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Abstract 1. Introduction

This paper continues the work initiated by Creignou [S]  In this paper we present a complete classification of
and Khanna, Sudan and Williamson [15] who classify the approximability of minimization problems derived
maximization problems derived from Boolean constraint from “Boolean constraint satisfaction”. Our work fol-

satisfaction. Here we study the approximabilitynah-  Jows the work of Creignou [5] and Khanna, Sudan and
imization problems derived thence. A problem in this williamson [15] who obtained such a classification for
framework is characterized by a collecti¢h of “con- maximization problems.

straints” (i.e., functionsf : {0,1}* — {0,1}) and an This line of research is motivated by an attempt to
instance of a problem is constraints drawn frafnap-  unify the many known positive and negative results on

plied to specified subsets afBoolean variables. We  the approximability of combinatorial optimization prob-
study the two minimization analogs of classes studied|ems. In the case of positive results, many paradigms
in [15]: in one variant, namelyMIN CSP(F), the ob-  have been obtained and these serve to unify the results
jective is to find an assignment to minimize the num- nicely. In contrast, there is a lack of similar unification
ber of unsatisfied constraints, while in the other, namely among negative results. Part of the reason for this is that
MIN ONEs (F), the goal is to find a satisfying assign- hardness results tipically tend to exploit every feature
ment with minimum number of ones. These two classesf the problem whose hardness is being shown, rather
together capture an entire spectrum of important mini- than isolating the “minimal” features that would suffice
mization problems including-¢ Min Cut, vertex cover,  to obtain the hardnes result. As a result many interest-
hitting set with bounded size sets, integer programs with ing questions about hard problems tend to remain unre-
two variables per inequality, graph bipartization, clause spolved. Khanna et al. [15] describe a number of such
deletion in CNF formulae, and nearest codeword. Our interesting questions: (1) Are there any NP-hard prob-
main result is that there exists a finite partition of the |emsin MAX SNP which are not MAX SNP-hard? (2)
space of all constraint sets such that for any gierthe  Are there any “natural” maximization problems which
approximability ofMIN CSP(F) and MIN ONES (F) are approximable to within polylogarithmic factors, but
is completely determined by the partition containing it. no better? (3) Is there some inherent difference between
Moreover, we present a compact set of rules that deter- maximization and minimization problems among com-
mines which partition contains a given famify. Our binatorial optimization problems?

classification identifies the central elements governing  |n order to study such questions, or even to place
the approximability of problems in these classes, by uni- them under a formal setting, one needs to first specify
fying a large collection algorithmic and hardness of ap- the optimization problems one wishes to study in some
proximation results. When contrasted with the work of uniform framework. Furthermore, one has to be care-
[15], our results also serve to formally highlight inher-  fy| to ensure that it is possible to “decide” whether the
ent differences between maximization and minimization optimization problem studied is easy or hard (to, say,
problems. compute exactly). Unfortunately, barriers such as Rice’s

theorem (which says this question may not in general be
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cal problemin this class is defined by a finite $eof fi- ferent from previous ones. Our partitions include several
nite Boolean constraints (specified by, say, a truth table). classes whose approximability is still not completely un-
An instance of such a problem specifi@s“constraint derstood. Thus while our result shows that the num-
applications” onn Boolean variables where each con- ber of “distinct” levels of approximability (among mini-
straint application is the application of one of the con- mization problems derived from constraint satisfaction)
straints fromZ to some subset (actually, ordered tuple is finite — it only places an upper bound on the number
would be more exact) of the variables. The language of levels — it is unable to pin it down exactly. By pin-
SAT(F) consists of all instances which have an assign- ning down a complete problem for each partition, we,
ment satisfying alln constraints. Schaefer describes six however turn this seeming weakness into a strength by
classes of function families, such thatfifis a subset of  highlighting some important problems whose approx-
one of these classes, then the decision problem is in Pjmability deserves further attention.

else he shows that the decision problem is NP-hard. Even though the transition from maximization prob_
Creignou [5] and Khanna et al. [15] extend the lems to minimization problems is an obvious next step,
study above, in a natural way, to optimization prob- success in this transition is not immediate. For starters
lems. They define two classes of optimization prob- — the transition from &1 to MAXx CSP is completely
lems: Max CSP(F) and Max ONES(F) (Actu- analogous to the transition from SNP to MAX SNP.
ally the work of Creignou’s studies only the class Yet,thereis no minimization analog of MAX SNP. The
MAXx CSP(F).). The instances in both cases are obvious difficulty seems to be that we are immediately
constraints applied on Boolean variables, where the confronted by a host of problems for which distinguish-
constraints come fronk. In the former case, the objec- ingthe case where the optimum is zero, from the case for
tive is to find an assignment which maximizes the num- which the optimum is non-zero is NP-hard. The tradi-
ber of constraints that are satisfied. In the latter case,tional approach to deal with zero/one problem has been
the objective is to find an assignment to the Boolean to restrict the syntax using which the predicate within
variables which satisfies all the constraints while maxi- the SNP construct is used - thereby ruling out the hard-
mizing the weight of the assignment (i.e., the number of ness of the zero/one problem (see e.g. [18, 19]). Our
variables set t@). In aresult similar to that of Schaefer’s approach, via constraint satisfaction, however does not
they show that there exists a finite partition of the space place any such restrictions. We simply characterize all
of all function families such that the approximability of a  the problems for which the 0/1 problem is hard, and then
given problem is completely determined based on which having done so, move to the rest of the problems. All the
partition the family.F belongs to. The interesting aspect different levels of approximability that are seen emerge
of this classification result is that it manages to capture naturally.
diverse problems such asAM FLow, MAx CuT and Despite this completely oblivious approach to defin-
MaX CLIQUE (which are all approximable to very dif-  jng the classes Mi CSP and MN ONES the classes
ferent factors) and yet unifies the (non)-approximability end up capturing numerous natural optimization prob-
results for all such problems. Within the framework of |ems — with very distinct levels of approximability. For
constraint satisfaction problems, Khanna et al. settle thestarters, thes-t MiN CuT problem is one of the prob-
questions (1) and (2) raised above. Our work is directed |ems captured by M CSP which is well known to
towards question (3). be computable exactly in P. (This was already shown
We consider the two corresponding classes of min- and used by Khanna et al. [15].) At the constant level
imization problems which we call M CSP(F) and of approximability we see problems such agRfEX
MIN ONES(F). Again, instances of both problems CoVvER[11, 22], Hitting Set with bounded size sets [13],
consist ofm constraints fromF applied ton Boolean Integer programs with two variables per inequality [12].
variables. The objective in M CSP(F) is to find (The references cited after the problems show that the
the assignment which minimizes the number of unsat- problem is approximable to within constant factors.)
isfied constraints. The objective for IMONES (F) Then we come to two open problemsiMUNCuUT [10]
is to find the assignment which satisfies all constraints and MiN 2CNF DELETION [17] both of which are
while minimizing the number of the variables setlto known to be approximable to within polylogarithmic
For each class of optimization problems our main the- factors and known to be hard to approximate to within
orem is informally stated as follows: There exists a fi- some constant factor. The exact approximability of both
nite partition of the space of all function families, such problems remains open. At a higher level of approxima-
that the approximability of the problem IM CSP(F) bility is the NEARESTCODEWORD problem [1] which
(resp. MN ONEs (F)) is determined completely by is known to be approximable to within polynomial fac-
which partition it lies in. We stress however that there is tors but is hard to approximate to with°e" " fac-
one important respect in which our classification is dif- tors. For each of these problems we show that there



is a constraint familyF such that either M\ CSP(F) 2.1 Constraints, Constraint Applications and
or MIN ONES (F) is isomorphic to the problem. The Constraint Families

ability to study all these different problems in a uniform

framework and extract the features that make the prob- A constraint is a functiorf : {0,1}* — {0,1}. A

lems easier/harder than the others shows the advantageonstraint application is a paif, (i1, . .., %)), where
of studying optimization problems under the constraint thei; € [n] indicate to which% of the n Boolean vari-
satisfaction framework. ables the constraint is applied. We require tag

