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ien
e, MITCambridge, MA 02139, U.S.A.madhu�l
s.mit.eduAbstra
t. The goal of this arti
le is to provide a gentle introdu
tion tothe basi
 de�nitions, goals and 
onstru
tions in 
oding theory. In parti
-ular we fo
us on the algorithmi
 tasks ta
kled by the theory. We des
ribesome of the 
lassi
al algebrai
 
onstru
tions of error-
orre
ting 
odes in-
luding the Hamming 
ode, the Hadamard 
ode and the Reed Solomon
ode. We des
ribe simple proofs of their error-
orre
tion properties. Wealso des
ribe simple and eÆ
ient algorithms for de
oding these 
odes. Itis our aim that a 
omputer s
ientist with just a basi
 knowledge of linearalgebra and modern algebra should be able to understand every proofgiven here. We also des
ribe some re
ent developments and some salientopen problems.1 Introdu
tionError-
orre
ting 
odes are 
ombinatorial stru
tures that allow for the transmis-sion of information over a noisy 
hannel and the re
overy of the informationwithout any loss at the re
eiving end. Error-
orre
ting 
odes 
ome in two basi
formats. (1) The \blo
k error-
orre
ting 
ode": Here the information is brokenup into small pie
es. Ea
h pie
e 
ontains a �xed �nite amount of information.The en
oding method is applied to ea
h pie
e individually (independently). Theresulting en
oded pie
es (or blo
ks) are sent over the noisy 
hannel. (2) The\
onvolutional 
odes": Here the information is viewed as a potentially in�nitestream of bits and the en
oding method is stru
tured so as to handle an in�nitestream. This survey will be restri
ted to the 
overage of some standard blo
kerror-
orre
ting 
odes.Formally a blo
k error-
orre
ting 
ode may be spe
i�ed by an en
oding fun
-tion C. The input to C is a message m, whi
h is a k-letter string over some al-phabet � (typi
ally � = f0; 1g but we will 
over more general 
odes as well). Emapsm into a longer n-letter string over the same alphabet1. The mapped stringis referred to as a 
odeword. The basi
 idea is that in order to send the messagem over to the re
eiver, we transmit instead the 
odeword C(m). By the time thismessage rea
hes the destination it will be 
orrupted, i.e., a few letters in C(m)1 The assumption that the message is a k-letter string over � is just made for no-tational 
onvenien
e. As it will be
ome obvious, the representation of the messagespa
e is irrelevant to the 
ommuni
ation 
hannel. The representation of the en
odedstring is however very relevant!



would have 
hanged. Say the re
eived word is R. Hopefully R will still be able to
onvey the original messagem even if it is not identi
ally equal to C(m). The onlyway to preserve this form of redundan
y is by ensuring that no two 
odewords aretoo \
lose" to ea
h other. This brings us to the important notion of \
lose"nessused, namely the Hamming distan
e. The Hamming distan
e between two stringsx; y 2 �n, denoted �(x; y), is the number of letters where x and y di�er. No-ti
e that � forms a metri
, i.e., �(x; y) = 0 ) x = y, �(x; y) = �(y; x) and�(x; y) + �(x; z) � �(x; z). A basi
 parameter asso
iated with a 
ode is itsdistan
e i.e., the maximum value d su
h that any two 
odewords are a Hammingdistan
e of at least d apart. Given a 
ode of distan
e d and a re
eived wordR thatdi�ers from C(m) in at most e � d�1 pla
es, the error in the transmission 
an bedete
ted. Spe
i�
ally, we 
an tell that some letter(s) has been 
orrupted in thetransmission, even though we may not know whi
h letters are 
orrupted. In orderto to a
tually 
orre
t errors we have to be able to re
overm uniquely based on Rand a bound t on the number of errors that may have o

