
Random Walks with “Back Buttons”
(Extended Abstract)

Ronald Fagin∗ Anna R. Karlin† Jon Kleinberg‡ Prabhakar Raghavan∗ Sridhar Rajagopalan∗

Ronitt Rubinfeld§ Madhu Sudan¶ Andrew Tomkins∗

Abstract

We introduce backoff processes, an idealized stochastic model of
browsing on the world-wide web, which incorporates both hyper-
link traversals and use of the “back button.” With some probability
the next state is generated by a distribution over out-edges from the
current state, as in a traditional Markov chain. With the remaining
probability, however, the next state is generated by clicking on the
back button, and returning to the state from which the current state
was entered by a “forward move”. Repeated clicks on the back
button require access to increasingly distant history.

We show that this process has fascinating similarities to and
differences from Markov chains. In particular, we prove that like
Markov chains, backoff processes always have a limit distribu-
tion, and we give algorithms to compute this distribution. Unlike
Markov chains, the limit distribution may depend on the start state.

1 Introduction

Consider a modification of a Markov chain in which at each step,
with some probability, we undo the last forward transition of the
chain. For intuition, the reader may wish to think of a user using
a browser on the world-wide web where he is following a Markov
chain on the pages of the web, and occasionally hitting the “back
button”. We model such phenomena by discrete-time stochastic
processes of the following form: we are given a Markov chain
M on a set V = {1, 2, . . . , n} of states, together with an n-
dimensional vector ~α of backoff probabilities. The process evolves
as follows: at each time step t = 0, 1, 2, . . . , the process is in a state
Xt ∈ V , and in addition has a history Ht, which is a stack whose
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items are states from V . Let top(H) denote the top of the stackH .
At time t = 0 the process starts at some state X0 ∈ V , with the
history H0 containing only the single element X0. At each subse-
quent step the process makes either a forward step or a backward
step, by the following rules: (i) if Ht consists of the singleton X0

it makes a forward step; (ii) otherwise, with probability αtop(Ht) it
makes a backward step, and with probability 1−αtop(Ht) it makes
a forward step. The forward and backward steps at time t are as
follows:

1. In a forward step,Xt is distributed according to the successor
state of Xt−1 under M ; the state Xt is then pushed onto the
history stack Ht−1 to create Ht.

2. In a backward step, the process pops top(Ht−1) from Ht−1

to createHt; it then moves to top(Ht) (i.e., the new stateXt
equals top(Ht).)1

Under what conditions do such processes have limit distributions,
and how such processes differ from traditional Markov chains? We
focus in this paper on the time-averaged limit distribution, usually
called the “Cesaro limit distribution”.2

Motivation

Our work is broadly motivated by user modeling for scenarios in
which a user with an “undo” capability performs a sequence of ac-
tions. A simple concrete setting is that of browsing on the world-
wide web. We view the pages of the web as states in a Markov
chain, with the transition probabilities denoting the distribution over
new pages to which the user can move forward, and the backoff
vector denoting for each state the probability that a user enters the
state and elects to click the browser’s back button rather than con-
tinuing to browse forward from that state.

A number of research projects [1, 7, 10] have designed and im-
plemented web intermediaries and learning agents that build simple
user models, and used them to personalize the user experience. On
the commercial side, user models are exploited to better target ad-
vertising on the web based on a user’s browsing patterns; see [2]
and references therein for theoretical results on these and related

1Note that the condition Xt = top(Ht) holds for all t, independent of
whether the step is a forward step or backward step.

2The Cesaro limit of a sequence a0, a1, . . . is limt→∞
1
t

∑t−1

τ=0
aτ , if

the limit exists. For example, the sequence 0,1,0,1,... has Cesaro limit 1/2.
The Cesaro limit distribution at state i is limt→∞

1
t

∑t−1

τ=0
Pr [Xt = i],

if the limit exists. By contrast, the stationary distribution at state i is
limt→∞ Pr [Xt = i], if the limit exists. Of course, a stationary distribu-
tion is always a Cesaro limit distribution. We shall sometimes refer simply
to either a stationary distribution or a Cesaro limit distribution as a limit
distribution.



problems. Understanding more sophisticated models such as ours
is interesting in its own right, but could also lead to better user
modeling.

Overview of Results

For the remainder of this paper we assume a finite number of states.
For simplicity, we assume also that the underlying Markov chain is
irreducible (i.e., it is possible, with positive probability, to even-
tually reach each state from each other state) and aperiodic. In
particular, M has a stationary distribution, and not just a Cesaro
limit distribution. Since some backoff probability αi may equal 1,
these assumptions do not guarantee that the backoff process is irre-
ducible (or aperiodic). We shall focus our attention on the situation
where the backoff process is irreducible.3

We now give the reader a preview of some interesting and ar-
guably unexpected phenomena that emerge in such “back-button”
random walks. Our primary focus is on the Cesaro limit distribu-
tion.

Intuitively, if the history stack Ht grows unboundedly with
time, then the process “forgets” the start state X0 (as happens in
a traditional Markov process, where ~α is identically zero). On the
other hand, if the elements of ~α are all very close to 1, the reader
may envision the process repeatedly “falling back” to the start state
X0, so that Ht does not tend to grow unboundedly. What happens
between these extremes?

One of our main results is that there is always a Cesaro limit dis-
tribution, although there may not be a stationary distribution, even
if the backoff process is aperiodic. Consider first the case when all
entries of ~α are equal, so that there is a single backoff probability α
that is independent of the state. In this case we give a remarkably
simple characterization of the limit distribution provided α < 1/2:
the history grows unboundedly with time, and the limit distribution
of the process converges to that of the underlying Markov chainM .

On the other hand, if α > 1/2 then the process returns to the
start state X0 infinitely often, the expected history length is finite,
and the limit distribution differs in general from that of M , and
depends on the start state X0. Thus, unlike ergodic Markov chains,
the limit distribution depends on the starting state.

More generally, consider starting the backoff process in a prob-
ability distribution over the states of M ; then the limit distribution
depends on this initial distribution. As the initial distribution varies
over the unit simplex, the set of limit distributions forms a sim-
plex. As α converges to 1/2 from above, these simplices converge
to a single point, which is the limit distribution of the underlying
Markov chain.

The transition case α = 1/2 is fascinating: the process returns
to the start state infinitely often, but the history grows with time and
the distribution of the process reaches the stationary distribution of
M . These results are described in Section 3.

We have distinguished three cases: α < 1/2, α = 1/2, and
α > 1/2. In Section 4, we show that these three cases can be
generalized to backoff probabilities that vary from state to state.
The generalization depends on whether a certain infinite Markov
process (whose states correspond to possible histories) is transient,
null, or ergodic respectively (see Section 4 for definitions). It is
intuitively clear in the constant α case, for example, that when
α < 1/2, the history will grow unboundedly. But what happens
when some states have backoff probabilities greater than 1/2 and
others have backoff probabilities less than 1/2? When does the his-
tory grow, and how does the limit distribution depend on M and
~α? Even when all the backoff probabilities are less than 1/2, why
should there be a limit distribution?