Lastly, we point out that it is not only the nega- for j # j’.. A contraint family F is a finite coIIection
tive results that are unified by our framework but also Of constraints{fi, ..., fi}. Constraints and constraint
the positive results. Our positive results highlight once families are the ingredients that specify an optimization
more the utility of the linear programming (LP) relax- pr(_)blem. Thus_ it is necessary that their descr|pt_|0n_be
ation followed by rounding approach to devising ap- finite. Constrf_;un_t apphcatlons are used to specify in-
proximation algorithms. This approach, which plays stanc.eslof optimization proplems a}nd the fac.t thgt their
a significant role in all the above mentioned results of description lengths grow with the instance size is cru-
[22, 13, 12, 10, 17], also plays a crucial role in obtaining cially egploﬂed here. Wh|le tr_ns (.jIStII’I.CtI.OH between
constant factor approximation algorithms for one of the constraints and constraint applications is important, we

partitions of the MN CSP(F) problems and one parti- will often blur this distinction in the rest of this paper.
tion of the MiIN ONES () problems. In particular we may often let the constraint application

limitati ; Its is that thev C = (f,(i1,...,i)) refer just to the constrainf. In
%re m_ntaﬂgn hO hour results is t atr;[ €y T0CUS ON - narticular, we will often use the expressio@ “c F”
problems in which the input instances have no restric- \nor \we mean € . wheref is the first part o™

tions in the manner in which constraints may be imposed We now describe the optimization problems considered
on the input variables. This is the reason why many of in this paper

the problems turn out to be as hard as shown. Some-Definition 1 (Min CSP(F))

times significant insight may be gleaned from restrict- . . o
9 9 ybeg INPUT: A collection ofm constraint applications of the

ing the problem instances. A widely prescribed condi- ; e S am Bool .
tion is that the incidence graph on the variables and the orm {(fj, (@1(4), - - - i, (1)) }L1, ON oolean vari-
ableswy,xs,...,x, Where f; € F andk; is the arity

constraints should form a planar graph. This restriction

has been recently studied by Khanna and Motwani [14] of fi-

and they show that it leads to polynomial time approx- ~ OBJECTIVE : Find a Boolean assignment tg's so
imation schemes for a genera' class of constraint Satis_as to minimize the number of unsatisfied constraints.
faction problems. Another input restriction of interest  In the weighted problerit N WEIGHT CSP(F) the
could be that variables are allowed to participate only in inputincludesrn non-negative weights; . ..., w,, and
abounded number of constraints. We are unaware of anythe objective is to find an assignment which minimizes
work on this front. An important extension of our work the sum of the WE|ghtS of the unsatisfied constraints.
would be to consider constraint families which contain Definition 2 (MIN ONES (F))

constraints of unbounded arity (such as those considered NPUT : A collection ofm constraint applications of the
in MINF*II,). Such an extension would allow us to form {(f;, (i1(j), ..., ix;(4)))}jL,, on Boolean vari-
capture problems such as SCoVER. In summary, our  ablesz;, s, ...,x, Wheref; € F andk; is the arity
work reflects yet another small step towards the big goal of f;.

of understanding the structure of optimization problems.  opjecTivE : Find a Boolean assignment te;’s

which satisfies all the constraints and minimizes the to-
tal number of variables assigned true.
2. Preliminaries In the weighted problenMIN WEIGHT ONES (F)
the input includes: non-negative weights; . ..., w,
and the objective is to find an assignment which satisfies
all constraints and minimizes the sum of the weights of

The notion of constraints and constraint applications " i
I¥ar|ables assigned tb.

and our classes of problems of interest have already bee
defined informally above. We formalize them in the next
two subsections. We next review some basic conceptsRepresentation of functions We will often work with
and definitions in approximability, reductions and com- themaxternrepresentation of functions:

pleteness. Finally, we present our classification theo- Definition 3 [Maxterm] Given a func-
rems and give an overview of how the remainder of this tion f(z1, 2, ..., zx), & subset of literals defined over
paper is organized. the variablese;’s is called amaxtermif setting each of



the literals false determines the function to be false and
if it is a minimal such collection.

We express a maxtermn = {ly,ls,...,1,,,} Where
eachl; is z; or z; for someux;, as Vi, l;. Thus if
mi, ma, ...,y are all the maxterms of a functiofy,
then f may be represented g§!_, m;. This is called
a maxterm representation of a functin

Properties of function families We now describe the
main properties that are used to classify the approxima-
bility of the optimization problems. The approximabil-
ity of a function family is determined by which of the
properties the family satisfies. We start with the six
properties defined by Schaefer:

A constraint f is O-valid (resp. 1-valid) if
f@0,...,0) =1 (resp.f(1,...,1) =1).

A constraint isweakly positivéresp.weakly nega-
tive) if it can be expressed as a CNF-formula hav-

MAx CSP(F) and Max ONEs(F). A statement of
their results is included in Appendix A.

Lastly we need one definition of our own, before we
can state our results.

A constraintf is IHS-B™T (for Implicative Hitting
Set-Boundedj+if it is expressible as a CNF for-
mula where the clauses are of one of the following
types: z; \/ - - -\ z for some positive integet,

or -z \/ z2, or —z1. IHS-B™ constraints and con-
straint families are defined analogously (with every
literal being replaced by its complement). A family
is a IHSB family if the family is a IHSB™ family
ora lHSB™ family.

Problems captured by MIN CSP and MIN ONES
We enumerate here some interesting minimization prob-
lems which are “captured” by (i.e., are equivalent to
some problem in) M\N CSP and MN ONES. The fol-

ing at most one negated variable (resp. at most onelowing list is interesting for several reasons. First, it

unnegated variabl¢in each clause.

A constraint isaffineif it can be expressed as a con-
junction of linear equalities oveE,.

A constraint is2cnfif it is expressible as a 2CNF-
formula (that is, a CNF formula with at most two
literals per clause).

The above definitions extend to constraint families nat-
urally. For instance, a constraint famiy is 0-valid if
everyconstraintf € F is 0-valid. Using the above defi-

nitions Schaefer’s theorem may be stated as follows: For _

any constraint familyF, Sat(F) is in P if F is 0-valid
or 1-valid or weakly positive or weakly negative or affine
or 2cnf; else deciding & (F) is NP-hard.

Some more properties were defined by Khanna et
al. [15] to describe the approximability of the problems
they considered. We will need them for our results as
well.

f if 2-monotonef f(xy,...,x;) is expressible as
(wil /\ T /\ wip) \/(_':U]'l /\ T /\ —|£13qu) (ie., fis
expressible as a DNF-formula with at most two
terms - one containing only positive literals and the
other containing only negative literals).

A constraint iswidth-2 affineif it is expressible as

a conjunction of linear equations ov&s such that
each equation has at most 2 variables.

A constraintf is C-closedif for all assignments,
f(s) = f(5).

The above properties, along with Schaefer’s origi-

nal set of properties suffice for [5] and [15] to clas-
sify the approximability of the maximization problems

1Such clauses are usually called Horn clauses.

highlights the importance of the classesN\MCSP and

MIN ONESas classes that contain interesting minimiza-
tion problems. Furthermore, these problems turn out to
be “complete” problems for the partitions they belong
to - thus they are necessary for a full statement of our
results. Last, for several of the problems listed below,
their approximability is far from being well-understood.
We feel that these problems are somehow representative
of the lack of our understanding of the approximability
of minimization problems.

The well-known Hitting Set problem, when re-
stricted to sets of bounded sizBscan be captured
as MIN ONES(F) for F = {z1V---Vailk <
B}. Also, of interest to our paper is a slight gener-
alization of this problem which we call the Implica-
tive Hitting Set-B Problem (WN IHS-B) which

is MINCSRF) for F = {z1\V---Var : k <
B}JU{—z;, \ z2}U{—z1}. The MIN ONESVersion
of this problem will be of interest to us as well. The
Hitting Set-B problem is well-known to be approx-
imable to within a factor oB3. We show that, in fact
MIN IHS-B is approximable to within a factor of
B+ 1.

MIN UNCUT = MIN CSR{z &y = 1}). This
problem has been studied previously by Klein et
al. [16] and Garg et al. [10]. The problem is known
to be MAX SNP-hard and hence not approximable
to within a constant factor. On the other hand, the
problem is known to be approximable to within a
factor of O(log n) [10].

MIN 2CNF DELETION
MIN CSR{z\/ y, -z \/ =y}). This problem has
been studied by Klein et al. [17]. They show that



the problem is MAX SNP-hard and that it is ap-
proximable to within a factor af (log n loglogn).