urred. To get the latterproperty t has to be somewhat smaller than d�1. Spe
i�
ally if t � b(d�1)=2
,then we noti
e that indeed there 
an be at most one message m su
h that�(C(m); R) � t. (If m1 and m2 both satisfy �(C(m1); R); �(C(m2); R) � t,then �(C(m1); C(m2)) � �(m1; R) +�(R;m2) � 2t � d� 1, 
ontradi
ting thedistan
e of C.) Thus in an information theoreti
 sense R maintains the informa-tion 
ontained in m. Re
overing the information m eÆ
iently from C is anothermatter and we will 
ome ba
k to this topi
 presently.To summarize the dis
ussion above we adopt the following terse notation thatis standard in 
oding theory. A 
ode C is an [n; k; d℄q 
ode if C : �k ! �n, wherej�j = q with minx;y2�kf�(C(x); C(y))g = d. With some abuse of notation wewill use C to denote the image of the map C (i.e., C may denote the 
olle
tion of
odewords rather than the map). C is 
alled a e-error-dete
ting 
ode for e = d�1and a t-error 
orre
ting 
ode for t = b(d� 1)=2
.In the remaining se
tions of this arti
le we will des
ribe some 
ommon 
on-stru
tions of [n; k; d℄q for various 
hoi
es of the parameters n; k; d and q. Wewill also des
ribe the algorithmi
 issues motivated by these 
ombinatorial ob-je
ts and try to provide some solutions (and summarize the open problems).(We assume some familiarity with algebra of �nite �elds [10, 19℄.) Before goingon to these issues, we on
e again stress the importan
e of the theory of error-
orre
ting 
odes and its relevan
e to 
omputer s
ien
e. The obvious appli
ationsof error-
orre
ting 
odes are to areas where dealing with error be
omes importantsu
h as storage of information on disks, CDs, and 
ommuni
ation over modemset
. Additionally, and this is where they be
ome important to the theoreti
al
omputer s
ientist, error-
orre
ting 
odes 
ome into play in several ways in 
om-plexity theory | for example, in fault-tolerant 
omputing, in 
ryptography, inthe derandomization of randomized algorithms and in the 
onstru
tion of prob-abilisti
ally 
he
kable proofs. In several of these 
ases it is not so mu
h the �nalresults as the notions, methods and ingredients from 
oding theory that help. Allof this makes it important that a theoreti
al 
omputer s
ientist be 
omfortablewith the methods of this �eld | and this is the goal of this arti
le. A reader



interested in further details may try one of the more 
lassi
al texts [2, 11, 17℄.Also, the arti
le of Vardy [18℄ is highly re
ommended for a more detailed a

ountof progress in 
oding theory. The arti
le is also ri
h with pointers to topi
s of
urrent interest.2 Linear CodesWhile all questions relating to 
oding theory 
an be stated in general, we willfo
us in our arti
le on a subset of 
odes 
alled linear 
odes. These 
odes are ob-tained by restri
ting the underlying alphabet � to be a �nite �eld of 
ardinalityq with binary operations \+" and \�". Thus a string in �n 
an be thought of asa ve
tor in n-dimensional spa
e, with indu
ed operations \+" (ve
tor addition),and \�" (s
alar multipli
ation). Thus a 
ode C � �n is now a subset of theve
tors. If this subset of ve
tors forms a \subspa
e" then the 
ode is linear, asmade formal below:De�nition 1. C � �n is a linear 
ode if 8a 2 �; x; y 2 C, x+ y; a � x 2 C.Many of the parameters of error-
orre
ting 
odes be
ome very 
lean in the
ase of linear 
odes. For instan
e, how does one spe
ify a 
ode C 2 �n? Forgeneral 
odes, su

in
t representations may not exist! However, for every linear
ode a su

in
t representation, of size polynomial in n does exist! In parti
ular,we have the following two representations:1. For every [n; k; d℄q linear 
ode C there exists an n � k \generator" matrixG = GC with entries from � su
h that C = fGxjx 2 �kg.2. For every [n; k; d℄q 
ode C there exists an (n � k) � n parity 
he
k matrixH = HC over � su
h that C = fy 2 �n s.t. Hy = 0g.Conversely, the following hold: Every n � k matrix G over � de�nes an[n; k0; d℄q 
ode, for some d � 1 and k0 � k, CG having as 
odewords fGxjx 2 �kg.Similarly every (n�k)�n matrix H de�nes an [n; k0; d℄ 
ode C0H , for some d � 1and k0 � k, having as 
odewords fy 2 �njHy = 0g.Exer
ise:1. Prove properties (1) and (2) above.2. Given the generator matrix GC of a 
ode C, give a polynomial time algorithmto 
ompute a parity 
he
k matrix HC for C.3. Show that if G is of full 
olumn rank (H is of full row rank) then the 
odeCG (CH) is an [n; k; d℄q 
ode.3 Some 
ommon 
onstru
tions of 
odesIn this se
tion we des
ribe some 
ommon 
onstru
tion of 
odes. But �rst let usestablish the goal for this se
tion. In general we would like to �nd families of[n; k; d℄q 
odes for in�nitely many triples (n; k; d) for some �xed q. The property