3We would like to make the simplifying assumptions that no αi equals
1, and that the backoff process is irreducible, but we cannot, since later we
are forced to deal with cases where these assumptions do not hold.

We resolve these questions by showing that there exists a poten-
tial function of the history that is expected to grow in the transient
case (where the history grows unboundedly), is expected to shrink
in the ergodic case (where the expected size of the history stack re-
mains bounded), and is expected to remain constant if the process
is null. The potential function is a bounded difference martingale,
which allows us to use martingale tail inequalities to prove these
equivalences. Somewhat surprisingly, we can use this relatively
simple characterization of the backoff process to obtain an efficient
algorithm to decide, given M and α, whether or not the given pro-
cess is transient, null or ergodic. We show that in all cases the pro-
cess attains a Cesaro limit distribution (though the proofs are quite
different for the different cases). We also give algorithms to com-
pute the limit probabilities. If the process is either ergodic or null
then the limit probabilities are computed exactly by solving certain
systems of linear inequalities. However, if the process is transient,
then the limit probabilities need not be rational numbers, even if
all entries of M and ~α are rational. We show that in this case,
the limit probabilities can be obtained by solving a linear system,
where the entries of the linear system are themselves the solution to
a semidefinite program. This gives us an algorithm to approximate
the limit probability vector.

2 Definitions and Notation

We use (M, ~α, i) to denote the backoff process on an underly-
ing Markov chain M , with backoff vector ~α, starting from state
i. This process is an (infinite) Markov chain on the space of all
histories. Formally, a history stack (or history) σ̄ is a sequence
〈σ0, σ1, . . . , σl〉 of states of V , for l ≥ 0. For a history σ̄ =
〈σ0, σ1, . . . , σl〉, its length, denoted `(σ̄), is l (we do not count the
start state σ0 in the length, since it is special). If `(σ̄) = 0, then we
say that σ̄ is an initial history. For a history σ̄ = 〈σ0, σ1, . . . , σl〉,
its top, denoted top(σ̄), is σl. We also associate the standard
stack operations pop and push with histories. For a history σ̄ =
〈σ0, σ1, . . . , σl〉, we have pop(σ̄) = 〈σ0, σ1, . . . , σl−1〉, and for
state j ∈ {1, . . . , n}, we have push(σ̄, j) = 〈σ0, σ1, . . . , σl, j〉.
We let S denote the space of all finite attainable histories.

For a Markov chain M , backoff vector ~α, and history σ̄ with
top(σ̄) = j, define the successor (or next state) succ(σ̄) to take on
values from S with the following distribution:

If `(σ̄) = 0 then with probabilityMjk, succ(σ̄) = push(σ̄, k).
If `(σ̄) ≥ 1 then

succ(σ̄) =

{
pop(σ̄) with prob αj
push(σ̄, k) with prob (1− αj)Mjk

For a Markov chainM , backoff vector ~α and state i ∈ {1, . . . , n},
the (M, ~α, i)-Markov chain is the sequence 〈H0, H1, H2, . . .〉 tak-
ing values from the set S of histories, withH0 = 〈i〉 andHt+1 dis-
tributed as succ(Ht). We refer to the sequence 〈X0, X1, X2, . . .〉,
with Xt = top(Ht) as the (M, ~α, i)-backoff process. Several
properties of the (M, ~α, i)-backoff process are actually indepen-
dent of the start state i, and to stress this aspect we will sometimes
use simply the term “(M, ~α)-backoff process”.

Note that the (M, ~α, i)-backoff process does not completely
give the (M, ~α, i)-Markov chain, because it does not specify whether
each step results from a “forward” or “backward” operation. To
complete the correspondence we define an auxiliary sequence: Let
S1, . . . , St, . . . be the sequence with St taking on values from the
set {F,B}, with St = F if `(Ht) = `(Ht−1) + 1 and St = B
if `(Ht) = `(Ht−1) − 1. (Intuitively, F stands for “forward” and
B for “backward”.) Notice that sequence X0, . . . , Xt, . . . together
with the sequence S1, . . . , St, . . . does completely specify the se-
quence H0, . . . , Ht, . . ..



3 Constant Backoff Probability

The case in which the backoff probability takes the same value α
for every state has a very clean characterization, and it will give us
insight into some of the arguments to come. In this case, we refer
to the (M, ~α, i)-backoff process as the (M,α, i)-backoff process
(where we drop the vector sign above α).

We fix a specific (M,α, i)-backoff process throughout this sec-
tion. Suppose we generate a sequenceX0, X1, . . . , Xt, . . . of steps
together with an auxiliary sequence S1, . . . , St, . . .. To begin with,
we wish to view this sequence of steps as being “equivalent” (in a
sense) to one in which only forward steps are taken. In this way,
we can relate the behavior of the (M,α, i)-backoff process to that
of the underlying (finite) Markov process M beginning in state i,
which we understand much more accurately. We write qt(j) to de-
note the probability that M , starting in state i, is in state j after t
steps.

When the backoff probability takes the same value α for ev-
ery state, we have the following basic relation between these two
processes.

Theorem 3.1 For given natural numbers λ and t, and a state j, we
have Pr [Xt = j | `(Ht) = λ] = qλ(j).

We omit the proof of this theorem due to space constraints.
In addition to the sequences {Xt} and {St}, consider the se-

quence {Yt : t ≥ 0}, where Yt is the history length `(Ht). Now Yt
is simply the position after t steps of a random walk on the natural
numbers, with a reflecting barrier at 0, in which the probability of
moving left is α and the probability of moving right is 1− α. This
correspondence will be crucial for our analysis.

In terms of these notions, we mention one additional technical
lemma. Its proof follows simply by conditioning on the value of Yt
and applying Theorem 3.1.

Lemma 3.2 Pr [Xt = j] =
∑

r
qr(j) ·Pr [Yt = r], for every nat-

ural number t and state j.

We are now ready to consider the two cases where α ≤ 1
2

and
where α > 1

2
, and show that in each case there is a Cesaro limit

distribution.

The Case of Backoff Probability at Most 1/2:

Let the stationary probability distribution of the underlying Markov
chain M be 〈ψ1, . . . , ψn〉. By our assumptions about M , this dis-
tribution is independent of the start state i. When α ≤ 1

2
, we show

that the (M,α, i)-backoff process converges to 〈ψ1, . . . , ψn〉. That
is, there is a stationary probability distribution, which is indepen-
dent of the start state i, and this stationary probability distribu-
tion equals the stationary probability distribution of the underlying
Markov chain.

Theorem 3.3 For all states j of the (M,α, i)-backoff process, we
have limt→∞ Pr [Xt = j] = ψj .