NEARESTCODEWORD = MIN CSR{z®y®z =
0,z ®y ® =z = 1}). This is a classical problem
for which hardness of approximation results have
been shown by Arora et al. [1]. The IM ONES
version of this problem is essentially identical to
this problem. For both problems, the hardness re-
sult of Arora et al. [1] says that approximating this
problem to within a factor 02'°8" ™ is hard, unless
NP C QP. No non-trivial approximation guaran-
tees are known for this problem (the trivial bound
being a factor ofn, which is easily achieved since
deciding if all equations are satisfiable amounts to
solving a linear system).

Lastly we also mention one more problem which
is required to present
our main theorem. M HORNDELETION

MIN CSR{z, -z, (—z\ yV z)}). This problem
is essentially as hard as the
NEARESTCODEWORD.

2.2 Approximability, Reductions and Com-
pleteness

Finally, before presenting our results, we mention
some basic notions on approximabilitycAmbinatorial
optimizationproblem is defined over a set mfstances
(admissible input data); a finite s&tl(z) of feasible so-
lutionsis associated to any instance. Ahjective func-
tion attributes an integer value to any solution. Gual
of an optimization problem is, given an instangefind
a solutiony € sol(z) of optimumvalue. The optimum
value is the largest one fanaximizationproblems and
the smallest one faninimizationproblems. A combina-
torial optimization problem is said to be an NPO prob-

lem if instances and solutions are easy to recognize, so-
lutions are short, and the objective function is easy to 3)

compute. See e.g. [4] for formal definitions.

Definition 4 (Performance Ratio) An approxima-
tion algorithm for anNP O problemA hasperformance
ratio R (n) if, given any instanc& of A with |Z| = n, it
computes a solution of valué which satisfies

1%

| oty T} < RO

A solution satisfying the above inequality is referred to
as beingR (n)-approximate We say that a NPO prob-
lem is approximable to within a factdg(n) if it has a
polynomial-time approximation algorithm with perfor-
mance ratidR (n).

Definition 5 (Approximation Classes) An NPO prob-
lem A is in the clasPO if it is solvable to optimality in

opt(7)
v

polynomial time A is in the clasAP X (resp.log-AP X/
poly-APX) if there exists a polynomial-time algorithm
for A whose performance ratio is bounded by a con-
stant (resp. logarithmic/polynomial factor in the size of
the input).

Completeness in approximation classes can be de-
fined using appropriate approximation preserving re-
ducibilities. These reducibilities tend to be a bit sub-
tle and we will be careful to specify the reducibilities
used in this paper. In this paper, we heavily use two no-
tions of reducibilites defined below. (1) A-reducibility
which ensures that ifl is A-reducible toll’ andII’ is
r(n) approximable for some function: Z+ — Z¥,
thenIl is ar(n®)-approximable, for some constants
andc. In particular ifII’ is approximable to within some
constant factor (resg)(log n), n°(Y) factor), thenll is
also approximable to within some constant factor (resp.
O(logn), n®W factor). (2) AP-reducibility which is a
more stringent notion of reducibility, in that every AP-
reduction is also an A-reduction This reducibility has
the feature that ifil AP-reduces tdl’ andII’ has a
PTAS, thenll has a PTAS. Unfortunately neither one
of these reducibilities alone suffices for our purposes —
we need to use the more stringent reducibility to show
APX-hardness of problems and we need the flexibility
of the weaker reducibility to provide the other hardness
results. Fortunately, results showing APX-hardness fol-
low directly from [15] and so the new reductions of this
paper are all A-reductions.

Definition 6 (AP-reducibility [6]) For a constanty >
0 and twoNPO problemsA and B, we say that4 is
AP-reducible toB if two polynomial-time computable
functionsf andg exist such that the following holds:
(1) Foranyinstanc€ of A, f(Z) is an instance oB.

(2) Foranyinstancg of A, and any feasible solution
S'for f(7), g(Z,S") is a feasible solution fot.

For any instancé of A and anyr > 1, if S’ isan
r-approximate solution fof (Z), theng(Z, S') is
an(1+(r—1)a+o(1))-approximate solution for
7, where then notation is with respect t{|.

We say thatd is AP-reducible taB if a constania > 0
exists such thatl is a-AP-reducible taB.

Definition 7 (A-reducibility [7]) An NPO problem A
is said to be A-reducible to aNPO problem B if two
polynomial time computable functionsand g and a
constanix exist such that:

(1) Foranyinstanc€ of A, f(Z) is an instance oB.

(2) Foranyinstanceg of A and any feasible solution
S'for f(7), g(Z,S") is a feasible solution fof.

(3) Foranyinstancg of Aandanyr > 1,if S’ isa

r-approximate solution foif (7) theng(Z,S’) is
an (ar)-approximate solution fof.



Remark 8 The original definitions of AP-reducibility
and A-reducibility were more general. Under the orig-
inal definitions, the A-reducibility does not preserve
membership imog-APX, and it is not clear whether ev-
ery AP-reduction is also an A-reduction. The restricted
versions defined here are more suitable for our pur-
poses. In particular, it is true that the Vertex Cover
problem isAPX-complete under our definition of AP-
reducibility.

Definition 9 (AP X and poly-AP X-completeness)An
APX problem A is APX-complete if anyAPX prob-
lem is AP-reducible tad. A poly-APX problem A

is poly-APX-complete if anypoly-APX problem is A-
reducible toA.

It is easy to prove that ifi is APX-complete (resp.
poly-APX-complete) then a constanexists such that
itis NP-hard to approximate within (1+¢) (resp.n®).

One of our hardness result will be proved by means of

a reduction from the M\ TOTAL LABEL-COVER prob-
lem, defined as follows.
Definition 10 (MIN TOTAL LABEL-COVER) An  in-
stance of théMIN TOTAL LABEL-COVER problem con-
tains integer parameter§,, Q-, A;, A2, and R; and
functions

@ [Rl—=Q1, ¢:[R] = Q2,
Vi [R] x [A] x [4s] = {0,1}

A feasible solution is a pair of functions, p», where
p1 o [Q1] = 2™ andp, : [Q.] — 20421, such that
for everyr € [R], there existsa; € pi(qi(r)) and
as € p2(g2(r)) such thatV(r,a;,a2) = 1. The ob-
jective function to be minimized ¥ o [p1(q1)] +
Zqzng Ip2(q2)|-

This is a variation, introduced by Amaldi and Kann,
of the MIN LABEL-COVER problem [21, 1] (in the
MIN LABEL-COVER problem the objective function
to be minimized is}:, o |pi(q1))). A reduction
from the multi-prover proof-systems of [24, 2] shows
that, for anye > 0, it is NP-hard to approximate
MIN TOTAL LABEL-COVER within 218" "7 The re-
duction in question is similar to the standard one from
multi-prover proof systems to M LABEL-COVER[21,

1] and omitted from this extended abstract.

2.3 Main Results

We now present the main results of this paper. The

or MIN UNCuT-complete orMIN 2CNF DELETION-

complete or NEARESTCODEWORD-complete or

MIN HORN DELETION-complete or the decision prob-

lem isNP-hard. Furthermore,

(1) If F is 0-valid or 1-valid or 2-monotone, then
MIN CSRF) is in PO.

(2) Elseif F is IHS-B thenMIN CSRF) is APX-
complete.

(3) Else if F is width-2 affine thetMIN CSRF) is
MIN UNCuT-complete.

(4) Else if F is 2CNF then MIN CSRF) is
MIN 2CNF DELETION-complete.

(5) Else if F is affine then MIN CSRF) is
NEARESTCODEWORD-complete.

(6) Else if F is weakly positive or weakly negative

then MIN CSRF) is MIN HORN DELETION-
complete.

Else deciding if the optimum value of an instance
of MIN CSRF) is zero isNP-complete.

Theorem 12 MIN ONESs Classification) For

every constraint sef, MIN ONES (F) is either inPO

or APX-complete orNEAREST CODEWORD-complete
or MIN HORN DELETION-complete or poly-APX-

complete or the decision problemi&P-hard. Further-
more,

(7)

(1) If Fis 0-valid or weakly negative or affine with
width 2, thenMIN ONES (F) is in PO.

(2) ElseifFis 2CNF or IHSB thenMIN ONES (F)
is APX-complete.

