
Constraint Satisfaction:
The Approximability of Minimization Problems

Sanjeev Khanna� Madhu Sudany Luca Trevisanz
Abstract

This paper continues the work initiated by Creignou [5]
and Khanna, Sudan and Williamson [15] who classify
maximization problems derived from Boolean constraint
satisfaction. Here we study the approximability ofmin-
imization problems derived thence. A problem in this
framework is characterized by a collectionF of “con-
straints” (i.e., functionsf : f0; 1gk ! f0; 1g) and an
instance of a problem is constraints drawn fromF ap-
plied to specified subsets ofn Boolean variables. We
study the two minimization analogs of classes studied
in [15]: in one variant, namelyM IN CSP(F), the ob-
jective is to find an assignment to minimize the num-
ber of unsatisfied constraints, while in the other, namely
M IN ONES (F), the goal is to find a satisfying assign-
ment with minimum number of ones. These two classes
together capture an entire spectrum of important mini-
mization problems includings-t Min Cut, vertex cover,
hitting set with bounded size sets, integer programs with
two variables per inequality, graph bipartization, clause
deletion in CNF formulae, and nearest codeword. Our
main result is that there exists a finite partition of the
space of all constraint sets such that for any givenF , the
approximability ofM IN CSP(F) and M IN ONES (F)
is completely determined by the partition containing it.
Moreover, we present a compact set of rules that deter-
mines which partition contains a given familyF . Our
classification identifies the central elements governing
the approximability of problems in these classes, by uni-
fying a large collection algorithmic and hardness of ap-
proximation results. When contrasted with the work of
[15], our results also serve to formally highlight inher-
ent differences between maximization and minimization
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1. Introduction

In this paper we present a complete classification of
the approximability of minimization problems derived
from “Boolean constraint satisfaction”. Our work fol-
lows the work of Creignou [5] and Khanna, Sudan and
Williamson [15] who obtained such a classification for
maximization problems.

This line of research is motivated by an attempt to
unify the many known positive and negative results on
the approximability of combinatorial optimization prob-
lems. In the case of positive results, many paradigms
have been obtained and these serve to unify the results
nicely. In contrast, there is a lack of similar unification
among negative results. Part of the reason for this is that
hardness results tipically tend to exploit every feature
of the problem whose hardness is being shown, rather
than isolating the “minimal” features that would suffice
to obtain the hardnes result. As a result many interest-
ing questions about hard problems tend to remain unre-
solved. Khanna et al. [15] describe a number of such
interesting questions: (1) Are there any NP-hard prob-
lems in MAX SNP which are not MAX SNP-hard? (2)
Are there any “natural” maximization problems which
are approximable to within polylogarithmic factors, but
no better? (3) Is there some inherent difference between
maximization and minimization problems among com-
binatorial optimization problems?

In order to study such questions, or even to place
them under a formal setting, one needs to first specify
the optimization problems one wishes to study in some
uniform framework. Furthermore, one has to be care-
ful to ensure that it is possible to “decide” whether the
optimization problem studied is easy or hard (to, say,
compute exactly). Unfortunately, barriers such as Rice’s
theorem (which says this question may not in general be
decidable) or Ladner’s theorem (which says problems
may not be just easy or hard [20]) force us to severely
restrict the class of problems which can be studied.

A work of Schaefer [25] from 1978 isolates one class
of decision problems which can actually be classified
completely. He obtains this classification by restricting
his attention to “Boolean constraint problems”. A typi-



cal problem in this class is defined by a finite setF of fi-
nite Boolean constraints (specified by, say, a truth table).
An instance of such a problem specifiesm “constraint
applications” onn Boolean variables where each con-
straint application is the application of one of the con-
straints fromF to some subset (actually, ordered tuple
would be more exact) of then variables. The language
SAT(F) consists of all instances which have an assign-
ment satisfying allm constraints. Schaefer describes six
classes of function families, such that ifF is a subset of
one of these classes, then the decision problem is in P,
else he shows that the decision problem is NP-hard.

Creignou [5] and Khanna et al. [15] extend the
study above, in a natural way, to optimization prob-
lems. They define two classes of optimization prob-
lems: MAX CSP(F) and MAX ONES (F) (Actu-
ally the work of Creignou’s studies only the class
MAX CSP(F).). The instances in both cases arem
constraints applied onn Boolean variables, where the
constraints come fromF . In the former case, the objec-
tive is to find an assignment which maximizes the num-
ber of constraints that are satisfied. In the latter case,
the objective is to find an assignment to the Boolean
variables which satisfies all the constraints while maxi-
mizing the weight of the assignment (i.e., the number of
variables set to1). In a result similar to that of Schaefer’s
they show that there exists a finite partition of the space
of all function families such that the approximability of a
given problem is completely determined based on which
partition the familyF belongs to. The interesting aspect
of this classification result is that it manages to capture
diverse problems such as MAX FLOW, MAX CUT and
MAX CLIQUE (which are all approximable to very dif-
ferent factors) and yet unifies the (non)-approximability
results for all such problems. Within the framework of
constraint satisfaction problems, Khanna et al. settle the
questions (1) and (2) raised above. Our work is directed
towards question (3).

We consider the two corresponding classes of min-
imization problems which we call MIN CSP(F) and
M IN ONES (F). Again, instances of both problems
consist ofm constraints fromF applied ton Boolean
variables. The objective in MIN CSP(F) is to find
the assignment which minimizes the number of unsat-
isfied constraints. The objective for MIN ONES (F)
is to find the assignment which satisfies all constraints
while minimizing the number of the variables set to1.
For each class of optimization problems our main the-
orem is informally stated as follows: There exists a fi-
nite partition of the space of all function families, such
that the approximability of the problem MIN CSP(F)
(resp. MIN ONES (F)) is determined completely by
which partition it lies in. We stress however that there is
one important respect in which our classification is dif-

ferent from previous ones. Our partitions include several
classes whose approximability is still not completely un-
derstood. Thus while our result shows that the num-
ber of “distinct” levels of approximability (among mini-
mization problems derived from constraint satisfaction)
is finite — it only places an upper bound on the number
of levels — it is unable to pin it down exactly. By pin-
ning down a complete problem for each partition, we,
however turn this seeming weakness into a strength by
highlighting some important problems whose approx-
imability deserves further attention.

Even though the transition from maximization prob-
lems to minimization problems is an obvious next step,
success in this transition is not immediate. For starters
— the transition from SAT to MAX CSP is completely
analogous to the transition from SNP to MAX SNP.
Yet, there is no minimization analog of MAX SNP. The
obvious difficulty seems to be that we are immediately
confronted by a host of problems for which distinguish-
ing the case where the optimum is zero, from the case for
which the optimum is non-zero is NP-hard. The tradi-
tional approach to deal with zero/one problem has been
to restrict the syntax using which the predicate within
the SNP construct is used - thereby ruling out the hard-
ness of the zero/one problem (see e.g. [18, 19]). Our
approach, via constraint satisfaction, however does not
place any such restrictions. We simply characterize all
the problems for which the 0/1 problem is hard, and then
having done so, move to the rest of the problems. All the
different levels of approximability that are seen emerge
naturally.

Despite this completely oblivious approach to defin-
ing the classes MIN CSP and MIN ONES the classes
end up capturing numerous natural optimization prob-
lems — with very distinct levels of approximability. For
starters, thes-t M IN CUT problem is one of the prob-
lems captured by MIN CSP which is well known to
be computable exactly in P. (This was already shown
and used by Khanna et al. [15].) At the constant level
of approximability we see problems such as VERTEX

COVER [11, 22], Hitting Set with bounded size sets [13],
Integer programs with two variables per inequality [12].
(The references cited after the problems show that the
problem is approximable to within constant factors.)
Then we come to two open problems: MIN UNCUT [10]
and MIN 2CNF DELETION [17] both of which are
known to be approximable to within polylogarithmic
factors and known to be hard to approximate to within
some constant factor. The exact approximability of both
problems remains open. At a higher level of approxima-
bility is the NEARESTCODEWORD problem [1] which
is known to be approximable to within polynomial fac-
tors but is hard to approximate to within2log� n fac-
tors. For each of these problems we show that there



is a constraint familyF such that either MIN CSP(F)
or MIN ONES (F) is isomorphic to the problem. The
ability to study all these different problems in a uniform
framework and extract the features that make the prob-
lems easier/harder than the others shows the advantage
of studying optimization problems under the constraint
satisfaction framework.