we would really like is that k=n and d=n are bounded away from zero as n !1. Su
h a 
ode is termed asymptoti
ally good and the two properties k=n >0 and d=n > 0 are termed 
onstant message-rate and 
onstant distan
e-raterespe
tively. Unfortunately we will not be able to get to this goal in this arti
le.But we will settle for what we term weakly good 
odes. These are 
odes withpolynomial message-rate, i.e., k = 
(n�) for some � > 0 and 
onstant distan
e-rate.3.1 Hamming 
odeHamming 
odes are de�ned for every positive n su
h that there exists an integerl su
h that n = 2l�1. Then the Hamming 
ode of blo
k size n over the alphabetf0; 1g is given by an l � n parity 
he
k matrix HHmg whose 
olumns are all thedistin
t l-dimensional non-zero ve
tors. Noti
e that there are exa
tly 2l � 1 ofthese.Lemma 1. For every positive integer n su
h that n = 2l� 1 for some integer l,the Hamming 
ode of blo
k size n is an [n; n� l; 3℄2 
ode.Proof (Sket
h). Noti
e that the rank of HHmg is l. In parti
ular the 
olumnve
tors 
ontaining exa
tly one 1 are linearly independent and there are l ofthem. Thus we �nd that the Hamming 
ode is an [n; k; d℄2 
ode for k = n� l.We now move to showing that the distan
e of the Hamming 
ode is 3. Noti
ethat the 
ode has no elements of weights sin
e this would imply that two ve
torsin the parity 
he
k matrix are identi
al. This implies the distan
e is at least3. Now 
onsider any two 
olumn ve
tors v1 and v2 in HHmg. Noti
e that theve
tor v1 + v2 is also a 
olumn ve
tor of HHmg and is distin
t from v1 andv2. Now 
onsider the n dimensional ve
tor whi
h is zero everywhere ex
ept inthe 
oordinates 
orresponding to the ve
tors v1; v2 and v1 + v2. This ve
tor hasweight 3 and is easily seen to be an element of the Hamming 
ode. Thus thedistan
e of the Hamming 
ode is exa
tly 3.The Hamming 
ode is a simple 
ode with a very good rate. Unfortunatelyit 
an only 
orre
t 1 error, de�nitely far from our goal of 
onstant error-rate.Next we move on to a 
ode with good error-
orre
ting properties, but with verylow-rate.3.2 Hadamard 
odeA Hadamard matrix is an n � n matrix M with entries from �1 su
h thatMMT = n � In where In is the n � n identity matrix. A Hadamard matriximmediately leads to an error 
orre
ting 
ode where the rows of M are the
odewords. This leads to a 
odeword over the alphabet � = f+1;�1g. We provethe distan
e property of the 
ode �rst.Lemma 2. If M is a Hadamard matrix then any two rows agree is exa
tly n=2pla
es.



Proof. Say the rows of interest are the ith and jth rows. Then 
onsider theelement (MMT )ij . This element is the sum of n terms, with the kth term beingmikmjk . Noti
e that this term evaluates to +1 if mik = mjk and �1 otherwise.Thus if the ith and jth rows disagree in t pla
es, then (MMT )ij = (n � t) + t.Sin
e (MMT )ij = 0, we have that n� 2t = 0 and hen
e the two rows (dis)agreein exa
tly n=2 pla
es.Thus the task of 
onstru
ting a Hadamard 
ode redu
es to the task of 
on-stru
ting Hadamard matri
es. Constru
tions of Hadamard matri
es have beena subje
t of mu
h interest in 
ombinatori
s. It is 
lear (from Lemma 2) that foran n�n Hadamard matrix to exists n must be even. The 
onverse is not knownto be true and is still an open question. What is known is that an n� n matrixexists for every n of the form p�1 where p is a prime. It is also known that if ann1 � n1 Hadamard matrix exists and an n2 � n2 Hadamard matrix exists, thenan n1n2�n1n2 matrix exists. Many other su
h 
onstru
tions are also known butnot all possibilities are 
overed yet. Here we give the basi
 