(3) Else if F is affine then MIN ONES (F) is
NEARESTCODEWORD-complete.

(4) ElseifF is weakly positive theMIN ONES (F)
is MIN HORN DELETION-complete.

(5) Else if F is 1-valid then MIN ONES(F) is
poly-APX complete

(6) Else finding any feasible solution to

MIN ONES (F) is NP-hard.

Techniques As in the work of Khanna et al. [15] two
simple ideas play an important role in this paper. (1)
The notion oimplementationfrom [15] (also known as
gadgetd3, 26]) which shows how to use the constraints
of a family F to enforce constraints of a different fam-
ily F', thereby laying the groundwork of a reduction
from MIN CSRF') to MIN CSRF). (2) The idea of
working with weighted versions of minimization prob-

theorem uses the shorthafdis II-complete to indicate
that the problendl’ is equivalent (under A-reductions)
to the problendl.

Theorem 11 MIN CSPClassification) For every con-
straint setF, MIN CSRF) is either inPO or APX-
complete

lems. Even though our theorems only make statements
about unweighted versions of problems, all our results
use as intermediate steps the weighted versions of these
problems. The weights allow us to manipulate prob-
lems more locally. However, simple and well-known
ideas eventually allow us to get rid of the weights and



thereby yielding hardness of the unweighted problem as A constraintf 1-implements itself perfectly. Itis eas-
well. As a side-effect we also show (in Section 3.2) that ily seen that perfect implementations compose together,
the unweighted and weighted problems are equally hardi.e., if 7 perfectly implementg’, andF, perfectly im-
to approximate in all the relevant cases of \MCSP plementy € Fy, then(F;\ {g}) U F, perfectly imple-
and MiN ONESproblems. This extends to minimization mentsf. In order to see the utility of implementations,
problems the results of Crescenzi et al. [8]. it is better to work with weighted problems.

A more detailed look at implementations and
weighted problems follows in Section 3. In Section 4 3.2 Weighted Problems
we show the containment results for thaNMCSP re-
sult. The new element here is the constant factor approx- g, a function family
imation algorithm for IHSB families. In Section 5 we F, the problem MN WEIGHT CSR(F) has as instances
show the hardness results. The new element here is th% weighted constrainté’,, ..., C,, with non-negative
characterization of functions which are not expressible weightsws , . . . , wy, onn Boolean variables: , .. ., 2.
as IHS# and the MN HORN DELETION-completeness 14 objective is to find an assignment # which
results for weakly positive and negative families. We inimizes the weight of unsatisfied constraints. An
show a close correspondence betweem ISP and  jnsiance of the problem M WEIGHT ONES(F) has
MIN ONEsproblems in Section 6. Finally, in Sections 7 ¢ instances constraintsC, ..., C,, on n weighted

and 8, we give our positive and negative results for gjean variables , .. ., z,, with non-negative weights
Min ONES problems. wi,...,wy. The objective is to find the assignment
which minimizes the sum of weights of variables set to
3. Warm-up 1 among all assignments that satisfy all constraints. The
following proposition shows how implementations are
3.1 Implementations useful for reductions among weighted problems.

Proposition 14 If a constraint familyZ’ perfectly im-
plements every functioffi € F, then MIN CSRF)
(resp.MIN WEIGHT CSB, MIN WEIGHT ONES(F)) is

Suppose we want to show that for some constraint
set 7, the problem MN ONES(F) is APX-hard. We
will start with a problem that is known to be APX- A-reducible to MiN CSR(F) (resp
hard, such as ¥RTEX COVER, which is the same as MIN WEIGHT CSP, MIN WEIGHT ONES(F") '
MIN ONES({z \/ y}). We will then have to reduce this ' o
problem to MN ONES(F). The main technique we use Proof: Let k be large enough so that any constraint from
to do this is to “implement” the constraint\/ y using }'Ihasaperfedt—implementation using constraints from
constraints from the constraint sét The following 7 - LetIZ be an instance of Mi WEIGHT CSP(}:)
definition shows how to formalize this notion. (The def- and letZ’ be the instance of Mi WEIGHT CSRF")
inition is part of a more general definition of Khanna OPtained by replacing each constraintiofvith the re-
et al [15]. In fact, their definition is needed for AP- SPectivek-implementation. Itis easy to check that any
reductions, but since we don’t provide any new AP- assignment fof’ of costV yields an assignment far

reductions, we don’t need their full definition here.) whose cost is betwee¥i/k andV'. It is immediate to

Definition 13 (Perfect Implementation [15]) check tha_t if the forme_r solution isapproximate, then

A collection of constraint applications,, ..., C,, over the latter is(kr)-approximate. .

a set of variables? = {z;,z2,..,2,} and§y = While weighted problems allow for the convenient

{y1,92, ..., yq} is called aperfecta-implementatiorof use of implementations, there is really not much of

a constraintf (z) iff the following conditions are satis- a difference between weighted and unweighted prob-

fied: lems. It is easy to show that M WEIGHT ONES(F)

(1) For any assignment of values fosuch thatf () A-reduces to MN ONES(F). It is also easy to see
is true, there exists an assignment of valuegto that if we are allowed to repeat the same constraint
such that all the constraints are satisfied, many times, then Mi WEIGHT CSHF) A-reduces to

is false, no assignment of valuesji@an satisfy ~ lence holds even when we are not allowed to repeat con-

all the constraints. straints. This is summarized in the following Theorem.

A constraint setF perfectly implements a constraint Theorem 15 (Weight-removing Theorem)
f if there exists a perfeci-implementation off using For any constraint family”, MIN WEIGHT ONES(F)
constraints ofF for somea < co. We refer to the se¥ A-reduces taVIIN ONES(F). If F perfectly implements
as theconstraint variableand the sef/ as theauxiliary (x = y), then MIN WEIGHT CSRF) A-reduces to
variables MIN CSRF).



As a first step towards establishing this
sult, we recall that from the results of [8],
follows that whenever M WEIGHT CSRF) (resp.
MIN WEIGHT ONES(F)) is in poly-APX, then it is
AP-reducible (and hence A-reducible) to the restriction
where weights are polynomially bounded (in particular,
they can be assumed to be boundechbyx{n?, m?},
where m is the number of constraints and the
number of variables). For this reason, from now
on, weighted problems will always be assumed to
have polynomially bounded weights. Moreover, in a
MIN WEIGHT CSRF) instance, we will sometimes see
a weighted constraint of weight as a collection ofv
identical constraints.

Ina MIN WEIGHT CSP instance we can assume that

re-
it

no constraint has weight zero (otherwise we can removez: \/ ---\/ zx (i.e.

the constraint without changing the problem). We also
assume that in a Mi WEIGHT ONES instance no vari-
able has weight zero. Otherwise, we multiply all the
weights byn? (n = number of variables) and then we
change the zero-weights to 1. This negligibly perturbs
the problem and gives an AP-reduction. This is formal-
ized below.

Proof of Theorem 15: We begin by showing that for
any family 7, MIN WEIGHT CSRF) AP-reduces to
MIN CSRF U {(z = y)}). For this, we use an argu-
ment similar to the reduction from M« 3SAT to MAX
3SATB (see [23]), however we don't need to use ex-
panders. Lef be an instance of Mi WEIGHT CSRF)
over variable setY {z1,...,z,}. Foranyi €
[n], let occ; be the number of the constraints where
x; appears. We makecc; “copies” of z;, and call
themy!,...,y7°". We substitute thg-th occurrence
of z; by y{ . We repeat this substitution for any vari-
able. Additionally, fori € [n], we add all the possi-
ble occ;(oce; — 1)/2 “consistency” constraints of the
form y! = yh for j,h € [occ], i # j. CallZ' the
new instance; observe that contains no repetition of
constraints. Moreover, any assignmérfor Z' can be
converted into an assignmefitthat satisfies all the con-
sistency constraints without increasing the cost. Indeed
if, for somei, not all they have the same value under
@, then we give value 0 to all of them. This can, at most,

weakly negative. As can be seen from the proof of
Lemma 48 below, in such case eith&rperfectly im-
plementgz = y) or all the basic constraints ¢f are of
the formz, \/ - --\/ z;, for somek > 1.