Lastly, we point out that it is not only the nega-
tive results that are unified by our framework but also
the positive results. Our positive results highlight once
more the utility of the linear programming (LP) relax-
ation followed by rounding approach to devising ap-
proximation algorithms. This approach, which plays
a significant role in all the above mentioned results of
[22, 13, 12, 10, 17], also plays a crucial role in obtaining
constant factor approximation algorithms for one of the
partitions of the MIN CSP(F) problems and one parti-
tion of the MIN ONES (F) problems.

One limitation of our results is that they focus on
problems in which the input instances have no restric-
tions in the manner in which constraints may be imposed
on the input variables. This is the reason why many of
the problems turn out to be as hard as shown. Some-
times significant insight may be gleaned from restrict-
ing the problem instances. A widely prescribed condi-
tion is that the incidence graph on the variables and the
constraints should form a planar graph. This restriction
has been recently studied by Khanna and Motwani [14]
and they show that it leads to polynomial time approx-
imation schemes for a general class of constraint satis-
faction problems. Another input restriction of interest
could be that variables are allowed to participate only in
a bounded number of constraints. We are unaware of any
work on this front. An important extension of our work
would be to consider constraint families which contain
constraints of unbounded arity (such as those considered
in MINF+�1). Such an extension would allow us to
capture problems such as SET COVER. In summary, our
work reflects yet another small step towards the big goal
of understanding the structure of optimization problems.

2. Preliminaries

The notion of constraints and constraint applications
and our classes of problems of interest have already been
defined informally above. We formalize them in the next
two subsections. We next review some basic concepts
and definitions in approximability, reductions and com-
pleteness. Finally, we present our classification theo-
rems and give an overview of how the remainder of this
paper is organized.

2.1 Constraints, Constraint Applications and
Constraint Families

A constraint is a functionf : f0; 1gk ! f0; 1g. A
constraint application is a pairhf; (i1; : : : ; ik)i, where
the ij 2 [n℄ indicate to whichk of then Boolean vari-
ables the constraint is applied. We require thatij 6= ij0
for j 6= j0. A contraint familyF is a finite collection
of constraintsff1; : : : ; flg. Constraints and constraint
families are the ingredients that specify an optimization
problem. Thus it is necessary that their description be
finite. Constraint applications are used to specify in-
stances of optimization problems and the fact that their
description lengths grow with the instance size is cru-
cially exploited here. While this distinction between
constraints and constraint applications is important, we
will often blur this distinction in the rest of this paper.
In particular we may often let the constraint applicationC = hf; (i1; : : : ; ik)i refer just to the constraintf . In
particular, we will often use the expression “C 2 F”
when we mean “f 2 F , wheref is the first part ofC”.
We now describe the optimization problems considered
in this paper.

Definition 1 (M IN CSP(F))
INPUT : A collection ofm constraint applications of the
form fhfj ; (i1(j); : : : ; ikj (j))igmj=1, on Boolean vari-
ablesx1; x2; :::; xn wherefj 2 F and kj is the arity
of fj .

OBJECTIVE : Find a Boolean assignment toxi’s so
as to minimize the number of unsatisfied constraints.

In the weighted problemM IN WEIGHT CSP(F) the
input includesm non-negative weightsw1: : : : ; wm and
the objective is to find an assignment which minimizes
the sum of the weights of the unsatisfied constraints.

Definition 2 (M IN ONES (F))
INPUT : A collection ofm constraint applications of the
form fhfj ; (i1(j); : : : ; ikj (j))igmj=1, on Boolean vari-
ablesx1; x2; :::; xn wherefj 2 F and kj is the arity
of fj .

OBJECTIVE : Find a Boolean assignment toxi’s
which satisfies all the constraints and minimizes the to-
tal number of variables assigned true.

In the weighted problemM IN WEIGHT ONES (F)
the input includesn non-negative weightsw1: : : : ; wn
and the objective is to find an assignment which satisfies
all constraints and minimizes the sum of the weights of
variables assigned to1.

Representation of functions We will often work with
themaxtermrepresentation of functions:

Definition 3 [Maxterm] Given a func-
tion f(x1; x2; :::; xk), a subset of literals defined over
the variablesxi’s is called amaxtermif setting each of



the literals false determines the function to be false and
if it is a minimal such collection.

We express a maxtermm = fl1; l2; :::; lmg where
eachlj is xi or �xi for somexi, as_mj=1lj . Thus ifm1;m2; :::;mq are all the maxterms of a functionf ,
thenf may be represented as

Vqi=1mi. This is called
a maxterm representation of a functionf .

Properties of function families We now describe the
main properties that are used to classify the approxima-
bility of the optimization problems. The approximabil-
ity of a function family is determined by which of the
properties the family satisfies. We start with the six
properties defined by Schaefer:

A constraint f is 0-valid (resp. 1-valid) iff(0; : : : ; 0) = 1 (resp.f(1; : : : ; 1) = 1).

A constraint isweakly positive(resp.weakly nega-
tive) if it can be expressed as a CNF-formula hav-
ing at most one negated variable (resp. at most one
unnegated variable1) in each clause.

A constraint isaffineif it can be expressed as a con-
junction of linear equalities overZ2.
A constraint is2cnf if it is expressible as a 2CNF-
formula (that is, a CNF formula with at most two
literals per clause).

The above definitions extend to constraint families nat-
urally. For instance, a constraint familyF is 0-valid if
everyconstraintf 2 F is 0-valid. Using the above defi-
nitions Schaefer’s theorem may be stated as follows: For
any constraint familyF , SAT(F) is in P if F is 0-valid
or1-valid or weakly positive or weakly negative or affine
or 2cnf; else deciding SAT(F) is NP-hard.

Some more properties were defined by Khanna et
al. [15] to describe the approximability of the problems
they considered. We will need them for our results as
well.f if 2-monotoneif f(x1; : : : ; xk) is expressible as(xi1 V � � �Vxip)W(:xj1 V � � �V:xjq ) (i.e., f is

expressible as a DNF-formula with at most two
terms - one containing only positive literals and the
other containing only negative literals).

A constraint iswidth-2 affineif it is expressible as
a conjunction of linear equations overZ2 such that
each equation has at most 2 variables.

A constraintf isC-closedif for all assignmentss,f(s) = f(�s).
The above properties, along with Schaefer’s origi-
nal set of properties suffice for [5] and [15] to clas-
sify the approximability of the maximization problems1Such clauses are usually called Horn clauses.

MAX CSP(F) and MAX ONES (F). A statement of
their results is included in Appendix A.

Lastly we need one definition of our own, before we
can state our results.

A constraintf is IHS-B+ (for Implicative Hitting
Set-Bounded+) if it is expressible as a CNF for-
mula where the clauses are of one of the following
types: x1W � � �Wxk for some positive integerk,
or:x1Wx2, or:x1. IHS-B� constraints and con-
straint families are defined analogously (with every
literal being replaced by its complement). A family
is a IHS-B family if the family is a IHS-B+ family
or a IHS-B� family.

Problems captured by M IN CSP and M IN ONES

We enumerate here some interesting minimization prob-
lems which are “captured” by (i.e., are equivalent to
some problem in) MIN CSP and MIN ONES. The fol-
lowing list is interesting for several reasons. First, it
highlights the importance of the classes MIN CSP and
M IN ONESas classes that contain interesting minimiza-
tion problems. Furthermore, these problems turn out to
be “complete” problems for the partitions they belong
to - thus they are necessary for a full statement of our
results. Last, for several of the problems listed below,
their approximability is far from being well-understood.
We feel that these problems are somehow representative
of the lack of our understanding of the approximability
of minimization problems.

The well-known Hitting Set problem, when re-
stricted to sets of bounded sizesB can be captured
as MIN ONES(F) for F = fx1W � � �Wxk jk �Bg. Also, of interest to our paper is a slight gener-
alization of this problem which we call the Implica-
tive Hitting Set-B Problem (MIN IHS-B) which
is MIN CSP(F) for F = fx1W � � �Wxk : k �Bg[f:x1Wx2g[f:x1g. The MIN ONESversion
of this problem will be of interest to us as well. The
Hitting Set-B problem is well-known to be approx-
imable to within a factor ofB. We show that, in fact
M IN IHS-B is approximable to within a factor ofB + 1.

M IN UNCUT = M IN CSP(fx � y = 1g). This
problem has been studied previously by Klein et
al. [16] and Garg et al. [10]. The problem is known
to be MAX SNP-hard and hence not approximable
to within a constant factor. On the other hand, the
problem is known to be approximable to within a
factor ofO(logn) [10].