Proof:Fix ε > 0, and choose t0 large enough that for all states
j ofM and all t ≥ t0, we have |qt(j)−ψj | < ε/2. Since α ≤ 1/2,
we can also choose t1 ≥ t0 large enough that for each t ≥ t1, we
have Pr [Yt > t0] > 1− ε/2. Then for t ≥ t1 we have

|Pr [Xt = j]− ψj |

=

∣∣∣∣∣∑
r

qr(j) · Pr [Yt = r]− ψj
∑
r

Pr [Yt = r]

∣∣∣∣∣
=

∣∣∣∣∣∑
r

(qr(j)− ψj) · Pr [Yt = r]

∣∣∣∣∣

≤
∑
r

|qr(j)− ψj | · Pr [Yt = r]

=
∑
r<t1

|qr(j)− ψj | · Pr [Yt = r]

+
∑
r≥t1

|qr(j)− ψj | · Pr [Yt = r]

≤
∑
r<t1

Pr [Yt = r] +
∑
r≥t1

ε/2 · Pr [Yt = r]

≤ ε/2 + ε/2 = ε.

Although the proof above applies to each α ≤ 1
2

, we note a
qualitative difference between the case of α < 1

2
and the “thresh-

old case” α = 1
2

. In the former case, for every r, there are almost
surely only finitely many t for which Yt ≤ r; the largest such t is a
step on which the process pushes a state that is never popped in the
future. In the latter case, Yt almost surely returns to 0 infinitely of-
ten, and yet the process still converges to the stationary distribution
of M .

The Case of Backoff Probability Greater than 1/2:

When α > 1
2

, the (M,α, i)-backoff process retains positive prob-
ability on short histories as t increases, and hence retains memory
of its start state i. Nevertheless, the process has a Cesaro limit dis-
tribution, but this distribution may be different from the stationary
distribution of M .

Theorem 3.4 When α > 1
2

, the (M,α, i)-backoff process has a
Cesaro limit distribution.

Proof: Let t be a natural number and j a state. Then Pr [Xt = j]
=
∑

r
qr(j) ·Pr [Yt = r] by Lemma 3.2. Viewing Yt as a random

walk on the natural numbers, one can compute the Cesaro limit of
Pr [Yt = r] to be ζr = βα when r = 0, and ζr = βzr−1 when
r > 0, where β = (2α−1)/(2α2) and z = (1−α)/α. (Note that
Yt does not have a stationary distribution, because it is even only
on even steps.) A standard argument then shows that Pr [Xt = j]
has the Cesaro limit

∑
r
ζrqr(j).

Note that the proof shows only a Cesaro limit distribution, rather
than a stationary distribution. In fact, it is not hard to show that if
α > 1

2
, then there is not necessarily a stationary distribution, even

if the backoff process is aperiodic.
Now, more generally, suppose that the process starts from an

initial distribution over states; we are given a probability vector z =
〈z1, . . . , zn〉, choose a state j with probability zj , and begin the
process from j. As z ranges over all possible probability vectors,
what are the possible vectors of limit distributions? Let us again
assume a fixed underlying Markov chain M , and denote this set of
limit distributions by Sα. We obtain the following theorem whose
proof is omitted for lack of space.

Theorem 3.5 Each Sα is a simplex. As α converges to 1
2

from
above, these simplices converge to the single vector that is the sta-
tionary distribution of the underlying Markov chain.

4 Varying Backoff Probabilities

Recall that the state space S of the (M, ~α, i)-Markov chain con-
tains all finite attainable histories of the backoff process. Let us
refer to the transition probability matrix of the (M, ~α, i)-Markov
chain as the Polish matrix with starting state i, or simply the Pol-
ish matrix if i is implicit or irrelevant. Note that even though the



backoff process has only finitely many states, the Polish matrix has
a countably infinite number of states.

Our analysis in the rest of the paper will branch, depending on
whether the Polish matrix is transient, null, or ergodic. We now
define these concepts, which are standard notions in the study of
denumerable Markov chains (see e.g. [6]). A Markov chain is
called recurrent if, started in an arbitrary state i, the probability
of eventually returning to state i is 1. Otherwise, it is called tran-
sient. There are two subcases of the recurrent case. If, started in
an arbitrary state i, the expected time to return to i is finite, then
the Markov chain is called ergodic. If, started in an arbitrary state
i, the probability of return to state i is 1, but the expected time to
return to i is infinite, then the Markov chain is called null. Every ir-
reducible Markov chain is either transient, ergodic, or null, and for
irreducible Markov chains, we can replace every occurrence of “an
arbitrary state” by “some state” in these definitions above. Every
irreducible Markov chain with a finite state space is ergodic.

As examples, consider a random walk on the semi-infinite line,
with a reflecting barrier at 0, where the probability of moving left
(except at 0) is p, of moving right (except at 0) is 1 − p, and of
moving right at 0 is 1. If p < 1/2, then the walk is transient; if
p = 1/2, then the walk is null; and if p > 1/2, then the walk is
ergodic.

We say that the backoff process (M, ~α, i) is transient (resp.,
null, ergodic) if the Polish matrix is transient (resp., null, ergodic).
In the constant α case (Section 3), if α < 1/2, then the backoff
process is transient; if α = 1/2, then the backoff process is null;
and if α > 1/2, then the backoff process is ergodic. The next
proposition says that the classification does not depend on the start
state and therefore we may refer to the backoff process (M, ~α) as
being transient, ergodic, or null. Its proof is omitted for lack of
space.

Proposition 4.1 The irreducible backoff process (M, ~α, i) is tran-
sient (resp., ergodic, null) precisely if the backoff process (M, ~α, j)
is transient (resp., ergodic, null).

In the rest of this section, we will outline the proofs of the fol-
lowing three theorems.

Theorem 4.2 If (M, ~α) is irreducible, then the task of classifying
the (M, ~α)-backoff process as transient or ergodic or null is solv-
able in polynomial time.

Theorem 4.3 Each (M, ~α, i)-backoff process has a Cesaro limit
distribution. If the process is irreducible and is either transient or
null, then this limit distribution is independent of i. Furthermore,
the limit distribution is computable in polynomial time if the pro-
cess is ergodic or null.

When the (M, ~α, i)-backoff process is transient, the limit prob-
abilities are not necessarily rational in the entries of M and ~α (see
example in Section 4.2.3) and therefore we cannot hope to com-
pute them exactly. Instead, we give an algorithm for approximating
these limit probabilities. Specifically, we show the following:

Theorem 4.4 Let (M, ~α, i) be a transient backoff process on n
states, and let all entries of M and ~α be rationals expressible as
ratios of l-bit integers. Then given any error bound ε > 0, a vec-
tor π′ that ε-approximates the limit distribution π (i.e., satisfies
|π′j − πj | ≤ ε) can be computed in time polynomial in n, l and
log 1

ε
.

A convenient tool in this section is the Perron-Frobenius Theo-
rem, which is as follows:

Theorem 4.5 (Perron-Frobenius Theorem; see e.g. [4, p. 508])
Let A be an irreducible, nonnegative square matrix. Then

• there exists ~v, with all components positive, and λ0 > 0 such
that A~v = λ0~v;

• if λ 6= λ0 is any other eigenvalue of A, then |λ| < λ0;

• each ~w such thatA~w = λ0 ~w is a constant multiple of ~v; and

• each nonnegative eigenvector of A is a constant multiple of
~v.