If F perfectly implements = y, then for any vari-
able x; of weight w; we introducew; — 1 new vari-
ablesy!,..., yg”"*l and the implementations of the con-
straintsz; = y}, y! = y?, ...,y/"* ' = x;. Each vari-
able has now cost 1. Any solution satisfying the original
set of constraints can be converted into a solution for the
new set of constraints by letting = «; for all i € [n],

Jj € [w; — 1]. The cost remains the same. Any solution
for the new set of constraints clearly satisfies the original
one (and with the same cost).

If all the basic constraints ofF are of the form
if all constraints aremonotone
functions) then we proceed as follows. For any vari-
able z; of weight w; we introducew; new variables
yl, ...,y Any constraintf(z1, ..., z;) is substituted
by thew;ws - - - wy, constraints

{f(yilv'--vyék) : Jl € [wl]v R vjk € [wk]} :
It is not difficult to verify that if we have a feasible as-
signment for the new problem such that, for soimg
y! = 0, then we can sef!’ = 0 for all h € [w;] without
contradicting any constraint. Since no 0 is changed to a
1, a solution for the non-weighted instance can be con-
verted into a solution for the weighted instance without
increasing the cost. m|

3.3 Bases and First Reductions

In this subsection we set up some preliminary results
that will play a role in the presentation of our results.
First, we develop some shorthand notation for the con-
straint families: (1), (respectively,F;) is the family
of 0-valid (respectively, 1-valid) functions; () is
the family of 2-monotone functions; (3ys is the fam-
ily of IHS- B functions; (4)F24 is the family of width-2
affine functions; (5)F>cnr is the family of 2CNF func-

.tions; (6) F4 is the family of affine functions; (7Fwp

is the family of weakly positive functions; (8w is
the family of weakly negative functions.

contradict all the constraints containing an occurrence of pefinition 16 (Basis) A constraint familyZ’ is a basis

a switched variable, but this satisfies many more consis-

tency constraints than those that got contradicted.

We next
show that for any family”, MIN WEIGHT ONES(F)
AP-reduces to M\N ONES(F). To begin with, note that
if MIN WEIGHT ONES(F) is in PO, then it is triv-
ially AP-reducible to any NPO problem (including, in
particular, MN ONES(F)). The interesting case thus
arises when¥ is not O-valid nor width-2 affine nor

for a constraint familyF if any constraint ofF can be
expressed as a conjunction of constraints drawn from
F'.

Thus, for example, a basis for an affine constraint is
the setF UF” whereF = {z,&xs...®2, =0 | p>
1}andF = {z;®zy...0z, =1 | p> 1}, abasis for
awidth-2 affine constraint is the sEt= {z®y = 0,z®
y = 1,2 =0,z = 1}, and a basis for a 2CNF constraint
isthesetF = {zVy,-z\y,a\ -y, z, -z}



The above definition is motivated by the fact that (2)

if 7' is a basis forF, then an approximation algo-
rithms for MIN CSP(F") (resp. MN ONES(F")) yields
an approximation algorithm for M CSP(F) (resp.
MIN ONES (F)). This is asserted below.

Theorem 17

If 7' is a basis forF, then MIN WEIGHT CSRH.F)

(resp. MIN WEIGHT ONES(F)) is A-reducible to
MIN WEIGHT CSRF') (resp.
MIN WEIGHT ONES(F")).

Otherwise, F perfectly implements the binary
constraintz ® y = 1) and(z = y).

One relevant consequence (that also uses an idea from
[3]) is the following.

Lemma 23 Let F be a family that contains a
not O-valid and a not 1-valid function. Then
MIN WEIGHT CSRF U {z, (—z)}) is A-reducible to

MIN WEIGHT CSRF).

Proof: If F contains a function thatis not C-closed, then
z and (—z) can be perfectly implemented using con-

The above theorem follows from Proposition 14 and the giraints fromZ. and so we are done. Otherwise given

next two propositions.

Proposition 18 If f(Z) = fi(&) \--- A fx(Z), then
the family{ f1, ..., fr.} perfectlyk-implementq f}.
Proof: The collection{ f1(Z),..., fx(Z)} is a perfect
k-implementation off (Z). |
Proposition 19 If a constraint familyZ’ perfectly im-
plements every functiofi € F, thenMIN WEIGHT
ONES(F) is AP-reducible taVIN WEIGHT ONES(F").
Proof: Consider  an instance 7  of
MIN WEIGHT ONES (F) and substitute each constraint

by a perfect implementation, thus obtaining an instance

7' of MIN WEIGHT ONES(F'). Give weight O to the
auxiliary variables. Each feasible solution fbrcan be
extended to a feasible solution forwith the same cost.
Conversely, any feasible solution f6f, when restricted
to the variables of is feasible forZ and has the same
cost. This is an AP-reduction. a

To simplify the presentation of algorithms, it will be
useful to observe that, for a famil§, finding an ap-
proximation algorithm for MN CSR.F) is equivalent to
finding an approximation algorithm for a related family
that we callF~.

Definition 20 For a k-ary constraint functionf
def

{0,1}* — {0,1}, we definef~(zy,...,zx) = f(1 -
Z1,...,1 —ax). ForafamilyF = {f1,..., fm} we
definer— < {f,,.... 7}

Proposition 21 For everyF, MIN WEIGHT CSRF ™)
is A-reducible toMIN WEIGHT CSHF).

Proof: The reduction substitutes every constrafi(f)
from F with the constraintf— (&) from 7 . A solu-

an instanceZ of MIN WEIGHT CSRF U {z, (-z)})
onvariables, ..., z, and constraint§’; , ..., C,,, we
define an instanc@’ of MIN WEIGHT CSHF) whose
variables are;, . . ., z,, and additionally one new auxil-
iary variabler . Each constraint of the formz; (resp.
x;) in Z is replaced by a constraint; = zr (resp.

z; ® xr = 1). All the other constraints are not changed.
Thus 7' also hasm constraints. Given a solution
ai,...,a,,ar for Z' which satisfiesn' of these con-
straints, notice that the assignmest,, ..., —a,,—ap
also satisfies the same collection of constraints (since ev-
ery function inF is C-closed). In one of these cases the
assignment ta; is false and then we notice that a con-
straint ofZ is satisfied if and only if the corresponding
constraint inZ' is satisfied. Thus every solution
can be mapped to a solution Bfwith the same objec-
tive function. m|

4. Containment Results (Algorithms) for
MIN CSP

In this section we show the containment results de-
scribed in Theorem 11. Most results described here are
simple containment results which follow easily from the
notion of a “basis”. The more interesting result here
is a constant factor approximation algorithm for 1HBS-
which is presented in Lemma 25.

Lemma 24 If F C F', for someF’ € {Fo, F1, Fom}s
thenMIN WEIGHT CSRF) is solvable exactly in P.
Proof: Creignou [5] and Khanna et al. [15] show that the

tion for the latter problem is converted into a solution COrresponding maximization problemis solvable exactly

for the former one by complementing the value of each in P- Our lemma follows immediately (since the exact
variable. The transformation preserves the cost of the Problems are interreducible). =

solution. ad
A technical result by Khanna et al. [15] will be used
extensively.

Lemma 22 ([15]) LetF be a family that contains a not

0-valid and a not 1-valid function. Then

(1) If F contains a function that is not C-closed, then
F perfectly implements the unary constraints
and(—x).

Lemma 25 If F - then

MIN WEIGHT CSRF) € APX.

Proof: By Theorem 17 and Proposition 21 it suffices

to prove the lemma for the problemsiM WEIGHT

CSRIHS-B). We will show that for everyB,

MIN WEIGHT CSRIHS-B) is B + 1-approximable.
Given an instanc& of MIN WEIGHT CSHIHS-B)

on variablesz, ..., z, with constraintsCy,...,C,,

Fus,



with weightsw,, . .., w,,, we create a linear program on
variablegy, ..., y, (corresponding to the Boolean vari-
ablesty, ..., z,) andvariables,, ..., z,, (correspond-
ing to the constraint€’,, ..., C,,). For every constraint
C; in the instancé& we create an LP constraint as fol-
lows:

1. IfC; =24 V---Vay,, fork < B, we create the
constraint

Zityn + Yy 21
2. If C; = —x;, \ x4,, We create the constraint
zi+ (1 —yi) +yi, 21
3. If C; = —;, we create the constraint
zi+(1—yy) 21

In addition we add the constrainis< z;,y; < 1 for
everyi,j. It may be verified that any integer solution

to the above described LP corresponds to an assignmengonstraints-z \/ —zayx andy \ zayx-

to the MIN CSP problem with the variable; set tol
if the constraintC; is not satisfied. Thus the objective
function for the LP is to minimizé_ ; w;z;.