onstru
tion whi
happlies when n is a power of 2. These 
onstru
tions are des
ribed re
ursively asfollows: MHdm1 = 24+1 +1+1 �135 MHdml = 24+MHdml�1 +MHdml�1+MHdml�1 �MHdml�1 35 :Lemma 3. For every l, the rows of MHdml form a [2l; l; 2l�1℄2 
ode.Proof. Left as an exer
ise to the reader.The Hadamard 
odes maintain a 
onstant distan
e-rate. However their message-rate approa
hes zero very qui
kly. Next we des
ribe a 
ode with 
onstant message-rate and distan
e-rate. The 
at
h is that the 
ode uses an alphabet of growingsize.3.3 Reed Solomon 
odeThe Reed Solomon 
odes are a family of 
odes de�ned over an alphabet ofgrowing size, with n � q. The more 
ommon de�nition of this 
ode is not (we feel)as intuitive or as useful as the \folklore" de�nition. We present both de�nitionshere, starting with the more useful one and then show the equivalen
e of thetwo.De�nition 2 ((Reed Solomon 
odes)). Let � be a �eld of size q, n � qand let x0; : : : ; xn�1 be some �xed enumeration of n of the elements of �. (It isstandard to pi
k n = q� 1 and xi = �i for some primitive element �2. Then forevery k � n, the Reed Solomon 
ode C1RS;n;k;q is de�ned as follows: A messagem = m0 : : :mk�1 
orresponds to the degree k�1 polynomial M(x) =Pk�1i=0 mixi.The en
oding of m, is C1RS;n;k;q(m) = 
0 : : : 
n�1 where 
j =M(xj).2 � is a primitive element of the �eld GF(q) if �j 6= 1 for any j < q � 1.



The distan
e properties of the Reed Solomon 
odes follow immediately fromthe fa
t that a degree k� 1 polynomial may only have k� 1 zeroes unless all ofits 
oeÆ
ients are zero.Lemma 4. For every n � q and k � n, the Reed Solomon 
ode C1RS;n;k formsan [n; k; n� k℄q linear 
ode.Proof. The fa
t that the 
ode is linear follows from the fa
t that if M0(x) andM1(x) are polynomials of degree at most k � 1 then so is M0(x) +M1(x). Thedistan
e follows from the fa
t that if M0(xj) = M1(xj) for k values of j thenM0 � M1 (or equivalently if M0(xj) �M1(xj) is zero for k values of j, thenM0 �M1 is the zero polynomial).Finally for the sake of 
ompleteness we present a se
ond de�nition of ReedSolomon 
odes. This de�nition is more 
ommonly seen in the texts, but we feelthis part may be safely skipped at �rst reading.De�nition 3 ((Reed Solomon 
odes)). Let � be a �eld of size q with prim-itive element �, and let n = q � 1, k � n. Let Pk;q(x) be the polynomial(x � �)(x � �2) � � � (x � �n�k). The Reed Solomon 
ode C2RS;n;k;q is de�ned asfollows: A message m = m0 : : :mk�1 
orresponds to the degree k� 1 polynomialM(x) = Pk�1i=0 mixi. The en
oding of m, is C1RS;n;k;q(m) = 
0 : : : 
n�1 where 
jis the 
oeÆ
ient of xj in the polynomial Pk;q(x)M(x).Viewed this way it is hard to see the 
orresponden
e between the two de�ni-tions (or the distan
e property). We prove an equivalen
e next.Lemma 5. The de�nitions of Reed Solomon 
odes given in De�nitions 2 and 3
oin
ide for n = q � 1 and the standard enumeration of the elements of GF(q).Proof. Noti
e that it suÆ
es to prove that every 
odeword a

ording to the �rstde�nition is a 
odeword a

ording to the se
ond de�nition. The fa
t that thesets are of the same size implies that they are identi
al.Consider the en
oding of m = m0 : : :mk�1. This en
oding is C1RS;n;k;q =
0 : : : 
n�1 with 
i =Pk�1j=0 mj(�i)j . To show that this is a 
odeword a

ordingto the se
ond de�nition we need to verify that the polynomial C(x) =Pn�1i=0 
ixihas (x � �l) as a fa
tor for every l 2 f1; : : : ; n � kg. Equivalently it suÆ
es toverify that C(�l) = 0, whi
h we do next:C(�l) = n�1Xi=0 
i(�l)i= n�1Xi=0 k�1Xj=0mj(�i)j(�l)i= k�1Xj=0mj n�1Xi=0 (�j�l)i