4.1 Classifying the Backoff Process

In this section we show how it is possible to classify, in polynomial
time, the behavior of each irreducible (M, ~α)-backoff process as
transient or ergodic or null. In Section 3 (where the backoff prob-
ability is independent of the state), except for initial histories the
expected length of the history either always grows, always shrinks,
or always stays the same, independent of the top state in the history
stack. To see that this argument cannot carry over to this section,
consider a simple Markov chain M on two states 1 and 2, with
Mij = 1/2 for every pair i, j, and with α1 = .99 and α2 = .01. It
is clear that if the top state is 1, then the history is expected to shrink
while if the top state is 2, then the history is expected to grow. To
deal with this imbalance between the states, we associate a weight
wi with every state i and consider the weighted sum of states on
the stack. Our goal is to find a weight vector with the property that
the sum of the weights of the states in the stack is expected to grow
(resp., shrink, remain constant) if and only if the length of the his-
tory is expected to grow (resp., shrink, remain constant) This hope
motivates our next few definitions.

Definition 4.6 For a nonnegative vector ~w = 〈w1, . . . , wn〉 and
a history σ̄ = 〈σ0, . . . , σl〉 of a backoff process on n states, define
the ~w-potential of σ̄, denoted Φ~w(σ̄), to be

∑l

i=1
wσi (i.e., the sum

of the weights of the states in the history, except the start state).

Definition 4.7 For a nonnegative vector ~w = 〈w1, . . . , wn〉 and a
history σ̄ = 〈σ0, . . . , σl〉 of a backoff process on n states, define
the ~w-differential of σ̄, denoted ∆Φ~w(σ̄), to be E [Φ~w(succ(σ̄))]−
Φ~w(σ̄). (Here E represents the expected value over the distribution
given by succ(σ̄).)

The following proposition is immediate from the definition.

Proposition 4.8 If σ̄ and σ̄′ are non-initial histories with the same
top state j, then

∆Φ~w(σ̄) = ∆Φ~w(σ̄′) = −αjwj + (1− αj)
n∑
k=1

Mjkwk.

The above proposition motivates the following definition.

Definition 4.9 For a nonnegative vector ~w = 〈w1, . . . , wn〉, a his-
tory σ̄ = 〈σ0, . . . , σl〉 of a backoff process on n states, and state
j ∈ {1, . . . , n}, let ∆Φ~w,j = ∆Φ~w(σ̄), where σ̄ is any history
with j = top(σ̄) and `(σ̄) > 0. Let ∆Φ~w denote the vector
〈∆Φ~w,1, . . . ,∆Φ~w,n〉.

For intuition, consider the constant α case with weight wi = 1
for each state i. In this case Φ~w(σ̄), the ~w-potential of σ̄, is pre-
cisely `(σ̄), and ∆Φ~w(σ̄), the ~w-differential of σ̄, is the expected
change in the size of the stack, which is 1 − 2α. When α < 1/2
(resp., α = 1/2, α > 1/2), so that the expected change in the size
of the stack is positive (resp., 0, negative), the process is transient
(resp., null, ergodic).

Similarly, in the varying α case we would like to associate a
positive weight with every state so that (1) the expected change in



potential in every step has the same sign independent of the top
state (i.e., ~w is positive and ∆Φ~w is either all positive or all zero or
all negative), and (2) this sign can be used to categorize the process
as either transient, null or ergodic precisely as it did in the constant
α case.

In general, this will not be possible, say, if some αi = 1 and
some other αj = 0. Therefore, we relax this requirement slightly
and define the notion of an “admissible” vector (applicable to both
the vector of weights and also the vector of changes in potential).

Definition 4.10 We say that an n-dimensional vector ~v is admissi-
ble for a vector ~α if ~v is nonnegative and vi = 0 only if αi = 1.
(We will say simply “admissible” instead of “admissible for ~α” if
~α is fixed or understood.)

With this definition in hand, we can prove the following lemma.

Lemma 4.11 For an irreducible (M, ~α)-backoff process:

1. If there exists an admissible ~w s.t ∆Φ~w is also admissible,
then the (M, ~α)-backoff process is transient.

2. If there exists an admissible ~w s.t −∆Φ~w is also admissible,
then the (M, ~α)-backoff process is ergodic.

3. If there exists an admissible ~w s.t ∆Φ~w = ~0 then the (M, ~α)-
backoff process is null.

The proof of this lemma is deferred to the full paper. Roughly
speaking though, the idea is to show that Φ~w(σ̄) is a bounded-
difference martingale. This enables us to use martingale tail in-
equalities (e.g., [9, p. 92]) to analyze the long-term behavior of the
process.

This explains what could happen if we are lucky with the choice
of ~w. It does not explain how to find ~w, or even why the three
cases above are exhaustive. In the rest of this section, we show
that the cases are indeed exhaustive and give a efficient algorithm
to compute ~w. This part of the argument relies on the surprising
properties of an n × n matrix related to the (M, ~α)-process. We
now define this matrix, that we call the Hungarian matrix.

Let A be the n× n diagonal matrix with the ith diagonal entry
being αi. Let I be the n × n identity matrix. If αi > 0 for every
i, then the Hungarian matrix for the (M, ~α)-process, denoted H =
H(M,~α) is the matrix (I − A)MA−1. (Notice that A−1 does exist
and is the diagonal matrix with ith entry being 1/αi.)

The spectral properties of H , and in particular its maximal
eigenvalue, denoted ρ(H), play a central role in determining the
behavior of the (M, ~α)-process. In this section we show how it de-
termines whether the process is ergodic, null, or transient. In later
sections, we will use it to compute limit probability vectors, for a
given (M, ~α)-process.

The maximal eigenvalue ρ(H) motivates us to define a quantity
ρ(M, ~α) which is essentially equal to ρ(H), in cases where H is
defined.

Definition 4.12 We define ρ(M, ~α) to be the supremum over ρ
such that there exists an admissible ~w such that the vector (I −
A)M ~w − ρA~w is admissible.

We first dispense with the case where some αi = 0.

Claim 4.13 If (M, ~α) is irreducible and αj = 0 for some j, then
ρ(M, ~α) =∞.

Remark: From the proof it follows that if every entry of M
and ~α is an l-bit rational, then for any ρ ≤ 2l, there exists a
non-negative vector ~w with ‖w‖∞ ≤ 1 and wi ≥ 2− poly(n,l)

if wi 6= 0 satisfying (I − A)M ~w ≥ ρ~w. This fact will be used in
Section 4.2.3.

Proof: Let ρ <∞ be any constant. We prove the claim by ex-
plicitly constructing an admissible vector ~w such that (I−A)M ~w−
ρA~w is admissible.

Let Mmin be the smallest non-zero entry of M , and let αmax

be the largest entry of ~α that is strictly smaller than 1. Let γ be
any positive number less than (1 − αmax)Mmin/ρ. Let j be any
index s.t. αj = 0. Let GM,~α be the graph on vertex set {1, . . . , n}
that has an edge from i to k, if αi 6= 1 and Mik 6= 0. (This is
the graph with edges giving forward steps of positive probability of
the (M, ~α)-process.) Let d(i, k) denote the length of the shortest
path from i to k in the graph GM,~α. By the irreducibility of the
(M, ~α)-process we have that d(i, j) < n for every state i. We now
define ~w as follows.

wi =

{
0 if αi = 1

γd(i,j) otherwise.