M IN 2CNF DELETION =
M IN CSP(fxW y;:xW:yg). This problem has
been studied by Klein et al. [17]. They show that



the problem is MAX SNP-hard and that it is ap-
proximable to within a factor ofO(log n log logn).
NEARESTCODEWORD= M IN CSP(fx�y�z =0; x � y � z = 1g). This is a classical problem
for which hardness of approximation results have
been shown by Arora et al. [1]. The MIN ONES

version of this problem is essentially identical to
this problem. For both problems, the hardness re-
sult of Arora et al. [1] says that approximating this
problem to within a factor of2log� n is hard, unless
NP � QP. No non-trivial approximation guaran-
tees are known for this problem (the trivial bound
being a factor ofm, which is easily achieved since
deciding if all equations are satisfiable amounts to
solving a linear system).

Lastly we also mention one more problem which
is required to present
our main theorem. MIN HORN DELETION =
M IN CSP(fx;:x; (:xW yW z)g). This problem
is essentially as hard as the
NEARESTCODEWORD.

2.2 Approximability, Reductions and Com-
pleteness

Finally, before presenting our results, we mention
some basic notions on approximability. Acombinatorial
optimizationproblem is defined over a set ofinstances
(admissible input data); a finite setsol(x) of feasible so-
lutions is associated to any instance. Anobjective func-
tion attributes an integer value to any solution. Thegoal
of an optimization problem is, given an instancex, find
a solutiony 2 sol(x) of optimumvalue. The optimum
value is the largest one formaximizationproblems and
the smallest one forminimizationproblems. A combina-
torial optimization problem is said to be an NPO prob-
lem if instances and solutions are easy to recognize, so-
lutions are short, and the objective function is easy to
compute. See e.g. [4] for formal definitions.

Definition 4 (Performance Ratio) An approxima-
tion algorithm for anNPOproblemA hasperformance
ratioR(n) if, given any instanceI ofA with jIj = n, it
computes a solution of valueV which satisfiesmax� V

opt(I) ; opt(I)V � � R(n):
A solution satisfying the above inequality is referred to
as beingR(n)-approximate. We say that a NPO prob-
lem is approximable to within a factorR(n) if it has a
polynomial-time approximation algorithm with perfor-
mance ratioR(n).
Definition 5 (Approximation Classes) An NPO prob-
lemA is in the classPO if it is solvable to optimality in

polynomial time.A is in the classAPX (resp.log-APX/
poly-APX) if there exists a polynomial-time algorithm
for A whose performance ratio is bounded by a con-
stant (resp. logarithmic/polynomial factor in the size of
the input).

Completeness in approximation classes can be de-
fined using appropriate approximation preserving re-
ducibilities. These reducibilities tend to be a bit sub-
tle and we will be careful to specify the reducibilities
used in this paper. In this paper, we heavily use two no-
tions of reducibilites defined below. (1) A-reducibility
which ensures that if� is A-reducible to�0 and�0 isr(n) approximable for some functionr : Z+ ! Z+,
then� is �r(n
)-approximable, for some constants�
and
. In particular if�0 is approximable to within some
constant factor (resp.O(log n), nO(1) factor), then� is
also approximable to within some constant factor (resp.O(log n), nO(1) factor). (2) AP-reducibility which is a
more stringent notion of reducibility, in that every AP-
reduction is also an A-reduction This reducibility has
the feature that if� AP-reduces to�0 and �0 has a
PTAS, then� has a PTAS. Unfortunately neither one
of these reducibilities alone suffices for our purposes —
we need to use the more stringent reducibility to show
APX-hardness of problems and we need the flexibility
of the weaker reducibility to provide the other hardness
results. Fortunately, results showing APX-hardness fol-
low directly from [15] and so the new reductions of this
paper are all A-reductions.

Definition 6 (AP-reducibility [6]) For a constant� >0 and twoNPO problemsA andB, we say thatA is
AP-reducible toB if two polynomial-time computable
functionsf andg exist such that the following holds:
(1) For any instanceI ofA, f(I) is an instance ofB.

(2) For any instanceI ofA, and any feasible solutionS 0 for f(I), g(I;S 0) is a feasible solution forx.

(3) For any instanceI ofA and anyr > 1, if S 0 is anr-approximate solution forf(I), theng(I;S 0) is
an(1+(r�1)�+o(1))-approximate solution forI, where theo notation is with respect tojIj.

We say thatA is AP-reducible toB if a constant� > 0
exists such thatA is �-AP-reducible toB.

Definition 7 (A-reducibility [7]) An NPO problemA
is said to be A-reducible to anNPO problemB if two
polynomial time computable functionsf and g and a
constant� exist such that:
(1) For any instanceI ofA, f(I) is an instance ofB.

(2) For any instanceI ofA and any feasible solutionS 0 for f(I), g(I;S 0) is a feasible solution forI.

(3) For any instanceI ofA and anyr > 1, if S 0 is ar-approximate solution forf(I) theng(I;S 0) is
an (�r)-approximate solution forI.



Remark 8 The original definitions of AP-reducibility
and A-reducibility were more general. Under the orig-
inal definitions, the A-reducibility does not preserve
membership inlog-APX, and it is not clear whether ev-
ery AP-reduction is also an A-reduction. The restricted
versions defined here are more suitable for our pur-
poses. In particular, it is true that the Vertex Cover
problem isAPX-complete under our definition of AP-
reducibility.
Definition 9 (APX and poly-APX-completeness)An
APX problemA is APX-complete if anyAPX prob-
lem is AP-reducible toA. A poly-APX problemA
is poly-APX-complete if anypoly-APX problem is A-
reducible toA.

It is easy to prove that ifA is APX-complete (resp.
poly-APX-complete) then a constant� exists such that
it is NP-hard to approximateA within (1+�) (resp.n�).

One of our hardness result will be proved by means of
a reduction from the MIN TOTAL LABEL-COVER prob-
lem, defined as follows.
Definition 10 (M IN TOTAL LABEL-COVER) An in-
stance of theM IN TOTAL LABEL-COVER problem con-
tains integer parametersQ1, Q2, A1, A2, andR; and
functions q1 : [R℄! Q1 ; q2 : [R℄! Q2 ;V : [R℄� [A1℄� [A2℄! f0; 1g
A feasible solution is a pair of functionsp1; p2, wherep1 : [Q1℄ ! 2[A1℄ and p2 : [Q2℄ ! 2[A2℄, such that
for every r 2 [R℄, there existsa1 2 p1(q1(r)) anda2 2 p2(q2(r)) such thatV (r; a1; a2) = 1. The ob-
jective function to be minimized is

Pq12Q1 jp1(q1)j +Pq22Q2 jp2(q2)j.
This is a variation, introduced by Amaldi and Kann,
of the MIN LABEL-COVER problem [21, 1] (in the
M IN LABEL-COVER problem the objective function
to be minimized is

Pq12Q1 jp1(q1)j). A reduction
from the multi-prover proof-systems of [24, 2] shows
that, for any� > 0, it is NP-hard to approximate
M IN TOTAL LABEL-COVER within 2log1�� n. The re-
duction in question is similar to the standard one from
multi-prover proof systems to MIN LABEL-COVER [21,
1] and omitted from this extended abstract.

2.3 Main Results

We now present the main results of this paper. The
theorem uses the shorthand�0 is�-complete to indicate
that the problem�0 is equivalent (under A-reductions)
to the problem�.
Theorem 11 (M IN CSPClassification) For every con-
straint setF , M IN CSP(F) is either in PO or APX-
complete

or M IN UNCUT-complete orM IN 2CNF DELETION-
complete or NEAREST CODEWORD-complete or
M IN HORN DELETION-complete or the decision prob-
lem isNP-hard. Furthermore,
(1) If F is 0-valid or 1-valid or 2-monotone, then

M IN CSP(F) is in PO.

(2) Else ifF is IHS-B thenM IN CSP(F) is APX-
complete.

(3) Else ifF is width-2 affine thenM IN CSP(F) is
M IN UNCUT-complete.

(4) Else if F is 2CNF then M IN CSP(F) is
M IN 2CNF DELETION-complete.

(5) Else if F is affine then M IN CSP(F) is
NEARESTCODEWORD-complete.

(6) Else if F is weakly positive or weakly negative
then M IN CSP(F) is M IN HORN DELETION-
complete.

(7) Else deciding if the optimum value of an instance
of M IN CSP(F) is zero isNP-complete.

Theorem 12 (M IN ONES Classification) For
every constraint setF , M IN ONES (F) is either inPO
or APX-complete orNEAREST CODEWORD-complete
or M IN HORN DELETION-complete or poly-APX-
complete or the decision problem isNP-hard. Further-
more,
(1) If F is 0-valid or weakly negative or affine with

width2, thenM IN ONES (F) is in PO.

(2) Else ifF is 2CNF or IHS-B thenM IN ONES (F)
is APX-complete.

(3) Else if F is affine then M IN ONES (F) is
NEARESTCODEWORD-complete.