Given any feasible solution
vectoryy, - . ., Yn, 21, - - - , 2 10 the LP above, we show
how to obtain &/1 vectory!',...,yn, 2}, ...,z that

is al_so feasible such that ; w;z < (B +1) 3, w;z;.
First we sety; = min{l,(B + 1)y;} and 2}

min{1, (B + 1)z;}. Observe that the vectgt, ...y,

21, .-, %, is also feasible and gives a solution of value

at most(B + 1) >, w;z;. We now how to get amte-

gral solution whose value is at mo§B + 1) 3~ w;z].

For this part we first sey;’ = 1if y; = 1 andz} =1

if z; = 1. Now we remove every constraint in the LP

that is made redundant. Notice in particular that every

constraint of type (1) is now redundant (eith¢ror one

of they;"’s has already been set tcand hence the con-

straint will be satisfied by any assignment to the remain-

ing variables). We now observe that, on the remaining

variables, the LP constructed above reduces ta-an

MIN CuT LP relaxation, and therefore has an optimal

integral solution. We set!’s andy;’ to such an integral

and optimal solution. Notice that the so obtained solu-

tion is integral and satisfiey_; w;z; < >, w;z; <

(B +1)2;w;z;. O

Lemma 26 For any familyF C For, {z ®y =1,z =

1} perfectly implements the famify.

Proof: By Proposition 18 it suffices to implement the

basic width-2 affine functions: namely, the functians

y=1Lz&y =0,z =1andz = 0. The first and

the third functions are in the target family. The function

x @y = 0is perfectly 2-implemented by the constraints
x ® zpayx = 1 andy @ zayx = 1. The functionr = 0
is implemented by the constraints® zp,x = 1 and
zpux = 1. O

As a consequence of the above lemma and
Lemma 23, we get:

Lemma 27 For any
family 7 C Faoa, MIN WEIGHT CSRF) A-reduces to
MIN WEIGHT CSR{z @ y}).

The following lemmas show reducibility
to MIN 2CNF DELETION, NEARESTCODEWORD and
MIN HORN DELETION.

Lemma 28 For any family ¥ C Fionr, the family
2CNFperfectly implements every functionn

Proof: Again it suffices to consider the basic constraints
of F and this is some subset of

{;v\/y, -z \/y, ﬂ;v\/ Y, T, T}

The family 2CNF contains all the above functions ex-
cept the function~z \/ y which is implemented by the
|

Lemma 29 For any familyF C Fa, the family{z; @
T2 ® xg = 0,21 ® x2 ® w3 = 1} perfectly implements
every function inf.
Proof: It suffices to show implementation of the basic
affine constraints, namely, constraints of the farmp
Z2...Dxp = 0andz, Dws...Hx, = 1forsomep, g > 1.
We focus on the former type as the implementation of
the latter is analogous.

First, we observe that the constraint® z, = 0 is
implemented by

r1 D T2 © 21
1 DT D 29

r1 DTy D 23

o o o o

21 D 22 D z3

Now the constraint; = 0 can be implemented by

xr1 D 21
xr1 D 22

xr1 D 23

o o o o

21D 22 D z3

The width-2 constraints in the above can be expanded
as before.

Finally, the constraint, & z,... ® z, foranyp > 3
can be implemented as follows. We introduce the fol-
lowing set of constraints using the auxiliary variables
215,225 -y Zp—3-



T ParaPzy = 0
21Par3Pze = 0
Zo®DxgaPDzzg = 0
Zp—3 DTp—1 DT, = 0

O

Lemma 30 For any family 7 C Fwp, the family
{z,—z,-xz\/yV z}) perfectly implements every func-
tionin F.

Proof: A k-ary weakly positive constraint (fatr > 2)

is either of the forme; \/ 22 \/ ... \/ z or of the form
—z1 Va2 V...V, Fork = 2, the implementation
of (zVy)is{(-a\ z\ y),a}, and the implementation
of (~zVy)is{(-z\yV\ a),-a}. Fork = 3, the im-
plementation ofz\/ y\/ z) is{(a \/ ), (-a\V y V 2)}
(the constrainta \/ ) has in turn to be implemented
with the already shown method). Fér> 4, we use
the textbook reduction fromA& to 3SAT (see e.g. [9,
Page 49]) and we observe that when applied-ary
weakly positive constraints it yields a perfectimplemen-
tation using only 3-ary weakly positive constraintst

5. Hardness Results (Reductions) for
MIN CSP

Lemma 31 (TheAPX-hard Case) If ¥ ¢ F', for
F' € {Fo, F1, Fam}, andF C Fus thenMIN WEIGHT
CSRF) is APX-hard.

Proof: Follows immediately from the results of [151

Lemma 32 (TheMIN UNCuT-hard Case) If F ¢ F/,
for F' € {fo,fl,sz,st}, and F C Faa then
MIN WEIGHT CSRF) is MIN UNCuT-hard.

Proof: It suffices to show that we can perfectly imple-
ment the constraint & y = 1. Consider a constraint
f € Faa such thatf € Fus. We know thatf can be ex-

Proof: Let f be a 2CNF function on the variables
z1,...,T. f IS aconjunction of constraints of the form
ri=>xj, v;=>—x; and ~z;=w;. Consider a directed
graphG; on 2k vertices (one corresponding to every lit-
eralz; or —z;) which has a directed edge from a literal
[, to a literall,, if this is a constraint imposed hf. We
claim that the grapliyy must have verticels andl, such
that there is a directed path frdmto > but not the other
way around. (If not, therf can be expressed as a con-
junction of equality and inequality constraints.) Existen
tially quantifying over all other variables (except those
involved inl; andl,) we find thatf implements the con-
straintl; =-1», which is one of the constraints frof. O

Lemma 34 Given any
functionf € F = {(zVy),(zV ~y), (-z\ —~y)} and
the function(z @ y) = 1, we can perfectly implement all
the functions inF.

Lemma 35 (TheMIN 2CNF DeLETION-hard Case)
if F ¢ F', for F' € {Fo,Fi,Fom,Fus, Foat
and F C JFocny then MIN WEIGHT CSRF) is
MIN 2CNF DELETION-hard.

Proof: We need to show that we can perfectly imple-
ment the constraints \/ y and -z \/ —y. SinceF ¢
Fus, It must contain a constrainf which is not a
IHS-B* constraint and a constraigt which is not a
IHS-B™ constraint. Since botlf andg are 2CNF con-
straints, it means that must have(—z \/ —y) as a ba-
sic constraint ang must have(z \/ y) as a basic con-
straint in their respective maxterm representations. Ob-
serve that the maxterm representations of neitheor

g can have the basic constraifis\/ —y) and(—z \/ y).
Using this observation we may conclude that an exis-
tential quantification over all variables besideg in f

will either perfectly implement the constraint: \/ —y

or the constraint ¢ y = 1. Similarly, g can perfectly
implement either the constraiat\/y orz &y = 1.

If we get bothz \/ y and—z\/ -y, we are done. Oth-
erwise, we have a perfect implementation of the func-
tion (x ®y = 1). SinceF ¢ Foa, there must exist

a constraints € F which is not width-2 affine. Using

pressed as a conjunction of constraints drawn from the.8mmas 33 and 34, we can now conclude a perfect im-

family {z®y = 0,z®y = 1,z = 0,z = 1}. Notice fur-

ther that all of these constraints except for the constraintLemma 36 If

x @y = 1 are also infys. Thusf must contain, as one
of its basic primitives, the constraintd y = 1. Now an
existential quantification over all the remaining variable
in f gives us a perfectimplementationofp y = 1. O

For the MN 2CNF DeLETION-hardness proof, we
need the following two simple lemmas.

Lemma 33 Let f
be a 2CNF function which is not width-2 affine. Then

plementation of the desired constraints. a

F C Fa
bUt]: ¢ F’ for anyf', € {f07F17F2M7FH57F2A}1
thenMIN WEIGHT CSRF) is NEARESTCODEWORD-
hard.

