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Abstract

We show that all algebraic-geometric codes possess a succinct representation that allows for
the list decoding algorithms of [9, 6] to run in polynomial time. We do this by presenting a
root-finding algorithm for univariate polynomials over function fields when their coefficients lie
in finite-dimensional linear spaces, and proving that there is a polynomial size representation
given which the root finding algorithm runs in polynomial time.

1 Introduction

Algebraic function fields, and arithmetic over these fields, play a central role in coding theory.
The famed algebraic-geometry codes (AG codes) are based on the structure of these fields and
lead to the best known family of error-correcting codes, over large enough alphabets. Further,
decoding algorithms for these codes also rely strongly on the algebraic properties of these function
fields. In particular, the rely on the ability to perform certain operations over these fields. These
operations include basic field operations such as addition and multiplication, but also some non-
trivial operations such as evaluating functions at “places”, and finding roots of polynomials over
these fields.

In view of the central role played by the operation of root-finding in the task of decoding AG
codes, several recent works have examined the complexity of this task for classes of function fields.
These works include those of Gao and Shokrollahi [4], Høholdt and Nielsen [8], Matsumoto [7], Wu
and Siegel [13], and Augot and Pecquet [1]. The techniques developed are quite general, however
the explicitly stated results are not and fall into one of the following categories: (a) Either these
algorithms work only for specific function fields; for example the algorithms in [8] work for function
fields of Hermitian curves, and those in [4] work for function fields of nonsingular plane algebraic
curves, or (b) as in [1, 13], the algorithms reduce the decoding task to certain “basic” algorithmic
tasks on function fields, and it is not clear how to perform these basic tasks efficiently for every
function field. The sole exception may be the work of Matsumoto [7], who, independent of our work,
implicitly suggests a completely general solution to the problem of root-finding over all fields.
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Closer examination of these works reveals an even more important question: What exactly is
known about the underlying function field? How are the elements of the field represented and how
are elementary operations performed? This leads to the essential bottleneck preventing a unified
presentation of results: One needs a generic method to represent the elements of an algebraic func-
tion field so that (1) these representations are short for the elements of interest in the construction
of the algebraic-geometric codes; and (2) basic operations are efficient under this representation.

For example, a typical example of an algebraic function field is the field of fractions obtained
from the ring of functions in Fq[X,Y ]/(f(X,Y )), where f(X,Y ) is an absolutely irreducible curve.
It is usual to represent elements of this domain by rational functions in X and Y . In such a
representation, the size of an element is polynomially related to its degree. For applications to
algebraic-geometric codes, this representation is sufficient to establish property (1) above. However,
it is not immediate that this representation can lead to efficient algorithms for evaluations, or root-
finding, and thus Property (2) above may not be satisfied. For this part one needs to be more explicit
about the polynomial f . Furthermore, as one considers more general classes of function fields, it
is not clear that this property can always be satisfied by this representation. As a consequence
some of the recent works on (list) decoding of algebraic-geometric codes (henceforth referred to as
AG-codes) either remain specific to certain codes [4, 8], or are just described as reductions to other
algebraic problems (as in the case of [6]).

Here we resolve this issue, by reformulating the problem. We show how it is possible to adopt
an alternate description for elements of the function field which remains terse, while allowing basic
tasks to be carried out efficiently. We focus on the most complex task arising from list decoding -
namely that of finding roots of polynomials defined over function fields. For this task, we show how
the algorithms from Gao and Shokrollahi [4] or the similar algorithm of Høholdt and Nielsen [8])
can be implemented so as to work in our representation.

Since all other operations needed to implement the recent list decoding algorithms are also easy
to carry out in our representation, we also are able to present a compact and general theorem about
list decoding of AG-codes.

2 Algebraic-geometric codes: Preliminaries

We now abstract the main notions associated with the theory of algebraic function fields that will
be important to us. The interested reader may find further details in [10, 5]. In what follows we
assume familiarity with the basic notions of field extensions.