(4) Else ifF is weakly positive thenM IN ONES (F)
is M IN HORN DELETION-complete.

(5) Else if F is 1-valid then M IN ONES (F) is
poly-APX complete

(6) Else finding any feasible solution to
M IN ONES (F) is NP-hard.

Techniques As in the work of Khanna et al. [15] two
simple ideas play an important role in this paper. (1)
The notion ofimplementationsfrom [15] (also known as
gadgets[3, 26]) which shows how to use the constraints
of a familyF to enforce constraints of a different fam-
ily F 0, thereby laying the groundwork of a reduction
from MIN CSP(F 0) to MIN CSP(F). (2) The idea of
working with weighted versions of minimization prob-
lems. Even though our theorems only make statements
about unweighted versions of problems, all our results
use as intermediate steps the weighted versions of these
problems. The weights allow us to manipulate prob-
lems more locally. However, simple and well-known
ideas eventually allow us to get rid of the weights and



thereby yielding hardness of the unweighted problem as
well. As a side-effect we also show (in Section 3.2) that
the unweighted and weighted problems are equally hard
to approximate in all the relevant cases of MIN CSP
and MIN ONESproblems. This extends to minimization
problems the results of Crescenzi et al. [8].

A more detailed look at implementations and
weighted problems follows in Section 3. In Section 4
we show the containment results for the MIN CSP re-
sult. The new element here is the constant factor approx-
imation algorithm for IHS-B families. In Section 5 we
show the hardness results. The new element here is the
characterization of functions which are not expressible
as IHS-B and the MIN HORN DELETION-completeness
results for weakly positive and negative families. We
show a close correspondence between MIN CSP and
M IN ONESproblems in Section 6. Finally, in Sections 7
and 8, we give our positive and negative results for
M IN ONES problems.

3. Warm-up

3.1 Implementations

Suppose we want to show that for some constraint
setF , the problem MIN ONES(F) is APX-hard. We
will start with a problem that is known to be APX-
hard, such as VERTEX COVER, which is the same as
M IN ONES(fxW yg). We will then have to reduce this
problem to MIN ONES(F). The main technique we use
to do this is to “implement” the constraintxW y using
constraints from the constraint setF . The following
definition shows how to formalize this notion. (The def-
inition is part of a more general definition of Khanna
et al [15]. In fact, their definition is needed for AP-
reductions, but since we don’t provide any new AP-
reductions, we don’t need their full definition here.)
Definition 13 (Perfect Implementation [15])
A collection of constraint applicationsC1; : : : ; C� over
a set of variables~x = fx1; x2; :::; xpg and ~y =fy1; y2; :::; yqg is called aperfect�-implementationof
a constraintf(~x) iff the following conditions are satis-
fied:
(1) For any assignment of values to~x such thatf(~x)

is true, there exists an assignment of values to~y
such that all the constraints are satisfied,

(2) For any assignment of values to~x such thatf(~x)
is false, no assignment of values to~y can satisfy
all the constraints.

A constraint setF perfectly implements a constraintf if there exists a perfect�-implementation off using
constraints ofF for some� < 1. We refer to the set~x
as theconstraint variablesand the set~y as theauxiliary
variables.

A constraintf 1-implements itself perfectly. It is eas-
ily seen that perfect implementations compose together,
i.e., if Ff perfectly implementsf , andFg perfectly im-
plementsg 2 Ff , then(Ff n fgg)[Fg perfectly imple-
mentsf . In order to see the utility of implementations,
it is better to work with weighted problems.

3.2 Weighted Problems

For a function familyF , the problem MIN WEIGHT CSP(F) has as instancesm weighted constraintsC1; : : : ; Cm with non-negative
weightsw1; : : : ; wm onn Boolean variablesx1; : : : ; xn.
The objective is to find an assignment to~x which
minimizes the weight of unsatisfied constraints. An
instance of the problem MIN WEIGHT ONES(F) has
as instancesm constraintsC1; : : : ; Cm on n weighted
Boolean variablesx1; : : : ; xn with non-negative weightsw1; : : : ; wn. The objective is to find the assignment
which minimizes the sum of weights of variables set to1 among all assignments that satisfy all constraints. The
following proposition shows how implementations are
useful for reductions among weighted problems.

Proposition 14 If a constraint familyF 0 perfectly im-
plements every functionf 2 F , then M IN CSP(F)
(resp.M IN WEIGHT CSP, M IN WEIGHT ONES(F)) is
A-reducible to M IN CSP(F 0) (resp.
M IN WEIGHT CSP, M IN WEIGHT ONES(F 0)).
Proof: Let k be large enough so that any constraint fromF has a perfectk-implementation using constraints fromF 0. Let I be an instance of MIN WEIGHT CSP(F)
and letI 0 be the instance of MIN WEIGHT CSP(F 0)
obtained by replacing each constraint ofI with the re-
spectivek-implementation. It is easy to check that any
assignment forI 0 of costV yields an assignment forI
whose cost is betweenV=k andV . It is immediate to
check that if the former solution isr-approximate, then
the latter is(kr)-approximate. 2

While weighted problems allow for the convenient
use of implementations, there is really not much of
a difference between weighted and unweighted prob-
lems. It is easy to show that MIN WEIGHT ONES(F)
A-reduces to MIN ONES(F). It is also easy to see
that if we are allowed to repeat the same constraint
many times, then MIN WEIGHT CSP(F) A-reduces to
M IN CSP(F). Finally, it turns out that the equiva-
lence holds even when we are not allowed to repeat con-
straints. This is summarized in the following Theorem.

Theorem 15 (Weight-removing Theorem)
For any constraint familyF , M IN WEIGHT ONES(F)
A-reduces toM IN ONES(F). If F perfectly implements(x = y), then M IN WEIGHT CSP(F) A-reduces to
M IN CSP(F).



As a first step towards establishing this re-
sult, we recall that from the results of [8], it
follows that whenever MIN WEIGHT CSP(F) (resp.
M IN WEIGHT ONES(F)) is in poly-APX, then it is
AP-reducible (and hence A-reducible) to the restriction
where weights are polynomially bounded (in particular,
they can be assumed to be bounded bymaxfn2;m2g,
where m is the number of constraints andn the
number of variables). For this reason, from now
on, weighted problems will always be assumed to
have polynomially bounded weights. Moreover, in a
M IN WEIGHT CSP(F) instance, we will sometimes see
a weighted constraint of weightw as a collection ofw
identical constraints.

In a MIN WEIGHT CSP instance we can assume that
no constraint has weight zero (otherwise we can remove
the constraint without changing the problem). We also
assume that in a MIN WEIGHT ONES instance no vari-
able has weight zero. Otherwise, we multiply all the
weights byn2 (n = number of variables) and then we
change the zero-weights to 1. This negligibly perturbs
the problem and gives an AP-reduction. This is formal-
ized below.

Proof of Theorem 15: We begin by showing that for
any family F , M IN WEIGHT CSP(F) AP-reduces to
M IN CSP(F [ f(x = y)g). For this, we use an argu-
ment similar to the reduction from MAX 3SAT to MAX

3SATB (see [23]), however we don’t need to use ex-
panders. LetI be an instance of MIN WEIGHT CSP(F)
over variable setX = fx1; : : : ; xng. For any i 2[n℄, let o

i be the number of the constraints wherexi appears. We makeo

i “copies” of xi, and call
themy1i ; : : : ; yo

ii . We substitute thej-th occurrence
of xi by yji . We repeat this substitution for any vari-
able. Additionally, fori 2 [n℄, we add all the possi-
ble o

i(o

i � 1)=2 “consistency” constraints of the
form yji = yhi for j; h 2 [o

i℄, i 6= j. Call I 0 the
new instance; observe thatI 0 contains no repetition of
constraints. Moreover, any assignment~a for I 0 can be
converted into an assignment~a0 that satisfies all the con-
sistency constraints without increasing the cost. Indeed,
if, for somei, not all theyhi have the same value under~a, then we give value 0 to all of them. This can, at most,
contradict all the constraints containing an occurrence of
a switched variable, but this satisfies many more consis-
tency constraints than those that got contradicted.

We next
show that for any familyF , M IN WEIGHT ONES(F)
AP-reduces to MIN ONES(F). To begin with, note that
if M IN WEIGHT ONES(F) is in PO, then it is triv-
ially AP-reducible to any NPO problem (including, in
particular, MIN ONES(F)). The interesting case thus
arises whenF is not 0-valid nor width-2 affine nor

weakly negative. As can be seen from the proof of
Lemma 48 below, in such case eitherF perfectly im-
plements(x = y) or all the basic constraints ofF are of
the formx1W � � �Wxk for somek � 1.