It is clear by construction that γ > 0 and thus ~w is admissible.
Let ~v = (I −A)M ~w − ρA~w. We argue that ~v is admissible com-
ponentwise, showing that vi satisfies the condition of admissibility
for every i.

Case 1: αi = 1. In this case it suffices to show vi ≥ 0.
This follows from the facts that

∑
k
(1 − αi)Mikwk ≥ 0, and

−ραiwi = 0 since wi = 0.
Case 2: αi = 0. (This includes the case k = j.) In this case,

again we have −ραiwi = 0. Further we have
∑

k
(1− αi)Mik =∑

k
Mik = 1 and thus vi = 1, which also satisfies the condition

for admissibility.
Case 3: 0 < αi < 1. In particular, i 6= j and d(i, j) > 0. Let

k be such that d(k, j) = d(i, j)− 1 and there is an edge from i to
k in GM,~α. We know such a state k exists (by definition of shortest
paths). We have:

vi =
∑
k′

(1− αi)Mik′wk′ − ραiwi

≥ (1− αi)Mikwk − ραiwi
≥ (1− αmax)Mminwk − ρwi
= (1− αmax)Mminγ

d(k,j) − ργd(i,j)

= ((1− αmax)Mmin − ργ) γd(k,j)

> 0 (since γ < (1−αmax)Mmin
ρ

)

Again the condition for admissibility is satisfied.
The next claim shows that in the remaining cases ρ(M, ~α) =

ρ(H).

Claim 4.14 Let (M, ~α) be irreducible. If αi > 0 for every i, then
ρ(M, ~α) = ρ(H). Further, there exists an admissible vector ~w
such that (I −A)M ~w = ρ(M, ~α)A~w.

Proof: Note first that the Hungarian matrix H is nonnegative.
Our hope is to apply the Perron-Frobenius theorem (Theorem 4.5)
to this non-negative matrix and derive some benefits from this.
However, H is not necessarily irreducible, so we can not do this
yet. So we consider a smaller matrix, H|~α, which is the restriction
of H to rows and columns corresponding to j such that αj < 1.
Notice that H|~α is irreducible. (This is equivalent to M |~α being
irreducible, which is implied by the irreducibility of the backoff
process.) By Theorem 4.5, there exists a (unique) positive vector
~v′ and a (unique) positive real ρ = ρ(H|~α) such thatH|~α~v′ = ρ~v′.
In what follows we see that ρ(M, ~α) = ρ(H|~α) = ρ(H).

First we verify that ρ(H|~α) = ρ(H). This is easily seen to
be true. Note that the rows of H that are omitted from H|~α are
all 0. Thus a vector ~x is a right eigenvector of H if and only if
it is obtained from a right eigenvector ~x′ of H|~α by padding with



zeroes (in indices j where αj = 1), and this padding preserves
eigenvalues. In particular, we get that ρ(H) = ρ(H|~α) and there
is an admissible vector ~v (obtained by padding ~v′) such that H~v =
ρ(H)~v.

Next we show that ρ(M, ~α) ≥ ρ(H). Consider any ρ′ < ρ(H)
and let ~w = A−1~v. Then note that (I −A)M ~w− ρ′A~w = H~v −
ρ′~v = (ρ(H)− ρ′)~v which is admissible. Thus ρ(M, ~α) ≥ ρ′ for
every ρ′ < ρ(H) and thus ρ(M, ~α) ≥ ρ(H).

Finally we show that ρ(M, ~α) ≤ ρ(H). Let ~w be an admissible
vector and let ρ > 0 be such that (I−A)M ~w−ρA~w is admissible.
Let ~v = A−1 ~w. First note that vj must be 0 if αj = 1, or else the
jth component of the vector (I −A)M ~w− ρA~w is negative. Now
let ~v′ be obtained by restricting ~v to coordinates such that αj < 1.
Notice now that we have H|~α~v′ − ρ~v′ is a non-negative vector.
From the fact [8, p. 17] that

ρ(A) = max
~x

{
min
i|xi 6=0

{
(Ax)i
xi

}}
for any irreducible non-negative matrixA, we conclude that ρ(H|~α) ≥
ρ.

This concludes the proof that ρ(M, ~α) = ρ(H). The existence
of a vector ~w satisfying (I−A)M ~w = ρ(H)A~w also follows from
the argument above.

Lemma 4.15 For every irreducible (M, ~α)-backoff process, ρ(M, ~α)
is computable in polynomial time. Furthermore,

• (M, ~α) is ergodic if and only iff ρ(M, ~α) < 1.

• (M, ~α) is null if and only iff ρ(M, ~α) = 1.

• (M, ~α) is transient if and only iff ρ(M, ~α) > 1.

Proof: The fact that ρ(M, ~α) is computable efficiently follows
from Claims 4.13 and 4.14.

Notice now that ∆Φ~w = (I − A)M ~w − A~w. We start with
the case ρ(M, ~α) < 1. Notice that in this case, no αi = 0 (by
Claim 4.13) and hence we can apply Claim 4.14 to see that there
exists a vector ~w such that (I−A)M ~w = ρA~w. For this vector ~w,
we have ∆Φ~w = (ρ−1)A~w. Thus, the vector−∆Φ~w = (1−ρ)~w
is admissible. Applying Lemma 4.11 (part 2), we conclude that the
(M, ~α)-process is ergodic.

Similarly, if ρ(M, ~α) = 1, we have that for the vector ~w from
Claim 4.14, ∆Φ~w = ~0. Thus, by Lemma 4.11 (part 3), we find that
the (M, ~α)-process is null. Finally, if ρ(M, ~α) > 1, then (by the
definition of ρ(M, ~α)) there exists a vector ~w and ρ′ > 1 such that
(I − A)M ~w − ρ′A~w is admissible. In particular, this implies that
the vector ∆Φ~w = (I − A)M ~w − A~w is also admissible. Apply-
ing Lemma 4.11 (part 1), we conclude that the (M, ~α)-process is
transient.

Note from our proofs that we get the result claimed earlier, that
there is a polynomial-time algorithm for computing an admissible
~w such that if the backoff process is transient (resp., ergodic, null),
then ∆Φ~w is admissible (resp., −∆Φ~w is admissible, ∆Φ~w = ~0).

Theorem 4.2 follows immediately from Lemma 4.15.

4.2 Cesaro Limit Distributions

We begin this section by sketching the proof that the (M, ~α, i)-
backoff process always has a Cesaro limit distribution. The proof
is quite different in each of the cases (transient, ergodic and null).
We conclude the section by showing how the limit distribution may
be computed.

The easiest case is the ergodic case. Since the Polish matrix is
ergodic, the corresponding Markov process has a Cesaro limit. This
gives us a Cesaro limit in the backoff process, where the probability

of state i is the sum of the probabilities of the states (stacks) in the
Polish matrix with top state i.