Proof: Khanna et al. [15] show that in this cageper-
fectly implements the constraint @ - - ® x, = b for
somep > 3 and someb € {0,1}. Thus the family
F U A{T,F} implements the functions & y @ z
0,2y ®z = 1. Thus NEARESTCODEWORD =

f can perfectly implement some function in the family MIN CSR{z®y®z = 0,2dy® 2 = 1} is A-reducible

F={&Vy),(@V-y),(zV-y}

to MIN WEIGHT CSRF U {F,T}). SinceF is neither



0-valid nor 1-valid, we can use Lemma 23 to conclude
that MIN WEIGHT CSRF) is NEAREST CODEWORD-
hard. O

Lemma 37 ([1]) NEARESTCODEWORDIs hard to ap-
proximate to within a factor olos” “n,

Proof: The required hardness of the nearest codeword
problem is shown by Arora et al. [1]. The nearest code-
word problem, as defined in Arora et al., works with
the following problem: Given am x m matrix A and
anm-dimensional vectob, find ann-dimensional vec-

tor  which minimizes the Hamming distance between
Az andb. Thus this problem can be expressed as a
MIN CSP problem withm affine constraints oven-
variables. The only technical point to be noted is that

yz
X

00 01 11 10
Ol A/ B|D
1,0 C 1

Figure 1. Truth-table of the constraint

fll

If C = 0thenrestricting: = 1 givesthe(y®z = 1)
constraint. This contradicts the weakly positive assump-
tion and henc& = 1. If A =1orD = 1, we geta
function (z\/ —y). ElseA = 0 andD = 0. Now if
B = 0, we again getxz \/ —y) by existentially quanti-

these constraints have unbounded arity. In order to getfying overz, and if B = 1, we get the complement of

rid of such long constraints, we replace a constraint of
the formz;, ® --- ® ; = 0 into !l — 2 constraints

T D D21 =0, 21 Dz Dz = 0, etc. on auxil-
iary variableszy, ..., z;—3. (The same implementation

was used in Lemma 29.) This increases the number of

constraints by a factor of at mast but doe s not change
the objective function. a

It remains to see the M HORN DELETION-hard
case. We will have to draw some non-trivial conse-
guences from the fact that a family is not IH%-

Lemma 38 AssumeF ¢ Fys and eitherF C Fwp Or
F C Fwn. ThenF contains a non C-closed function.

Proof: Follows from the fact that &’-closed weakly
positive function is also weakly negative. O

Lemma 39 If f is a weakly positive function not ex-
pressible as IHSB™, then {f,z, (-z)} can perfectly
implement the functiof-z \/ y / z).

Proof: Since f is not IHSB*', any maxterm rep-
resentation off must have either a maxtermn =
(—mzVyVzV..) oramaxtermn' = (-z\/ -yV ..).
But sincef is weakly positive, we must have the for-
mer scenario. We first show th#tcan perfectly imple-
ment the functionss = y andz\/y. To get the for-
mer, we set all literals imn, besides~z andy, to false
and existentially quantify over the rest. Singeis a
maxterm, the new functiofi’ thus obtained must either
be (—=z \V y)(z\/ —y) or just (—z\/y). In the former
case, we are done, otherwisgf/(z,y), f'(y,z)} per-
fectly implements ther y constraint. To obtain a
perfectimplementation af \/ y, a similar argument can
be used by setting all literals im besidesy andz to
false.

We next show how the same functiofi can
also be used to obtain a perfect implementations of
(—z\/yV z) and(—z \/ y). To do so, we now set all the
literals inm besides-z, y andz to false. Existentially
guantifying over any other variables, we get a function
f" with a truth table as given in Figure 1.

1-in-3 sat. The complement of 1-in-3 sat function along
with z = y can once again implemefit \/ —y)— sim-
ply setz = z. Thus we have a perfect implementation
of (' \/ ).

Now using the fact that we have the function
(z'\ —y), we can implemen{—z \/ y\/ z) by the fol-
lowing collection of constraints:

{f”(.’L‘, a, b): ("d\/y), ("b\/Z)}

This completes the proof. a
Lemma 40 (TheMIN HORN DELETION-hard Case)
If F 7 F',
for F' € {‘7'—0;‘7:1;‘7:2M;‘7:HS>‘7:2A7‘7'—2CNF}, and either
F C Fwp or F C Fwn, thenMIN WEIGHT CSRF)
is MIN HORN DELETION-hard.
Proof: From the above lemmas and from Lemma 22
we have that \N WEIGHT CSR{z, —~z,—~z \/y V z})
is A-reducible to MN WEIGHT CSH(F).
Lemma 41 MIN HORN DELETION is hard to approxi-
mate to withir2!os"
Proof: Reduction from the
MIN TOTAL LABEL-COVER problem. Let(qi,q2,V)
be an instance of Mi TOTAL LABEL-COVER, where
q : [R] = [@1], ¢2 : [R] — [@=2] andV : [R] x
[A1] x [A2] — {0,1}. For anyr € [R], we define
Ace(r) = {(a1,az2) : V(r,a1,a2) = 1}.

We now describe the reduction. For anye R,
a1 € [A1], anday € [A2] we have a variable, 4, q,
whose intended meaning is the value 16{r, a;, as).
Moreover, for anyy € @, (respectivelyg € @,) and
anya € A; (resp. a € A;) we have a variabley, ,
(resp.zq.q), With the intended meaning that its value is
1lif and only ifa € pi(q) (respectivelya € p2(q)).
For anyw, , (resp.z, ) variable we have the weight-
one constraintw, , (resp.—z,,.) The following con-
straints (each with weigh{td; @, + 42Q-)) enforce the
variables to have their intended meaning. Due to their
weight, it is never convenient to contradict them.

n



Vrer]:
Vr € [r],a1 € [41],a2 € [A2] :
Vr € [r],a1 € [41],a2 € [A2] :

The constraints of the first kind can be perfectly
implemented withz\/y\/z and z\/y\/ -z (see
Lemma 30). It can be checked that this
an A-reduction from MN TOTAL LABEL-COVER to
MIN HORN DELETION. |

V(a17a2)€Acc(r) Ur,a1,a2
Ur,ay,a2 = Wg, (r),a1
Ur,ai,az = Tgs(r),as

is

6. MIN ONESVs. MIN CSP

We begin this section with the following easy relation
between MN CSP and MN ONES problems.
Proposition 42
For any constraint family”, MIN WEIGHT ONES(F)
is A-reducible taVIN WEIGHT CSRF U {—z}).

Proof: LetZ be an instance of Mi WEIGHT ONES(F)
over variableg, ..., x,, with weightsw, ..., w,. Let
wmax D€ the largest weight. We construct an instafice
of MIN WEIGHT CSRF U {—z}) by leaving the con-
straints ofZ (each with weighthwn,x), and adding a
constraint-z; of weightw; forany: = 1,...,n. When-
ever the constraints df are satisfiable, it will be always
convenient to satisfy them if. a
Reducing a MN CSP problemto a Mi ONES problem
is slightly less obvious.

Proposition 43

(1) If, for any f € F, F' perfectly imple-
ments(f(Z) \V y), then MIN WEIGHT CSRF)
A-reduces tMIN WEIGHT ONES(F).

(2) |If, for any f € F, F' perfectly implements

(f(&) @y = 1), thenMIN WEIGHT CSR.F) A-
reduces tMIN WEIGHT ONES(F").

Proof: In both cases, we use an auxiliary variap)dor
any constrainC;. The variable takes the same weight

as the constraint. The original variables have weight for (SCB)

zero. In the first case, a constraifi is replaced by
(the implementation off’; \/ y;; in the second case by
(the implementation ofy; = —~C;. Given an assign-

Proof: Follows from the results of Khanna et al. [15]
and from the observation that for a family, solving to
optimality MIN WEIGHT ONES (F) reduces to solving
to optimality MAX WEIGHT ONES(F ). |

Lemma 45 If F C F' for F' € {Faonr, Fus}, then
MIN WEIGHT ONES (F) is in APX.

Proof: For the caser C Faonr, @ 2-approximate algo-
rithm is given by Hochbaum et al. [12].