If F perfectly implementsx = y, then for any vari-
able xi of weight wi we introducewi � 1 new vari-
ablesy1i ; : : : ; ywi�1i and the implementations of the con-
straintsxi = y1i , y1i = y2i , . . . , yw1�1i = xi. Each vari-
able has now cost 1. Any solution satisfying the original
set of constraints can be converted into a solution for the
new set of constraints by lettingyji = xi for all i 2 [n℄,j 2 [wi � 1℄. The cost remains the same. Any solution
for the new set of constraints clearly satisfies the original
one (and with the same cost).

If all the basic constraints ofF are of the formx1W � � �Wxk (i.e. if all constraints aremonotone
functions) then we proceed as follows. For any vari-
able xi of weight wi we introducewi new variablesy1i ; : : : ; ywii . Any constraintf(x1; :::; xk) is substituted
by thew1w2 � � �wk constraintsff(yj11 ; :::; yjkk ) : ji 2 [w1℄; : : : ; jk 2 [wk℄g :
It is not difficult to verify that if we have a feasible as-
signment for the new problem such that, for somei; j,yji = 0, then we can setyhi = 0 for all h 2 [wi℄ without
contradicting any constraint. Since no 0 is changed to a
1, a solution for the non-weighted instance can be con-
verted into a solution for the weighted instance without
increasing the cost. 2
3.3 Bases and First Reductions

In this subsection we set up some preliminary results
that will play a role in the presentation of our results.
First, we develop some shorthand notation for the con-
straint families: (1)F0 (respectively,F1) is the family
of 0-valid (respectively, 1-valid) functions; (2)F2M is
the family of 2-monotone functions; (3)FHS is the fam-
ily of IHS-B functions; (4)F2A is the family of width-2
affine functions; (5)F2CNF is the family of 2CNF func-
tions; (6)FA is the family of affine functions; (7)FWP
is the family of weakly positive functions; (8)FWN is
the family of weakly negative functions.

Definition 16 (Basis) A constraint familyF 0 is a basis
for a constraint familyF if any constraint ofF can be
expressed as a conjunction of constraints drawn fromF 0.

Thus, for example, a basis for an affine constraint is
the setF 0[F" whereF 0 = fx1�x2:::�xp = 0 j p �1g andF" = fx1�x2:::�xp = 1 j p � 1g, a basis for
a width-2 affine constraint is the setF = fx�y = 0; x�y = 1; x = 0; x = 1g, and a basis for a 2CNF constraint
is the setF = fxW y;:xW y;:xW:y; x;:xg.



The above definition is motivated by the fact that
if F 0 is a basis forF , then an approximation algo-
rithms for MIN CSP(F 0) (resp. MIN ONES(F 0)) yields
an approximation algorithm for MIN CSP(F) (resp.
M IN ONES (F)). This is asserted below.

Theorem 17
If F 0 is a basis forF , then M IN WEIGHT CSP(F)
(resp. M IN WEIGHT ONES(F)) is A-reducible to
M IN WEIGHT CSP(F 0) (resp.
M IN WEIGHT ONES(F 0)).
The above theorem follows from Proposition 14 and the
next two propositions.

Proposition 18 If f(~x) = f1(~x)V � � �V fk(~x), then
the familyff1; : : : ; fkg perfectlyk-implementsffg.
Proof: The collectionff1(~x); : : : ; fk(~x)g is a perfectk-implementation off(~x). 2
Proposition 19 If a constraint familyF 0 perfectly im-
plements every functionf 2 F , then M IN WEIGHT

ONES(F) is AP-reducible toM IN WEIGHT ONES(F 0).
Proof: Consider an instance I of
M IN WEIGHT ONES (F) and substitute each constraint
by a perfect implementation, thus obtaining an instanceI 0 of M IN WEIGHT ONES(F 0). Give weight 0 to the
auxiliary variables. Each feasible solution forI can be
extended to a feasible solution forI 0 with the same cost.
Conversely, any feasible solution forI 0, when restricted
to the variables ofI is feasible forI and has the same
cost. This is an AP-reduction. 2

To simplify the presentation of algorithms, it will be
useful to observe that, for a familyF , finding an ap-
proximation algorithm for MIN CSP(F) is equivalent to
finding an approximation algorithm for a related family
that we callF�.

Definition 20 For a k-ary constraint functionf :f0; 1gk ! f0; 1g, we definef�(x1; : : : ; xk) def= f(1 �x1; : : : ; 1 � xk). For a familyF = ff1; : : : ; fmg we

defineF� def= ff�1 ; : : : ; f�mg
Proposition 21 For everyF , M IN WEIGHT CSP(F�)
is A-reducible toM IN WEIGHT CSP(F).
Proof: The reduction substitutes every constraintf(~x)
from F with the constraintf�(~x) from F�. A solu-
tion for the latter problem is converted into a solution
for the former one by complementing the value of each
variable. The transformation preserves the cost of the
solution. 2
A technical result by Khanna et al. [15] will be used
extensively.

Lemma 22 ([15]) LetF be a family that contains a not
0-valid and a not 1-valid function. Then
(1) If F contains a function that is not C-closed, thenF perfectly implements the unary constraintsx

and(:x).

(2) Otherwise,F perfectly implements the binary
constraints(x� y = 1) and(x = y).

One relevant consequence (that also uses an idea from
[3]) is the following.

Lemma 23 Let F be a family that contains a
not 0-valid and a not 1-valid function. Then
M IN WEIGHT CSP(F [ fx; (:x)g) is A-reducible to
M IN WEIGHT CSP(F).
Proof: If F contains a function that is not C-closed, thenx and (:x) can be perfectly implemented using con-
straints fromF , and so we are done. Otherwise, given
an instanceI of M IN WEIGHT CSP(F [ fx; (:x)g)
on variablesx1; : : : ; xn and constraintsC1; : : : ; Cm, we
define an instanceI 0 of M IN WEIGHT CSP(F) whose
variables arex1; : : : ; xn and additionally one new auxil-
iary variablexF . Each constraint of the form:xi (resp.xi) in I is replaced by a constraintxi = xF (resp.xi�xF = 1). All the other constraints are not changed.
Thus I 0 also hasm constraints. Given a solutiona1; : : : ; an; aF for I 0 which satisfiesm0 of these con-
straints, notice that the assignment:a1; : : : ;:an;:aF
also satisfies the same collection of constraints (since ev-
ery function inF isC-closed). In one of these cases the
assignment toxF is false and then we notice that a con-
straint ofI is satisfied if and only if the corresponding
constraint inI 0 is satisfied. Thus every solution toI 0
can be mapped to a solution ofI with the same objec-
tive function. 2
4. Containment Results (Algorithms) for

M IN CSP

In this section we show the containment results de-
scribed in Theorem 11. Most results described here are
simple containment results which follow easily from the
notion of a “basis”. The more interesting result here
is a constant factor approximation algorithm for IHS-B
which is presented in Lemma 25.

Lemma 24 If F � F 0, for someF 0 2 fF0;F1;F2Mg,
thenM IN WEIGHT CSP(F) is solvable exactly in P.

Proof: Creignou [5] and Khanna et al. [15] show that the
corresponding maximization problem is solvable exactly
in P. Our lemma follows immediately (since the exact
problems are interreducible). 2
Lemma 25 If F � FHS, then
M IN WEIGHT CSP(F) 2 APX.

Proof: By Theorem 17 and Proposition 21 it suffices
to prove the lemma for the problems MIN WEIGHT

CSP(IHS-B). We will show that for everyB,
M IN WEIGHT CSP(IHS-B) isB + 1-approximable.