We next consider the transient case. When the backoff process
is in a state (with a given stack), and that state is never popped off of
the stack (by taking a backedge), then we refer to this (occurrence
of the) state as irrevocable. Let us fix a state i, and consider a
renewal process, where each new epoch begins when the process
has an irrevocable occurrence of state i. Since the Polish matrix
is transient, the expected length of an epoch is finite. The limit
probability distribution of state j is the expected number of times
that the process is in state j in an epoch, divided by the expected
length of an epoch. This is a sketch of a proof of the existence of
a Cesaro limit distribution. A more careful argument (omitted here
for lack of space) shows the existence of a stationary distribution.

Finally, we consider the null case. We select a state j where
αj 6= 1. Let us consider a new backoff process, where the un-
derlying Markov matrix M is the same; where all of the backoff
probabilities αk are the same, except that we change αj to 1; and
where we change the start state to j. This new backoff process can
be shown to be ergodic. We are able to show a way of “pasting to-
gether” runs of the new ergodic backoff process to simulate runs of
the old null ergodic process. Thereby, we show the remarkable fact
that the old null process has a Cesaro limit distribution which is the
same as the Cesaro limit distribution of the new ergodic process.
The details are omitted in this extended abstract.

We now show how the limit distribution may be computed. We
can assume without loss of generality that the backoff process is ir-
reducible, since we can easily restrict our attention to an irreducible
“component”. Again, we branch into three cases. The fact that the
limit distribution does not depend on the start state in the null and
ergodic cases follows immediately from the fact that our computa-
tion in these cases does not depend on the start state.

4.2.1 Null Case

The matrix H = (I − A)MA−1, which we saw in Section 4.1),
plays an important role in this section. We refer to this matrix as
the Hungarian matrix of the (M, ~α)-backoff process. The next the-
orem gives an important application of the Hungarian matrix.

Theorem 4.16 The limit probability distribution π satisfies π =
πH . This linear system has a unique solution subject to the restric-
tion

∑
i
πi = 1. Thus, the limit probability distribution can found

by solving a linear system.

Proof: The key ingredient in the proof is the observation that
in the null case, the limit probability of a transition from a state i
to a state j by a forward step is the same as the limit probability of
a transition from state j to a state i by a backward step (since each
forward move is eventually revoked, with probability 1). Thus if
we let πi→j denote the limit probability of a forward step from i to
j and πi←j denote the limit probability of a backward step from j
to i (and πi denotes the limit probability of being in state i), then
the following conditions hold:

πi =
∑
j

πi→j +
∑
j

πj←i

πi→j = (1− αi)Mijπi; πi→j = πi←j .

The only controversial condition is the third one, that πi→j =
πi←j . The fact that πi←j exists and equals πi→j appears in the
full paper. Manipulating the above conditions shows that π satis-
fies π = πH .

We now consider uniqueness. Assume first that αi < 1 for
every i. Then H is irreducible and nonnegative and thus by the
Perron-Frobenius Theorem (Theorem 4.5), it follows easily that π



is the unique solution to the linear system. If some αi = 1, we
argue by focusing on the matrix H|α, which is irreducible (as in
Section 4.1, H|α is the principal submatrix of H containing only
rows and columns corresponding to i s.t. αi < 1). Renumber the
states of M so that the αi’s are non-decreasing. Then the Hungar-
ian matrix looks as follows:

H =

[
H|α X

0 0

]
,

whereH|α is nonnegative and irreducible andX is arbitrary. Write
π = [πAπB ], where πB has the same number of elements as the
number of αi’s that are 1. Then the linear system we have to solve
is

[πAπB ] = [πAπB ]

[
H|α X

0 0

]
.

This system can be solved by finding πA = πAH|α and then set-
ting πB = πAX . Now πB is uniquely determined by πA. Further-
more, πA is uniquely determined, by the Perron-Frobenius Theo-
rem (Theorem 4.5). This concludes the proof of the theorem.

4.2.2 Ergodic Case

In this case also the limit probabilities are obtained by solving lin-
ear systems, obtained from a renewal argument. We define “epochs”
starting at i by simulating the backoff process as follows. The
epoch starts at an initial history with X0 = 〈i〉. At the first step the
process makes a forward step. At every subsequent unit of time,
if the process is back at the initial history, it first flips a coin that
comes up B with probability αi and F otherwise. If the coin comes
up B, the end of an epoch is declared.

Notice that the distribution of the length of an epoch starting
at i is precisely the same as the distribution of time, starting at an
arbitrary non-initial history with i on top of the stack, until this
occurrence of i is popped from the stack, conditioned on the fact
that the first step taken from i is a forward step.

Let Ti denote the expected length of (or more precisely, number
of transitions in) an epoch, when starting at state i. Let Nij denote
the expected number of transitions out of state j in an epoch when
starting at state i. Standard renewal arguments show that the Cesaro
limit probability distribution vector π(i), for an (M, ~α, i)-backoff
process, is given by π(i)

j = Nij/Ti, provided Ti is finite. This
gives us a way to compute the Cesaro limit distribution. The key
equations that allow us to compute the Nij and Ti are:

Ti = 1 +
∑
k

Mik[αk · 1 + (1−αk)(Tk + 1)] + (1−αi)Ti, (1)

Nij = δij +
∑
k

Mik[αk · δjk + (1− αk)(Nkj + δjk)]

+(1− αi)Nij , (2)

where δij = 1 if i = j and 0 otherwise. (The above equations are
derived by straightforward conditioning. For example, if the first
step in the epoch takes the process to state k, then it takes Tk units
of time to return to 〈i〉 and then with probability (1 − αi) it takes
Ti more steps to end the epoch.)

We claim that the first set (1) of linear equations completely
specify T . We argue this as follows. First we may rearrange terms
in the equation, and use the fact that

∑
k
Mik = 1, to simplify (1)

to:
αiTi = 2 +

∑
k

(1− αk)MikTk.

Dividing both sides by αi (we know that no αi = 0 in the ergodic
case), moving all terms involving Tk to the left, and using the fact
that the Hungarian matrixH is given byHik = 1−αk

αi
Mik, we get:

Ti −
∑
k

HikTk =
2

αi
.

Letting ~T = 〈T1, . . . , Tn〉 and~b = 〈2/α1, . . . , 2/αn〉, we get (I−
H)~T = ~b. Since the maximal eigenvalue of H is less than 1, we
know that I−H has an inverse (and is given by I+H+H2 + · · ·)
and thus ~T is given by (I −H)−1~b.

Similarly, if we let ~Nj = 〈N1j , . . . , Nnj〉 and~bj = 〈 δ1j+M1j

α1
,

. . . ,
δnj+Mnj

αn
〉, then (2) simplifies to yield ~Nj = (I −H)−1~bj .

Thus ~T and the ~Nj’s can be computed using the above linear
equations. Using now the formula π(i)

j = Nij/Ti, we can also
compute the stationary probability vectors.

4.2.3 Transient Case

We now prove Theorem 4.4.

