized linear dependen
e, v1; : : : ;vs must span a subspa
e W of RN of dimension(s� 1).Sin
e Psi=1 aivi = 0, we have Psi=1 aihvi;v`i = 0 for ea
h ` = s + 1; : : : ;m. Sin
e ai > 0 for1 � i � s and hvi;v`i � 0, it must be therefore be the 
ase that vi is orthogonal to v` for all i; ` with1 � i � s and s < ` � m. A similar argument shows u is orthogonal to vi for ea
h i = 1; 2; : : : ; s.Thus the ve
tors vs+1; : : : ;vm and u all lie in W? whi
h has dimension equal to (N � s+1). Sin
es > 1, the indu
tion hypothesis applied to these ve
tors implies that m� s � 2(N � s+ 1)� 1, orin other words m � 2N � s+ 1 � 2N � 1, as desired.Finally (i) follows immediately from (ii). Indeed, apply (ii) with ve
tors v1; : : : ;vm�1 and �vmplaying the role of u. This implies m� 1 � 2N � 1, or in other words m � 2N . 2
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