Given an instanceI of M IN WEIGHT CSP(IHS-B)
on variablesx1; : : : ; xn with constraintsC1; : : : ; Cm



with weightsw1; : : : ; wm, we create a linear program on
variablesy1; : : : ; yn (corresponding to the Boolean vari-
ablesx1; : : : ; xn) and variablesz1; : : : ; zm (correspond-
ing to the constraintsC1; : : : ; Cm). For every constraintCj in the instanceI we create an LP constraint as fol-
lows:

1. If Cj = xi1 W � � �Wxik , for k � B, we create the
constraint zj + yi1 + � � �+ yik � 1

2. If Cj = :xi1 Wxi2 , we create the constraintzj + (1� yi1) + yi2 � 1
3. If Cj = :xi1 we create the constraintzj + (1� yi1) � 1

In addition we add the constraints0 � zj ; yi � 1 for
every i; j. It may be verified that any integer solution
to the above described LP corresponds to an assignment
to the MIN CSP problem with the variablezj set to1
if the constraintCj is not satisfied. Thus the objective
function for the LP is to minimize

Pj wjzj .
Given any feasible solution

vectory1; : : : ; yn; z1; : : : ; zm to the LP above, we show
how to obtain a0=1 vectory001 ; : : : ; y00n; z001 ; : : : ; z00m that
is also feasible such that

Pj wjz00j � (B +1)Pj wjzj .
First we sety0i = minf1; (B + 1)yig and z0j =minf1; (B + 1)zjg. Observe that the vectory01; : : : ; y0n;z01; : : : ; z0m is also feasible and gives a solution of value

at most(B + 1)Pj wjzj . We now how to get aninte-
gral solution whose value is at most(B + 1)Pj wjz0j .
For this part we first sety00i = 1 if y0i = 1 andz00j = 1
if z0i = 1. Now we remove every constraint in the LP
that is made redundant. Notice in particular that every
constraint of type (1) is now redundant (eitherz00j or one
of they00i ’s has already been set to1 and hence the con-
straint will be satisfied by any assignment to the remain-
ing variables). We now observe that, on the remaining
variables, the LP constructed above reduces to ans-t
M IN CUT LP relaxation, and therefore has an optimal
integral solution. We setz00j ’s andy00i to such an integral
and optimal solution. Notice that the so obtained solu-
tion is integral and satisfies

Pj wjz00j � Pj wjz0j �(B + 1)Pj wjzj . 2
Lemma 26 For any familyF � F2A, fx� y = 1; x =1g perfectly implements the familyF .

Proof: By Proposition 18 it suffices to implement the
basic width-2 affine functions: namely, the functionsx�y = 1, x � y = 0, x = 1 andx = 0. The first and
the third functions are in the target family. The function

x� y = 0 is perfectly 2-implemented by the constraintsx� zAUX = 1 andy � zAUX = 1. The functionx = 0
is implemented by the constraintsx � zAUX = 1 andzAUX = 1. 2

As a consequence of the above lemma and
Lemma 23, we get:

Lemma 27 For any
familyF � F2A, M IN WEIGHT CSP(F) A-reduces to
M IN WEIGHT CSP(fx� yg).

The following lemmas show reducibility
to MIN 2CNF DELETION, NEARESTCODEWORD and
M IN HORN DELETION.

Lemma 28 For any familyF � F2CNF, the family
2CNFperfectly implements every function inF .

Proof: Again it suffices to consider the basic constraints
of F and this is some subset offx_ y;:x_ y;:x_:y; x;:xg:
The family 2CNF contains all the above functions ex-
cept the function:xW y which is implemented by the
constraints:xW:zAUX andyW zAUX . 2
Lemma 29 For any familyF � FA, the familyfx1 �x2 � x3 = 0; x1 � x2 � x3 = 1g perfectly implements
every function inF .

Proof: It suffices to show implementation of the basic
affine constraints, namely, constraints of the formx1 �x2:::�xp = 0 andx1�x2:::�xq = 1 for somep; q � 1.
We focus on the former type as the implementation of
the latter is analogous.

First, we observe that the constraintx1 � x2 = 0 is
implemented byx1 � x2 � z1 = 0x1 � x2 � z2 = 0x1 � x2 � z3 = 0z1 � z2 � z3 = 0:

Now the constraintx1 = 0 can be implemented byx1 � z1 = 0x1 � z2 = 0x1 � z3 = 0z1 � z2 � z3 = 0:
The width-2 constraints in the above can be expanded

as before.
Finally, the constraintx1 � x2:::� xp for anyp > 3

can be implemented as follows. We introduce the fol-
lowing set of constraints using the auxiliary variablesz1; z2; :::; zp�3.



x1 � x2 � z1 = 0z1 � x3 � z2 = 0z2 � x4 � z3 = 0
...

...
...zp�3 � xp�1 � xp = 0 2

Lemma 30 For any family F � FWP, the familyfx;:x;:xW yW zg) perfectly implements every func-
tion inF .

Proof: A k-ary weakly positive constraint (fork � 2)
is either of the formx1Wx2W : : :Wxk or of the form:x1Wx2W : : :Wxk. For k = 2, the implementation
of (xW y) isf(:aWxW y); ag, and the implementation
of (:xW y) is f(:xW yW a);:ag. Fork = 3, the im-
plementation of(xW yW z) is f(aWx); (:aW yW z)g
(the constraint(aWx) has in turn to be implemented
with the already shown method). Fork � 4, we use
the textbook reduction from SAT to 3SAT (see e.g. [9,
Page 49]) and we observe that when applied tok-ary
weakly positive constraints it yields a perfect implemen-
tation using only 3-ary weakly positive constraints.2
5. Hardness Results (Reductions) for

M IN CSP

Lemma 31 (TheAPX-hard Case) If F 6� F 0, forF 0 2 fF0;F1;F2Mg, andF � FHS thenM IN WEIGHT

CSP(F) is APX-hard.

Proof: Follows immediately from the results of [15].2
Lemma 32 (TheM IN UNCUT-hard Case) If F 6� F 0,
for F 0 2 fF0;F1;F2M;FHSg, and F � F2A then
M IN WEIGHT CSP(F) is M IN UNCUT-hard.

Proof: It suffices to show that we can perfectly imple-
ment the constraintx � y = 1. Consider a constraintf 2 F2A such thatf 62 FHS. We know thatf can be ex-
pressed as a conjunction of constraints drawn from the
family fx�y = 0; x�y = 1; x = 0; x = 1g. Notice fur-
ther that all of these constraints except for the constraintx� y = 1 are also inFHS. Thusf must contain, as one
of its basic primitives, the constraintx� y = 1. Now an
existential quantification over all the remaining variables
in f gives us a perfect implementation ofx� y = 1. 2

For the MIN 2CNF DELETION-hardness proof, we
need the following two simple lemmas.

Lemma 33 Let f
be a 2CNF function which is not width-2 affine. Thenf can perfectly implement some function in the familyF = f(xW y); (xW:y); (:xW:y)g.

Proof: Let f be a 2CNF function on the variablesx1; : : : ; xk. f is a conjunction of constraints of the formxi)xj , xi):xj and :xi)xj . Consider a directed
graphGf on2k vertices (one corresponding to every lit-
eralxi or :xi) which has a directed edge from a literall1 to a literall2, if this is a constraint imposed byf . We
claim that the graphGf must have verticesl1 andl2 such
that there is a directed path froml1 to l2 but not the other
way around. (If not, thenf can be expressed as a con-
junction of equality and inequality constraints.) Existen-
tially quantifying over all other variables (except those
involved inl1 andl2) we find thatf implements the con-
straintl1)l2, which is one of the constraints fromF . 2
Lemma 34 Given any
functionf 2 F = f(xW y); (xW:y); (:xW:y)g and
the function(x�y) = 1, we can perfectly implement all
the functions inF .

Lemma 35 (TheM IN 2CNF DELETION-hard Case)
If F 6� F 0, for F 0 2 fF0;F1;F2M;FHS;F2Ag,
and F � F2CNF then M IN WEIGHT CSP(F) is
M IN 2CNF DELETION-hard.

Proof: We need to show that we can perfectly imple-
ment the constraintsxW y and:xW:y. SinceF 6�FHS, it must contain a constraintf which is not a
IHS-B+ constraint and a constraintg which is not a
IHS-B� constraint. Since bothf andg are 2CNF con-
straints, it means thatf must have(:xW:y) as a ba-
sic constraint andg must have(xW y) as a basic con-
straint in their respective maxterm representations. Ob-
serve that the maxterm representations of neitherf norg can have the basic constraints(xW:y) and(:xW y).
Using this observation we may conclude that an exis-
tential quantification over all variables besidesx; y in f
will either perfectly implement the constraint:xW:y
or the constraintx � y = 1. Similarly, g can perfectly
implement either the constraintxW y or x � y = 1.
If we get bothxW y and:xW:y, we are done. Oth-
erwise, we have a perfect implementation of the func-
tion (x � y = 1). SinceF 6� F2A, there must exist
a constrainth 2 F which is not width-2 affine. Using
Lemmas 33 and 34, we can now conclude a perfect im-
plementation of the desired constraints. 2
Lemma 36 If F � FA
but F 6� F 0 for anyF 0 2 fF0;F1;F2M;FHS;F2Ag,
thenM IN WEIGHT CSP(F) is NEARESTCODEWORD-
hard.