Places, Valuations, and Degrees: A function field K/Fq has a set of places PK and the asso-
ciated set of valuations, given by a valuation map v : PK ×K → Z ∪ {∞}. The exact definition
of these notions can be found, for instance, in [10]; we only abstract some properties relevant to
us below. As is normal practice, for each P ∈ PK , we denote by vP : K → Z ∪ {∞}, the map
vP (·) = v(P, ·) which tells how many zeroes or poles a given function has at P (with the convention
vP (0) =∞). The valuation vP at any place satisfies the following properties:

(a) vP (a) =∞ iff a = 0 and vP (a) = 0 for all a ∈ Fq \ {0}.
(b) vP (ab) = vP (a) + vP (b) for all a, b ∈ K \ {0}.
(c) vP (a+ b) ≥ min{vP (a), vP (b)}.

Associated with every place is a degree abstracted via the map deg : PK → Z+. The degree, deg(P ),
of any place P is a positive integer and intuitively means the following: when we pick a function
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f ∈ K which has no poles at P and “evaluate” it at P , we get a value in the field Fqdeg(P ) . Thus
places of degree one correspond to rational points on the curve.

Evaluations of functions at places: We can abstract the notion of evaluation of elements of the
function field at the places by a map eval : K × PK → F̄q ∪ {∞} (here F̄q is the algebraic closure
of Fq). This map has the following properties:

(i) eval(f, P ) =∞ iff vP (f) < 0, and eval(f, P ) = 0 iff vP (f) > 0 for every P ∈ PK and f ∈ K.

(ii) If f ∈ K, P ∈ PK and vP (f) ≥ 0, then eval(f, P ) ∈ Fqdeg(P ) .

(iii) The map eval respects field operations; i.e., if vP (f1) ≥ 0 and vP (f2) ≥ 0, then eval(f1 +
f2, P ) = eval(f1, P ) + eval(f2, P ), and eval(f1 ∗ f2, P ) = eval(f1, P ) ∗ eval(f2, P ).

Divisors: The divisor group DK of the function field K is a free abelian group on PK . An element
D of DK is thus represented by the formal sum

∑
P∈PK

aPP where aP = 0 for all but finitely
many P ; we say D � 0 if aP ≥ 0 for all P ∈ PK . The support of a divisor D, denoted supp(D),
is the (finite) set {P ∈ PK : aP 6= 0}. The degree map extends naturally to a homomorphism
deg : DK → Z as deg(

∑
P aPP ) =

∑
P aP deg(P ).

For every f ∈ K \ {0}, there is an associated divisor, called the principal divisor and denoted
(f), which is defined by (f) =

∑
P vP (f)P . The following result is well known, and just states that

every non-zero function in the function field has an equal number of zeroes and poles.

Theorem 1 For any function field K/Fq and any f ∈ K \ {0}, deg((f)) = 0.

For every divisor D ∈ DK , one can define the linear space of functions L(D) as L(D) = {f ∈ K :
(f)+D � 0}. It is known that for any divisor D � 0, L(D) is a finite-dimensional vector space over
Fq and dim(L(D)) ≤ 1 + deg(D) (see [10] for a proof). A lower bound on dim(L(D)) is given by
the celebrated Riemann-Roch theorem for function fields, which states that there is a non-negative
integer g (called “genus”), that depends only on K/Fq, such that dim(L(D)) ≥ deg(D)− g + 1.

Algebraic-geometric codes: We are now ready to define the notion of an AG-code. Let K/Fq

be an algebraic function field of genus g, let Q,P1, P2, . . . , Pn be distinct places of degree one in PK ,
and let G = P1 +P2 + · · ·+Pn and D = αQ be divisors of K/Fq (note that supp(G)∩supp(D) = ∅).

The algebraic-geometric code CL(G,D) = CL(G,α,Q) is defined by1

CL(G,α,Q) := {(eval(f, P1), . . . , eval(f, Pn)) : f ∈ L(αQ)} ⊆ Fn
q .