Consider now the casgé C Fys. From Theorem 17
it is sufficient to consider only basic IHB-constraints.
Since IHSB~ constraints are weakly negative, we will
restrict to basic IHSBT constraints. We use linear-
programming relaxations and deterministic rounding.
Let k be the maximum arity of a function i, we will
give ak-approximate algorithm. Let = {C4,...,C),}
be an instance of Mi WEIGHT ONES (F) over vari-
able setX = {zy,...,x,} with weightswy, ..., w,.
The following is an integer linear programming formu-
lation of finding the minimum weight satisfying assign-
ment foreo.

min
Subject to

E,‘ w;Yi

yi1+"'+yih21 V(;vil\/...V;vih)Egi)

Yi, — Yis 2 0 v('rh V_'xiz) €9
yi =0 V-x; € ¢

yi=1 Vo, € ¢
y,'E{O,l} ViE{l,...,n}

(SCB)
Consider now the linear programming relaxation ob-
tained by relaxing the; € {0,1} constrains intd <
y; < 1. We first find an optimum solutiog* for the
relaxation, and we then define a 0/1 solution by setting
yi =0if y7 <1/k,andy; = 1if y7 > 1/k. Itis easy to
see that this rounding increases the cost of the solution
at mostk times and that the obtained solution is feasible
m|

Lemma 46 For
anyF C Fa, MIN WEIGHT ONES (F) is A-reducible

ment for the first case, we may assume as well that theto NEAREST CODEWORD.

ys satisfyy; = —Cj, since ifC; is satisfied by the as-
signment there is no point in having = 1. Thus,
we note that the total weight of non-zero variables in
the MIN ONES instance equals the total weight of non-
satisifed constraints in the M CSP instance. |

7. Containment Results forMIN ONES

Lemma 44 (Poly-time Solvable Cases)f F C F' for
F' € {Fo, Fwn, Faa}, thenMIN WEIGHT ONES (F)
is solvable exactly in polynomial time

Proof: From Lemma 29 and Proposition 19, we
have that MN WEIGHT ONES (F) AP-reduces to MN
WEIGHT ONES({z ®y® 2 = 0,2 Dy Dz = 1}). From
Proposition 42, we have that IM WEIGHT ONES (F)
A-reduces to MARESTCODEWORD. O

Lemma 47 For any
F C Fwp, MIN WEIGHT ONES (F) is A-reducible to
MIN HORN DELETION.

Proof: Follows from Lemma 30, Proposition 19, and
Proposition 42. m|



8. Hardness Results foMIN ONES

Lemma 48 (APX-hard Cases)

auxiliary variablel/ and place a very large weight on it,
so that any small weight assignment to the variables is
forced to makéV a zero. a

If F does not satisfy the hypothesis of Lemma 44, thenLemma 50 MIN WEIGHT ONES({z @y ®z = 1,2 &

MIN WEIGHT ONES (F) is APX-hard.

Proof: This part essentially follows from the proof of
[15]. The major steps are as follows: We first argue
that either 7 implements some function of the form
z1 \ z2\ -+ -\/ xg, orthe functions:; oy Pz = 0/1

or the functionz; \/ —z». In the first case, we get a

problem that is as hard as Vertex Cover. In the sec-

y®z =0}) isNEARESTCoDEWORD-hard and hard to
approximate to within a factor afios”

Proof: The NEARESTCoODEWORD-hardness follows
from Lemma 29 and Proposition 43. The hardness of
approximation is due to Lemma 37. O

Lemma 51
MIN WEIGHT ONES({zV yV 2,2V yV —z,2 \ —y})

ond case we get a much harder problem (NCP). In the g hard to approximate withiglos" ™ 7 for anye > 0.

final case we need to work some more.
again we show that witf f, z, -z} we can implement
the functionz \/ y. Furthermore, we show that for any
function f, MIN WEIGHT ONES(f, z, ~z) AP-reduces
to MIN WEIGHT ONES(f, z1 \/ —z2). Thus once again

we are down to a function which is at least as hard as Proof: Similar to the proof of Lemma 39.

VERTEX COVER. O
From now on we will assume th& is not 0-valid,
nor weakly negative, nor width-2 affine.

Lemma 49 If F is affine but not width-2 affine nor O-
valid thenMIN WEIGHT ONES({z®y®z = 0,2 Dy ®
z = 1}) is AP-reducible taVMIN WEIGHT ONES (F).

Proof: From [15] we have that implements the func-
tionzy ® --- ® x, = b for somep > 3 and some
b € {0,1}. Also the existence of nof-valid function
implies we can either (essentially) implement the func-
tion 7' or the functionz @ y = 1. In the former case
we can set the variables,, ..., z, to 1 and thus im-
plement either the constrainis ® z» ® 23 = 0 and
x1 @ x2 = 1 or the constraints; ® z» ® z3 = 1 and
1 ® z2 = 0. In the latter case, we can get rid of the
variables inz, & --- @ z, = p in pairs and thusF ei-
ther implements the functions @ z, © z3 = 0/1 or it
implements the functions, ® z» ® x5 ® 4 = 0/1.

In the first and third cases listed above we immedi-
ately implementthe familfyzoy®z = 0, zdydz = 1}

In this case

Proof: Follows from Lemma 41 and Proposition 431

Lemma 52 If F is weakly positive and not IHB-(nor
0-valid) thenMIN WEIGHT ONES (F) is MIN HORN
DELETION-hard.

a

Lemma 53 If F is not 2CNF, nor IHSB, nor affine,
nor weakly positive (nor O-valid nor weakly neg-
ative), thenMIN ONEsS(F) is poly-APX-hard and
MIN WEIGHT ONES(F) is hard to approximate to
within any factor.

Proof: We first show how to handle the weighted case.
The hardness for the unweighted case will follow eas-
ily. Consider a functionf € F which is not weakly
positive. For such aif, there exists assignmernisand

b such thatf(@) = 1 and f(b) = 0 andd is zero in
every coordinate whergis zero. (Such a input pair ex-
ists for every non-monotone functigrand every mono-
tone function is also weakly positive.) Now I¢t be
the constraint obtained fronfi by restricting it to in-
puts wherd is one, and setting all other inputs to zero.
Then f’ is a satisfiable function which is ndtvalid.
We can now apply Schaefer’s theorem [25] to conclude
that SaT(F U {f'}) is hard to decide. We now reduce
an instance of decidings3 (F U {f'}) to approximat-
ing MIN WEIGHT CSR.F). Given an instanc&€ of

and so we are done. In the second and fourth cases thisSAT(F U {f'}) we create an instance which has some
will not be possible (in the second case we always haveauxiliary variabledVy, ..., W, which are all supposed

1-valid constraint and in the last case we always haveto be zero. This in enforced by giving them very large
constraints of even width). So we will show how to re- weights. We now replace every occurence of the con-

duce the problem Mi WEIGHT ONES({z ® y ® z =
0,z®y @z =1}) to these problems. The basic idea be-

straint f’ in Z by the constrainf on the corresponding
variables with thé¥;’s in place which were set to zero

hind the reductions is that if we have available a variable in f to obtainf’. It is clear that if a “small” weight solu-

W which we know is zero, then we can implement the
constraint @y @&z = 0/1. In the second case above, we
only need to implement the constrainby ¢ z = 0 and

this is done using the constraintsb y & up,x = 1 and

uayux ® W @ z = 1. In the fourth case above, the con-
straintz ¢y © z = bis implemented using the constraint
r®dydzdW =b. To create such a variable we simply

introduce in every instance of the reduced problem an entirely by replicating variables.

tion exists to the resulting Mi WEIGHT CSP problem,
thenZ is satisfiable, else it is not. Thus we conclude it
is NP-hard to approximate M WEIGHT CSP to within
any bounded factors.

For the unweighted case, it suffices to observe that
by using polynomially bounded weights above, we get a
poly-APX hardness. Further one can get rid of weights
|
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Theorem 56

(MAX ONEs Classification Theorem) [15]For every
constraint setF, MAx ONES(F) is either solvable ex-
actly in P or APX-complete ompoly-AP X-complete or
decidable but not approximable to within any factor or
not decidable. Furthermore,

1)
()
(3)

(4)
(5)

If F is 1-valid or weakly positive or affine with
width 2, thenMAx ONES(F) isin P.

Else if F is affine thenMAX ONES(F) is APX-
complete.

Else if F is strongly0-valid or weakly negative
or 2CNF therMAx ONES(F) is poly-APX com-
plete.

Else if F is 0-valid thenSAT (F) is in P but find-
ing a solution of positive value is NP-hard.
Else

finding any feasible solution tMAx ONES(F)
is NP-hard.