Proof: Khanna et al. [15] show that in this caseF per-
fectly implements the constraintx1 � � � � � xp = b for
somep � 3 and someb 2 f0; 1g. Thus the familyF [ fT; Fg implements the functionsx � y � z =0; x � y � z = 1. Thus NEAREST CODEWORD =
M IN CSP(fx�y�z = 0; x�y�z = 1g is A-reducible
to MIN WEIGHT CSP(F [ fF; Tg). SinceF is neither



0-valid nor 1-valid, we can use Lemma 23 to conclude
that MIN WEIGHT CSP(F) is NEAREST CODEWORD-
hard. 2
Lemma 37 ([1]) NEAREST CODEWORD is hard to ap-
proximate to within a factor of2log1�� n.

Proof: The required hardness of the nearest codeword
problem is shown by Arora et al. [1]. The nearest code-
word problem, as defined in Arora et al., works with
the following problem: Given ann � m matrixA and
anm-dimensional vectorb, find ann-dimensional vec-
tor x which minimizes the Hamming distance betweenAx and b. Thus this problem can be expressed as a
M IN CSP problem withm affine constraints overn-
variables. The only technical point to be noted is that
these constraints have unbounded arity. In order to get
rid of such long constraints, we replace a constraint of
the fo rm x1 � � � � � xl = 0 into l � 2 constraintsx1 � x2 � z1 = 0, z1 � x3 � z2 = 0, etc. on auxil-
iary variablesz1; : : : ; zl�3. (The same implementation
was used in Lemma 29.) This increases the number of
constraints by a factor of at mostn, but doe s not change
the objective function. 2

It remains to see the MIN HORN DELETION-hard
case. We will have to draw some non-trivial conse-
quences from the fact that a family is not IHS-B.

Lemma 38 AssumeF 6� FHS and eitherF � FWP orF � FWN. ThenF contains a non C-closed function.

Proof: Follows from the fact that aC-closed weakly
positive function is also weakly negative. 2
Lemma 39 If f is a weakly positive function not ex-
pressible as IHS-B+, then ff; x; (:x)g can perfectly
implement the function(:xW yW z).
Proof: Since f is not IHS-B+, any maxterm rep-
resentation off must have either a maxtermm =(:xW yW zW :::) or a maxtermm0 = (:xW:yW :::).
But sincef is weakly positive, we must have the for-
mer scenario. We first show thatf can perfectly imple-
ment the functionsx = y andxW y. To get the for-
mer, we set all literals inm, besides:x andy, to false
and existentially quantify over the rest. Sincem is a
maxterm, the new functionf 0 thus obtained must either
be (:xW y)(xW:y) or just (:xW y). In the former
case, we are done, otherwise,ff 0(x; y); f 0(y; x)g per-
fectly implements thex = y constraint. To obtain a
perfect implementation ofxW y, a similar argument can
be used by setting all literals inm besidesy andz to
false.

We next show how the same functionf can
also be used to obtain a perfect implementations of(:xW yW z) and(:xW y). To do so, we now set all the
literals inm besides:x, y andz to false. Existentially
quantifying over any other variables, we get a functionf 00 with a truth table as given in Figure 1.

BA

0 1

D

yz
x 00      01      11     10

C1

1

1

0

Figure 1. Truth-table of the constraint f 00
If C = 0 then restrictingx = 1 gives the(y� z = 1)

constraint. This contradicts the weakly positive assump-
tion and henceC = 1. If A = 1 or D = 1, we get a
function (xW:y). ElseA = 0 andD = 0. Now ifB = 0, we again get(xW:y) by existentially quanti-
fying overz, and ifB = 1, we get the complement of
1-in-3 sat. The complement of 1-in-3 sat function along
with x = y can once again implement(xW:y)— sim-
ply setx = z. Thus we have a perfect implementation
of (xW:y).

Now using the fact that we have the function(xW:y), we can implement(:xW yW z) by the fol-
lowing collection of constraints:ff 00(x; a; b); (:a_ y); (:b_ z)g

This completes the proof. 2
Lemma 40 (TheM IN HORN DELETION-hard Case)
If F 6� F 0,
for F 0 2 fF0;F1;F2M;FHS;F2A;F2CNFg, and eitherF � FWP or F � FWN, thenM IN WEIGHT CSP(F)
is M IN HORN DELETION-hard.
Proof: From the above lemmas and from Lemma 22
we have that MIN WEIGHT CSP(fx;:x;:xW yW zg)
is A-reducible to MIN WEIGHT CSP(F). 2
Lemma 41 M IN HORN DELETION is hard to approxi-
mate to within2log1�� n.
Proof: Reduction from the
M IN TOTAL LABEL-COVER problem. Let(q1; q2; V )
be an instance of MIN TOTAL LABEL-COVER, whereq1 : [R℄ ! [Q1℄, q2 : [R℄ ! [Q2℄ andV : [R℄ �[A1℄ � [A2℄ ! f0; 1g. For anyr 2 [R℄, we defineA

(r) = f(a1; a2) : V (r; a1; a2) = 1g.

We now describe the reduction. For anyr 2 R,a1 2 [A1℄, anda2 2 [A2℄ we have a variablevr;a1;a2
whose intended meaning is the value ofV (r; a1; a2).
Moreover, for anyq 2 Q1 (respectively,q 2 Q2) and
any a 2 A1 (resp. a 2 A2) we have a variablewq;a
(resp.xq;a), with the intended meaning that its value is
1 if and only if a 2 p1(q) (respectively,a 2 p2(q)).
For anywq;a (resp. xq;a) variable we have the weight-
one constraint:wq;a (resp.:xq;a.) The following con-
straints (each with weight(A1Q1+A2Q2)) enforce the
variables to have their intended meaning. Due to their
weight, it is never convenient to contradict them.
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(r) vr;a1;a28r 2 [r℄; a1 2 [A1℄; a2 2 [A2℄ : vr;a1;a2 ) wq1(r);a18r 2 [r℄; a1 2 [A1℄; a2 2 [A2℄ : vr;a1;a2 ) xq2(r);a2
The constraints of the first kind can be perfectly
implemented with xW yW z and xW yW:z (see
Lemma 30). It can be checked that this is
an A-reduction from MIN TOTAL LABEL-COVER to
M IN HORN DELETION. 2
6. M IN ONES vs. M IN CSP

We begin this section with the following easy relation
between MIN CSP and MIN ONES problems.
Proposition 42
For any constraint familyF , M IN WEIGHT ONES(F)
is A-reducible toM IN WEIGHT CSP(F [ f:xg).
Proof: Let I be an instance of MIN WEIGHT ONES(F)
over variablesx1; : : : ; xn with weightsw1; : : : ; wn. Letwmax be the largest weight. We construct an instanceI 0
of M IN WEIGHT CSP(F [ f:xg) by leaving the con-
straints ofI (each with weightnwmax), and adding a
constraint:xi of weightwi for anyi = 1; : : : ; n. When-
ever the constraints ofI are satisfiable, it will be always
convenient to satisfy them inI 0. 2
Reducing a MIN CSP problem to a MIN ONESproblem
is slightly less obvious.
Proposition 43
(1) If, for any f 2 F , F 0 perfectly imple-

ments(f(~x)W y), then M IN WEIGHT CSP(F)
A-reduces toM IN WEIGHT ONES(F 0).

(2) If, for any f 2 F , F 0 perfectly implements(f(~x) � y = 1), thenM IN WEIGHT CSP(F) A-
reduces toM IN WEIGHT ONES(F 0).

Proof: In both cases, we use an auxiliary variableyj for
any constraintCj . The variable takes the same weight
as the constraint. The original variables have weight
zero. In the first case, a constraintCj is replaced by
(the implementation of)Cj W yj ; in the second case by
(the implementation of)yj = :Cj . Given an assign-
ment for the first case, we may assume as well that theys satisfyyj = :Cj , since ifCj is satisfied by the as-
signment there is no point in havingyj = 1. Thus,
we note that the total weight of non-zero variables in
the MIN ONES instance equals the total weight of non-
satisifed constraints in the MIN CSP instance. 2
7. Containment Results forM IN ONES

Lemma 44 (Poly-time Solvable Cases)If F � F 0 forF 0 2 fF0;FWN;F2Ag, thenM IN WEIGHT ONES (F)
is solvable exactly in polynomial time

Proof: Follows from the results of Khanna et al. [15]
and from the observation that for a familyF , solving to
optimality MIN WEIGHT ONES (F) reduces to solving
to optimality MAX WEIGHT ONES(F�). 2
Lemma 45 If F � F 0 for F 0 2 fF2CNF;FHSg, then
M IN WEIGHT ONES (F) is in APX.

Proof: For the caseF � F2CNF, a 2-approximate algo-
rithm is given by Hochbaum et al. [12].