(Note that eval(f, Pi) ∈ Fq since vPi(f) ≥ 0 and deg(Pi) = 1.) The following Proposition follows
from Theorem 1 and the Riemann-Roch theorem, and quantifies the parameters of these codes.

Proposition 2 Suppose that α < n. Then CL(G,α,Q) is an [n, k, d]q code with k = dim(L(αQ)) ≥
α− g + 1 and d ≥ n− α (thus k + d ≥ n+ 1− g).2

1It is clear that the defined space is a linear space.
2The notation [n, k, d]q code stands, as usual, for a code over Fq of blocklength n, rate k and minimum distance d.
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3 Representation Issues

As mentioned earlier, algorithms that involve function fields, and in particular decoding algorithms
for AG-codes raise several issues on how to represent elements from the function field K and the
places PK . Specifically, we would like to perform the following operations efficiently: (i) Given two
elements x, y ∈ K, compute their sum and product in K; (ii) Given f ∈ K and P ∈ PK , compute
the zero or pole order of f at P , and compute eval(f, P ); and (iii) Given a divisor D � 0, compute
a basis for the vector space L(D) over Fq.

First of all, the function field K is an infinite set, so one cannot assume that operations in K (like
sum and product) are unit operations. Instead one must fix a representation for the elements and
one must give explicit algorithms to perform these operations that are efficient with respect to the
size of the representation of an element. A natural representation to consider is to express elements
of K as ratio of two homogeneous multivariate polynomials. For this representations, the field
operations in K can be done in time polynomial in the sum of degrees of the respective polynomials.
However, for question (iii) above, it is not known whether for general function fields there always
exists a basis for L(D) over Fq with a succinct representation (i.e. one of size polynomial in deg(D))
as the ratio of polynomials (for example, see [9] for a discussion).

For applications to decoding, one does not need to work with all of K, and instead focuses
attention only on elements in L(D) for some divisor D � 0. This allows us the option of representing
elements of L(D) as vectors in Fdim(L(D))

q which represent their coordinates with respect to some
fixed basis of L(D) over Fq. Since dim(L(D)) ≤ deg(D) + 1, this representation will be small
provided deg(D) is small. Indeed, the first interpolation step in the list decoding algorithm of
[6] was shown to be efficiently implementable under this representation. This will also be the
representation we use here, though in order to perform the root-finding step, we augment this
representation suitably. Before explaining this, we formally describe the basic root-finding task
that we wish to solve, and describe an algebraic algorithm along the lines of [8, 4] to solve it. We
then discuss the representation issues this algorithm motivates.

Procedure ROOT-FIND(K,D)(H)

Input: A degree m polynomial H =
∑m

i=0 aiT
i ∈ K[T ] where each ai ∈ L(D).

Output: All roots of H that lie in L(D).

1. “Reduce” H modulo a place R ∈ PK of large enough degree, say r (i.e., compute bi =
eval(ai, R) for 0 ≤ i ≤ m and consider the polynomial P =

∑m
i=0 biY

i ∈ Fqr [Y ]).

2. Compute the roots, say α1, . . . , αt, of P that lie in Fqr using a root-finding algorithm for finite
fields.

3. For each αj , 1 ≤ j ≤ t, “find” βi ∈ L(D) if any such that eval(βi, R) = αi.

The tricky issue in the above algorithm is that we need to “evaluate” an f ∈ L(D) at some place
R ∈ PK of interest. To aid this we “represent” a place R by the values eval(φi, R), for 1 ≤ i ≤ p
where p = dim(L(D)) and φ1, . . . , φp is a basis of L(D) over Fq. Together with the representation
of any element of L(D) as a linear combination of the φi’s this clearly enables us to evaluate any
element of L(D) at R. Since each eval(φi, R) ∈ Fqr where r = deg(R), one can “represent” R, for
purposes of evaluation by members of L(D), as an element of Fp

qr . (We assume that some standard
representation of elements of Fqr .)
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It should be somewhat clear that given these representations, the algebraic procedures discussed
at the beginning of this section can in fact be turned into efficient algorithms. The next section
proves formally that this is indeed the case.