Definition 4.17 For a state j, define the revocation probability as
follows: Pick any non-initial history σ̄ = 〈σ0, . . . , σl〉with top(σ̄) =
j. The revocation probability rj is the probability that the (M, ~α, i)-
Markov chain starting at state σ̄ reaches the state σ̄′ = 〈σ0, . . . , σl−1〉.
(Notice that this probability is independent of i, l, and σ0, . . . , σl−1;
thus, the quantity is well-defined.)

Note that ri is the probability that an epoch starting at i, as in Sec-
tion 4.2.2, ends in finite time. Let ~r denote the vector of revoca-
tion probabilities. The following lemma shows how to compute the
limit probabilities π given ~r. Further it shows how to compute a
close approximation to π, given a sufficiently close approximation
to ~r.

Lemma 4.18 The limit probabilities satisfy π = π(I − A)MR,
where R is a diagonal matrix with

Rii =
1

1− (1− αi)
∑

k
rkMik

.

Further, there exists a unique solution to the this system subject to
the condition

∑
i
πi = 1.

Remarks: If αi = 0 for every i, then ri = 0 for every i, and so
we recover the familiar condition for Markov chains that π = πM .
Although we are considering the transient case here, note that if we
formally take ri = 1, which occurs in the null case, then we in
fact recover the equation we found in the null case, namely π =
π(I −A)MA−1.

Proof: The first part of the lemma is obtained as in Theo-
rem 4.16. Let πi→j denote the limit probability of a forward step
from i to j, and let πi←j denote the limit probability of a backward
step from j to i. Then the following conditions hold.

πi←j = rjπi→j (3)
πi→j = πi(1− αi)Mij (4)

πi =
∑
j

πj→i +
∑
j

πi←j (5)

Using equation (3) to eliminate all occurrences of variables of
the form πi←j , and then using equation (4) to eliminate all occur-
rences of πi→j , equation (5) becomes:

πi =
∑
j

πj(1− αj)Mji + πi(1− αi)
∑
j

rjMij (6)



Thus if we let D be the matrix with

Dij =
(1− αi)Mij

1− (1− αj)
∑

k
Mjkrk

,

then π satisfies π = πD. As in the proof of Theorem 4.16 if we
permute the rows and columns of D so that all states i with αi = 1
appear at the end, then the matrix D looks as follows:

D =

[
Dα X
0 0

]
where Dα is nonnegative and irreducible. Thus π = [πAπB ] must
satisfy πA = πADα and πB = πAX . Now πA is seen to be unique
(up to scaling) by the Perron-Frobenius Theorem (Theorem 4.5),
while πB is unique given πA. The lemma follows by noticing that
D can be expressed as (I −A)MR.

Lemma 4.19 Let the entries of M and ~α be l-bit rationals de-
scribing a transient (M, ~α, i)-backoff process and let π be its limit
probability vector. For every ε > 0, there exists β > 0, with
log 1

β
= poly(n, l, log 1

ε
), such that given any vector ~r′ of l′-

bit rationals satisfying ‖~r′ − ~r‖∞ ≤ β, a vector π′ satisfying
‖π′ − π‖∞ ≤ ε can be found in time poly(n, l, l′, log 1

ε
).

Remark: By truncating ~r′ to log 1
β

bits, we can ensure that l′ also
grows polynomially in the input size, and thus get a fully polyno-
mial time algorithm to approximate π.

We omit the proof of Lemma 4.19 in this extended abstract.
In the next lemma, we address the issue of how the revoca-

tion probabilities may be determined. We show that they form a
solution to a quadratic program; in fact a semi-definite program.
(Recall that a real symmetric matrix A is positive semidefinite if
all of its eigenvalues are non-negative. A semi-definite program
is an optimization problem with a linear objective function, whose
constraints are of the form “A[~x] is positive semidefinite”, where
A[~x] denotes a symmetric matrix whose entries are themselves lin-
ear forms in the variables x1, . . . , xn. Semidefinite programs are
a special case of convex programs, but more general than linear
programs. They can be approximately solved efficiently using the
famed ellipsoid algorithm (see [3] for more details).)

Lemma 4.20 The revocation probabilities ri are the optimum so-
lution to the following system:

min
∑
i

xi

s.t. xi ≥ αi + (1− αi)xi
∑

j
Mijxj

xi ≤ 1
xi ≥ 0

 (7)

Further, the system of inequalities above is equivalent to the fol-
lowing semidefinite program:

min
∑
i

xi

s.t. qi = 1− (1− αi)
∑

j
Mijxj

xi ≤ 1
xi ≥ 0
qi ≥ 0
Di positive semidefinite,


(8)

where

Di =

[
xi

√
αi√

αi qi

]

Proof: We start by considering the following iterative system
and proving that it converges to the optimum of (7).

For t = 0, 1, 2, . . ., define x(t)
i as follows:

x
(0)
i = 0, x

(t+1)
i = αi + (1− αi)x(t)

i

∑
j

Mijx
(t)
j .

By induction, we note that x(t)
i ≤ x

(t+1)
i ≤ 1. The first inequality

holds, since

x
(t+1)
i = αi + (1− αi)x(t)

i

∑
j

Mijx
(t)
j

≥ αi + (1− αi)x(t−1)
i

∑
j

Mijx
(t−1)
j

= x
(t)
i

The second inequality follows similarly. Hence, since 〈x(t)
i 〉t is a

non-decreasing sequence in the interval [0, 1], it must have a limit.
Let x∗i denote this limit.

We claim that the x∗i give the (unique) optimum to (7). By
construction, it is clear that 0 ≤ x∗i ≤ 1 and x∗i = αi + (1 −
αi)x

∗
i

∑
j
Mijx

∗
j ; and hence x∗i ’s form a feasible solution to (7).

To prove that it is the optimum, we claim that if a1, . . . , an are a
feasible solution to (7), then we have ai ≥ x

(t)
i and thus ai ≥ x∗i .

We prove this claim by induction. Assume ai ≥ x
(t)
i , for every i.

Then

ai ≥ αi + (1− αi)ai
∑
j

Mijaj

≥ αi + (1− αi)x(t)
i

∑
j

Mijx
(t)
j

= x
(t+1)
i .

This concludes the proof that the x∗i give the unique optimum to
(7).

Next we show that the revocation probability ri equals x∗i . To
do so, note first that ri satisfies the condition

ri = αi + (1− αi)
∑
j

Mijrjri.

(Either the move to i is revoked at the first step with probability αi,
or there is a move to j with probability (1 − αi)Mij and then the
move to j is eventually revoked with probability rj , and this places
i again at the top of the stack, and with probability ri this move
is revoked eventually.) Thus the ri’s form a feasible solution, and
so ri ≥ x∗i . To prove that ri ≤ x∗i , let us define r(t)i to be the
probability that a forward move onto vertex i is revoked in at most
t steps. Note that ri = limt→∞ r

(t)
i . We will show by induction

that r(t)i ≤ x
(t)
i and this implies ri ≤ x∗i . Notice first that

r
(t+1)
i ≤ αi + (1− αi)

∑
j

Mijr
(t)
j r

(t)
i .