Consider now the caseF � FHS. From Theorem 17
it is sufficient to consider only basic IHS-B constraints.
Since IHS-B� constraints are weakly negative, we will
restrict to basic IHS-B+ constraints. We use linear-
programming relaxations and deterministic rounding.
Let k be the maximum arity of a function inF , we will
give ak-approximate algorithm. Let� = fC1; : : : ; Cmg
be an instance of MIN WEIGHT ONES (F) over vari-
able setX = fx1; : : : ; xng with weightsw1; : : : ; wn.
The following is an integer linear programming formu-
lation of finding the minimum weight satisfying assign-
ment for�.min Pi wiyi
Subject to yi1 + : : :+ yih � 1 8(xi1 W : : :Wxih) 2 �yi1 � yi2 � 0 8(xi1 W:xi2 ) 2 �yi = 0 8:xi 2 �yi = 1 8xi 2 �yi 2 f0; 1g 8i 2 f1; : : : ; ng

(SCB)
Consider now the linear programming relaxation ob-
tained by relaxing theyi 2 f0; 1g constrains into0 �yi � 1. We first find an optimum solutiony� for the
relaxation, and we then define a 0/1 solution by settingyi = 0 if y�i < 1=k, andyi = 1 if y�i � 1=k. It is easy to
see that this rounding increases the cost of the solution
at mostk times and that the obtained solution is feasible
for (SCB). 2
Lemma 46 For
anyF � FA, M IN WEIGHT ONES (F) is A-reducible
to NEARESTCODEWORD.

Proof: From Lemma 29 and Proposition 19, we
have that MIN WEIGHT ONES (F) AP-reduces to MIN
WEIGHT ONES(fx�y� z = 0; x�y� z = 1g). From
Proposition 42, we have that MIN WEIGHT ONES (F)
A-reduces to NEARESTCODEWORD. 2
Lemma 47 For anyF � FWP, M IN WEIGHT ONES (F) is A-reducible to
M IN HORN DELETION.

Proof: Follows from Lemma 30, Proposition 19, and
Proposition 42. 2



8. Hardness Results forM IN ONES

Lemma 48 (APX-hard Cases)
If F does not satisfy the hypothesis of Lemma 44, then
M IN WEIGHT ONES (F) is APX-hard.

Proof: This part essentially follows from the proof of
[15]. The major steps are as follows: We first argue
that eitherF implements some function of the formx1Wx2W � � �Wxk, or the functionsx1�x2�x3 = 0=1
or the functionx1W:x2. In the first case, we get a
problem that is as hard as Vertex Cover. In the sec-
ond case we get a much harder problem (NCP). In the
final case we need to work some more. In this case
again we show that withff; x;:xg we can implement
the functionxW y. Furthermore, we show that for any
function f , M IN WEIGHT ONES(f; x;:x) AP-reduces
to MIN WEIGHT ONES(f; x1W:x2). Thus once again
we are down to a function which is at least as hard as
VERTEX COVER. 2

From now on we will assume thatF is not 0-valid,
nor weakly negative, nor width-2 affine.

Lemma 49 If F is affine but not width-2 affine nor 0-
valid thenM IN WEIGHT ONES(fx�y�z = 0; x�y�z = 1g) is AP-reducible toM IN WEIGHT ONES (F).
Proof: From [15] we have thatF implements the func-
tion x1 � � � � � xp = b for somep � 3 and someb 2 f0; 1g. Also the existence of non0-valid function
implies we can either (essentially) implement the func-
tion T or the functionx � y = 1. In the former case
we can set the variablesx4; : : : ; xp to 1 and thus im-
plement either the constraintsx1 � x2 � x3 = 0 andx1 � x2 = 1 or the constraintsx1 � x2 � x3 = 1 andx1 � x2 = 0. In the latter case, we can get rid of the
variables inx1 � � � � � xp = p in pairs and thusF ei-
ther implements the functionsx1 � x2 � x3 = 0=1 or it
implements the functionsx1 � x2 � x3 � x4 = 0=1.

In the first and third cases listed above we immedi-
ately implement the familyfx�y�z = 0; x�y�z = 1g
and so we are done. In the second and fourth cases this
will not be possible (in the second case we always have
1-valid constraint and in the last case we always have
constraints of even width). So we will show how to re-
duce the problem MIN WEIGHT ONES(fx � y � z =0; x�y�z = 1g) to these problems. The basic idea be-
hind the reductions is that if we have available a variableW which we know is zero, then we can implement the
constraintx�y�z = 0=1. In the second case above, we
only need to implement the constraintx�y�z = 0 and
this is done using the constraintsx� y�uAUX = 1 anduAUX �W � z = 1. In the fourth case above, the con-
straintx�y�z = b is implemented using the constraintx�y� z�W = b. To create such a variable we simply
introduce in every instance of the reduced problem an

auxiliary variableW and place a very large weight on it,
so that any small weight assignment to the variables is
forced to makeW a zero. 2
Lemma 50 M IN WEIGHT ONES(fx� y � z = 1; x�y�z = 0g) is NEARESTCODEWORD-hard and hard to
approximate to within a factor of2log� n.

Proof: The NEARESTCODEWORD-hardness follows
from Lemma 29 and Proposition 43. The hardness of
approximation is due to Lemma 37. 2
Lemma 51
M IN WEIGHT ONES(fxW yW z; xW yW:z; xW:yg)
is hard to approximate within2log1�� n for any� > 0.

Proof: Follows from Lemma 41 and Proposition 43.2
Lemma 52 If F is weakly positive and not IHS-B (nor
0-valid) thenM IN WEIGHT ONES (F) is M IN HORN

DELETION-hard.

Proof: Similar to the proof of Lemma 39. 2
Lemma 53 If F is not 2CNF, nor IHS-B, nor affine,
nor weakly positive (nor 0-valid nor weakly neg-
ative), then M IN ONES (F) is poly-APX-hard and
M IN WEIGHT ONES (F) is hard to approximate to
within any factor.

Proof: We first show how to handle the weighted case.
The hardness for the unweighted case will follow eas-
ily. Consider a functionf 2 F which is not weakly
positive. For such anf , there exists assignments~a and~b such thatf(~a) = 1 andf(~b) = 0 and~a is zero in
every coordinate where~b is zero. (Such a input pair ex-
ists for every non-monotone functionf and every mono-
tone function is also weakly positive.) Now letf 0 be
the constraint obtained fromf by restricting it to in-
puts where~b is one, and setting all other inputs to zero.
Then f 0 is a satisfiable function which is not1-valid.
We can now apply Schaefer’s theorem [25] to conclude
that SAT(F [ ff 0g) is hard to decide. We now reduce
an instance of deciding SAT(F [ ff 0g) to approximat-
ing MIN WEIGHT CSP(F). Given an instanceI of
SAT(F [ ff 0g) we create an instance which has some
auxiliary variablesW1; : : : ;Wk which are all supposed
to be zero. This in enforced by giving them very large
weights. We now replace every occurence of the con-
straintf 0 in I by the constraintf on the corresponding
variables with theWi’s in place which were set to zero
in f to obtainf 0. It is clear that if a “small” weight solu-
tion exists to the resulting MIN WEIGHT CSP problem,
thenI is satisfiable, else it is not. Thus we conclude it
is NP-hard to approximate MIN WEIGHT CSP to within
any bounded factors.

For the unweighted case, it suffices to observe that
by using polynomially bounded weights above, we get a
poly-APX hardness. Further one can get rid of weights
entirely by replicating variables. 2



Lemma 54 ([25]) Let F be a constraint family that is
not 0-valid, nor 1-valid, nor weakly positive, nor weakly
negative, nor affine, nor 2CNF. Then, given a set of con-
straints fromF it is NP-hard to decide if they are satsi-
fiable.
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Appendix

A. Classification Theorems of Creignou [5]
and Khanna et. al. [15]

Theorem 55 (MAXCSP Classi-
fication Theorem) [5, 15] For every constraint setF ,
the problemMAXCSP(F) is always either inP or is
APX-complete. Furthermore, it is inP if and only ifF 0
is 0-valid or 1-valid or 2-monotone.



Theorem 56
(MAX ONES Classification Theorem) [15]For every
constraint setF , MAX ONES(F) is either solvable ex-
actly in P or APX-complete orpoly-APX-complete or
decidable but not approximable to within any factor or
not decidable. Furthermore,
(1) If F is 1-valid or weakly positive or affine with

width2, thenMAX ONES(F) is in P.

(2) Else ifF is affine thenMAX ONES(F) is APX-
complete.

(3) Else ifF is strongly0-valid or weakly negative
or 2CNF thenMAX ONES(F) is poly-APX com-
plete.

(4) Else ifF is 0-valid thenSAT(F) is in P but find-
ing a solution of positive value is NP-hard.

(5) Else
finding any feasible solution toMAX ONES(F)
is NP-hard.