4 Efficient Root-finding

In this section we describe the root-finding algorithm from the previous section formally and care-
fully taking all representation issues into account. We also prove the correctness of the algorithm.
The fact that it runs in polynomial time given the representation it assumes will be clear from the
description.

Considering the application to list decoding in mind, we only need to solve special instances of
the univariate root-finding problem. Namely, we assume the input polynomial H ∈ K[T ] of degree
m has all its coefficients in a linear subspace L(D) for some divisor D � 0 of K, and we only seek
roots that lie in L(D). (For applications to AG-codes, the divisor D is actually a one-point divisor,
i.e., is of the form `Q for some place Q of degree one, and moreover we will only be interested in
roots that lie in L(αQ) for some α ≤ `. We, however, present a root-finding algorithm that works
for any divisor, as this could be of independent interest.) In addition to this “uniform” input H,
the algorithm also uses a non-uniform input, namely a place R of large degree, which only depends
on D and does not depend on the degree of the input polynomial.

Instead of finding only roots that lie in L(D), we will more generally find all roots α ∈ K such
that α has no poles outside supp(D). We first prove a simple lemma that limits the number of
poles any such root can have at a place in supp(D).

Lemma 3 Let H ∈ K[T ] be a non-zero polynomial all of whose coefficients lie in L(D) for some
divisor D � 0, and let α ∈ K be a root of H such that α has no poles outside supp(D). Then in
fact α ∈ L(D′) where D′ =

∑
P∈supp(D)

deg(D)
deg(P )P . (Note that deg(D′) = deg(D)|supp(D)|.)

Proof: Let α be a root of H. We prove that for any P ∈ supp(D), vP (α) ≥ −deg(D)
deg(P ) , and this will

clearly imply the claimed result. Let H[T ] = amT
m + . . .+a1T +a0 where each aj ∈ L(D), and let

D =
∑

R∈supp(D) eRR where each eR > 0. Clearly vP (ajα
j) ≥ −eP + jvP (α) since vP (aj) ≥ −eP .

If vP (α) ≥ 0 we are done, so assume vP (α) < 0. Hence

vP (H(α)− amα
m) = vP (

m−1∑
j=0

ajα
j) ≥ −eP + (m− 1)vP (α) . (1)

We now upper bound vP (am). Since deg((am)) = 0 and am ∈ L(D), we have∑
R∈supp(D)

vR(am) deg(R) ≤ 0,

and this together with vR(am) ≥ −eR for every R gives

vP (am) deg(P ) ≤
∑

R∈supp(D)\P

eR deg(R) = deg(D)− eP deg(P ) . (2)

Thus we have
vP (amα

m) ≤ deg(D)
deg(P )

− eP +mvP (α) . (3)
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Since H(α) = 0, we must have vP (amα
m) = vP (H(α)− amα

m). Using Equations (1) and (3) this
gives −eP + (m− 1)vP (α) ≤ deg(D)

deg(P ) − eP +mvP (α) which gives vP (α) ≥ −deg(D)
deg(P ) , as desired. 2

We next state two other simple lemmas which are necessary for the correctness of the algorithm.

Lemma 4 For any function field K, there exists a place of degree m in PK for every large enough
integer m.

Proof: By the Hasse-Weil inequality, the number Nm of places of degree m in PK satisfies |Nm −
qm − 1| ≤ 2gqm/2 where g is the genus of the function field K. Hence if m ≥ m0 where m0 is the
smallest integer that satisfies qm0−1

2qm0/2 > g, then Nm ≥ 1. 2

Lemma 5 If f1, f2 ∈ L(A) for some divisor A � 0 and eval(f1, R) = eval(f2, R) for some place R
with deg(R) > deg(A), then f1 = f2.

Proof: Suppose not, so that f1 − f2 6= 0. Then, by Theorem 1, deg((f1 − f2)) = 0. But f1 − f2 ∈
L(A) and vR(f1 − f2) ≥ 1, so that deg((f1 − f2)) ≥ deg(R) − deg(A) > 0, a contradiction. Hence
f1 = f2. 2

We are now ready to formally present our root-finding algorithm.