(This follows from a conditioning argument similar to the above
and then noticing that in order to revoke the move within t + 1
steps, both the revocation of the move to j and then the eventual
revocation of the move to i must occur within t time steps.) Now
an inductive argument as earlier shows r(t+1)

i ≤ x(t+1)
i , as desired.

Thus we conclude that x∗i = ri. This finishes the proof of the first
part of the lemma.



For the second part, note that the condition that Di be semidef-
inite is equivalent to the condition that xiqi ≥ αi. Substitut-
ing qi = 1 − (1 − αi)

∑
j
Mijxj turns this into the constraint

xi − (1 − αi)xi
∑

j
Mijxj ≥ αi, and thus establishing the (syn-

tactic) equivalence of (7) and (8).
Using Lemmas 4.18 and 4.20 above, we can derive exact ex-

pressions for the revocation probabilities and limit probabilities of
any given backoff process. The following example illustrates this.
It also shows that the limit probabilities are not necessarily rational,
even when the entries of M and ~α are rational.
Example: The following example shows that the limit probabilities
may be irrational even when all the entries ofM and ~α are rational.
Let M and ~α be as follows:

M =

(
1
2

1
2

1
3

2
3

)
~α = 〈1

2
,

1

3
〉.

Using Lemma 4.20, we can now show that the revocation probabil-
ities are roots of cubic equations. Specifically, r1 is the unique real
root of the equation −16 + 30x − 13x2 + 2x3 = 0 and r2 is the
unique real root of the equation−9+21x−14x2 +8x3 = 0. Both
quantities are irrational and given approximately by r1 ≈ 0.7477
and r2 ≈ 0.5775. Applying Lemma 4.18 to this, we find that the
limit probabilities of the (M, ~α)-process are π1 and π2, where π1

is the unique real root of the equation

−1024 + 3936x− 3180x2 + 997x3 = 0,

and π2 is the unique real root of the equation

−729 + 567x+ 189x2 + 997x3 = 0.

It may be verified that the cubic equations above are irreducible
over the rationals, and thus π1 and π2 are irrational and given ap-
proximately by π1 ≈ 0.3467 and π2 ≈ 0.6532.

In the next lemma we show how to efficiently approximate the
vector of revocation probabilities. The proof assumes the reader is
familiar with standard terminology used in semidefinite program-
ming, and in particular the notion of a separation oracle and its use
in the ellipsoid algorithm (see [3] for more details).

Lemma 4.21 If the entries ofM and ~α are given by l-bit rationals,
then an ε-approximation to the vector of revocation probabilities
can be found in time poly(n, l, log 1

ε
).

Proof: We solve the convex program given by (7) approxi-
mately using the ellipsoid algorithm [3]. Recall that the ellipsoid
algorithm can solve a convex programming problem given (1) a
separation oracle describing the convex space, (2) a point ~x inside
the convex space, (3) radii ε and R such that the ball of radius ε
around ~x is contained in the convex body and the ball of radius R
contains the convex body. The running time is polynomial in the
dimension of the space and in log R

ε
.

The fact that (7) describes a convex program follows from the
fact that it is equivalent to the semidefinite program (8). Further,
a separation oracle can also be obtained due to this equivalence.
In what follows we will describe a vector ~x that is feasible, and an
ε ≥ 2− poly(n,l) such that every point y satisfying ‖x− y‖∞ ≤ ε is
feasible. Further it is trivial to see that every feasible point satisfies
the condition that the ball of radius

√
n around it contains the unit

cube and hence all feasible solutions. This will thus suffice to prove
the lemma.

Recall, from Lemma 4.15 of Section 4.1, that since (M, ~α) is
transient, there exists ρ > 1 and a vector ~w such that (I−A)M ~w ≥
ρA~w. Let wmax = maxi{wi} and wmin = mini|wi 6=0{wi}.
Notice further that we can choose ρ and ~w such that ρ ≥ 1 +
2− poly(n,l) and wmax = 1 and wmin ≥ 2− poly(n,l). (In case

ρ(M, ~α) = ∞, this follows by picking say ρ = 2 and using the
remark after Claim 4.13. In case ρ(M, ~α) <∞ we use Claim 4.14
and set ρ = ρ(H) and ~w = A−1~v, where ~v is a right eigenvector
of H . Since ρ > 1 is an eigenvalue of a matrix whose entries are l-
bit rationals and since ~w is a multiple of the eigenvector, the claims
about the magnitude of ρ and wmin follow.)

Before describing the vector ~x and ε, we make one simplifica-
tion. Notice that if αi = 1 then ri = 1, and if αi = 0 then ri = 0.
We fix this setting and then solve (7) for only the remaining choices
of indices i. So henceforth we assume 0 < αi < 1 and in particular
the fact that αi ≥ 2−l.

Let δ = ρ−1
2ρ

. Note δ > 2− poly(n,l).

Let ε = 2−(l+3)wmin

(
ρ−1
ρ

)2
. We will set zi = 1 − δwi

and first show that zi − αi − (1 − αi)zi
∑

j
Mijzj is at least 2ε.

Consider

zi − αi − (1− αi)zi
∑
j

Mijzj

= 1− δwi − αi − (1− αi)(1− δwi)
∑
j

Mij(1− δwj)

= 1− δwi − αi − (1− αi)(1− δwi)(1− δ
∑
j

Mijwj)

= (1− δwi)

(
δ
∑
j

(1− αi)Mijwj

)
− δwiαi

≥ (1− δwi) (δραiwi)− δwiαi
= δαiwi (ρ− ρδwi − 1)

≥ δαiwiρ

≥
(
ρ− 1

2ρ

)2

αiwi

≥ 2ε.

Now consider any vector ~y such that zi − 2ε ≤ yi ≤ zi. We
claim that ~y is feasible. First, yi ≤ 1 since yi ≤ zi = 1−δwi ≤ 1.
We now show that yi ≥ 0. First, zi ≥ 0 since wi ≤ 1 and δ < 1.
Since, as we showed above, zi−αi− (1−αi)zi

∑
j
Mijzj ≥ 2ε,

it follows that yi ≥ zi − 2ε ≥ αi + (1 − αi)zi
∑

j
Mijzj ≥ 0.

Finally,

yi − αi − (1− αi)yi
∑
j

Mijyj

≥ zi − 2ε− αi − (1− αi)yi
∑
j

Mijyj

≥ zi − 2ε− αi − (1− αi)zi
∑
j

Mijzj

≥ 0 (Using the claim about the zi’s.)

Thus setting xi = zi− ε, we note that every vector ~y satisfying
xi − ε ≤ yi ≤ xi + ε is feasible. This concludes the proof.

Proof:[of Theorem 4.4] GivenM , ~α and ε, let β be as given by
Lemma 4.19. We first compute a β-approximation to the vector of
revocation probabilities in time poly(n, l, log 1

β
) = poly(n, l, log 1

ε
)

using Lemma 4.21. The output is a vector ~r′ of l′ = poly(n, l, log 1
ε
)-

bit rationals. Applying Lemma 4.19 to M , ~α, ~r and ε, we ob-
tain an ε-approximation to the limit probability vector π in time
poly(n, l, l′, log 1

ε
) = poly(n, l, log 1

ε
).
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