Algorithm ROOT-FIND(K,D)(H)

Non-uniform input: (This depends only on D and is independent of the actual input.) A place
R ∈ PK such that deg(R) = r > deg(D)|supp(D)| (such a place necessarily exists; see Lemma 4).
The place R is represented as an s-tuple (ζR

1 , . . . , ζ
R
s ) over Fqr comprising of evaluations of the

basis functions B′ = {φ1, φ2, . . . , φp, φp+1, . . . , φs} of L(D′) at R. Here D′ =
∑

P∈supp(D)
deg(D)
deg(P )P ,

s = dim(L(D′)), and the basis B′ extends a basis B = {φ1, . . . , φp} of L(D).
Input: A polynomial H = a0 + a1T + · · · + amT

m of degree m in K[T ] where each ai ∈ L(D) for
some divisor D of K. Each ai is presented as a p-tuple (ai1, . . . , aip) over Fq where p = dim(L(D)),
aij ∈ Fq (this is to interpreted as ai =

∑p
j=1 aijφj where B = {φ1, φ2, . . . , φp} is a basis of L(D)

over Fq).

Output: All the roots of H that lie in K and have no poles outside the at places in supp(D). (By
Lemma 3, all such roots lie in L(D′).)

Step 1: Reduce H modulo R to obtain a polynomial h ∈ Fqr [T ] : i.e., for 0 ≤ i ≤ m, compute

bi = eval(ai, R) =
p∑

j=1

aijζ
R
j ∈ Fqr ,

and set h[T ] = b0 + b1T + · · ·+ bmT
m.

Step 2: Find all the (distinct) roots α1, α2, . . . , αt of h that lie in Fqr using a standard root finding
algorithm for finite fields. (This can be accomplished in deterministic poly(q, r) time by an
algorithm due to Berlekamp [2].)
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Step 3 (Recovering the original roots): For each αi ∈ Fqr such that h(αi) = 0 “find” the unique
βi ∈ L(D′) such that eval(βi, R) = αi, in terms of its coefficients cij ∈ Fq with respect
to the basis B′ of L(D′). (Recall that D′ =

∑
P∈supp(D)

deg(D)
deg(P )P and thus deg(D′) =

deg(D)|supp(D)|, so Lemma 5 proves that such a βi, if any, is unique.) For each i, the
cij ’s can be found by solving

∑s
j=1 cijζ

R
j = αi which can be viewed as a linear system of

equations over Fq (by fixing some representation of elements of Fqr over Fq).

Step 4: Output the list of roots {β1, . . . , βt}.

It is clear, given Lemmas 3, 4 and 5, that the algorithm correctly finds all roots of H that
have no poles outside supp(D). Moreover, it clearly runs in polynomial time given the non-uniform
input. We thus get:

Theorem 6 There is an efficient root-finding algorithm that, for any function field K and any
divisor D � 0, given an “advice” that depends only on D and is of size polynomial in deg(D),
finds, in poly(m,deg(D)) time, the roots of any degree m polynomial in K[T ] whose coefficients all
lie in L(D).

Since root-finding is the main algorithmic step in the list decoding algorithm of [6] and the
other steps in the decoding algorithm (like interpolation) can be performed efficiently under our
representation, we conclude the main result from our work:

Theorem 7 (Main theorem) For every algebraic-geometric code CL(G,α,Q) of block length n
and designed distance d, there is a representation of the code of size polynomial in n, such that
given this representation list decoding from up to n−

√
n(n− d) errors can be done in polynomial

time.

5 Conclusions

We have shown that AG-codes admit a representation given which the list decoding algorithm of
[6] runs in polynomial time. It would be interesting to examine whether, for specific AG-codes
which beat the Gilbert-Varshamov bound, say the codes based on the Garcia-Stichtenoth tower of
function fields [5], this representation can also be found in polynomial time.
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