= k�1Xj=0mj q�2Xi=0 
ij;lwhere 
j;l = �j+l. Noti
e that for every j; l s.t. j + l 6= q � 1, 
j;l 6= 1.Noti
e further that for every su
h 
j;l the summation Pq�2i=0 
ij;l = 03. Sin
ej 2 f0; : : : ; k� 1g, we �nd that 
j;l 6= 1 for every l 2 f1; : : : ; q� 1� kg. Thus forevery l 2 f1; : : : ; n� kg, we �nd that C(�l) = 0. This 
on
ludes the proof.3.4 Multivariate polynomial 
odesThe next family of 
odes we des
ribe are not very 
ommonly used in 
odingtheory, but have turned out to be fairly useful in 
omplexity theory and inparti
ular in the results on probabilisti
ally 
he
kable proofs. Surprisingly these
odes turn out to be a 
ommon generalization of Hadamard 
odes and ReedSolomon 
odes!De�nition 4 ((Multivariate polynomial 
ode)). For integer parametersm; l and q with l < q, the multivariate polynomial 
ode Cpoly;m;l;q has as messagea string of 
oeÆ
ients m = fmi1;i2;:::;img with ij � 0 and Pj ij � l. This se-quen
e is interpreted as them-variate polynomial M(x1; : : : ; xm) =Pi1;:::;ij mi1;:::;ijxi11 � � �ximm .The en
oding of m is the string of letters fM(x1; : : : ; xm)g with one letter forevery (x1; : : : ; xm) 2 �m.Obviously the multivariate polynomial 
odes form a generalization of theReed Solomon 
odes (again using the �rst de�nition given here of Reed Solomon
odes). The distan
e property of the multivariate polynomial 
odes follow alsofrom the distan
e property of multivariate polynomials (
f. [5, 13, 21℄).Lemma 6. For integers m; l and q with l < q, the 
ode Cpoly;m;l;q is an [n; k; d℄q
ode with n = qm, k = �m+lm � and d = (q � l)qm�1.Proof. The bound on n is immediate. The fa
t that the number of 
oeÆ
ientsi1; : : : ; im s.t. Pj ij � l is at �m+ll � is a well-known exer
ise in 
ounting. Finallythe bound on the distan
e follows from the fa
t a degree l polynomial 
an onlybe zero for l=q fra
tion of its inputs. (This is an easy indu
tive argument basedon the number of variables. The base 
ase is well known and indu
tively onepi
ks a random assignment to the variables x1; : : : ; xm�1 and argues that theresulting polynomial in xm is non-zero with high probability. Finally one usesthe base 
ase again to 
on
lude that the �nal polynomial in xm is left non-zeroby a random assignment to xm.)It is easy to see that the 
ode C1RS;q;k;q is the same as the 
ode Cpoly;1;k�1;q .Also noti
e that the 
ode Cpoly;m;1;2 forms an [2m;m; 2m�1℄2 
ode, same asparameters of the Hadamard 
ode given by the rows of MHdmm . It turns out thatthese two 
odes are in fa
t identi
al. The proof is left as an exer
ise to the reader.3 This identity is obtained as follows: Re
all that Fermat's little theorem asserts that
q�1 � 1 = 0 for every non-zero 
 in GF(q). Fa
toring the left hand side, we �ndthat either 
 � 1 = 0 orPq�2i=0 
i = 0. Sin
e 
 6= 1, the latter must be the 
ase.



3.5 Con
atenated 
odesEa
h 
ode in the 
olle
tion of 
odes we have a

umulated above has some 
awor the other. The Hamming 
odes don't 
orre
t too many errors, the Hadamard
odes are too low-rate, and the Reed Solomon 
odes depend on a very largealphabet. Yet it turns out it is possible to put some of these 
odes togetherand obtain a 
ode with reasonably good behavior (\polynomially good"). Thisis made possible by a simple idea 
alled \
on
atenation", de�ned next.De�nition 5 ((Con
atenation of 
odes)). Let C1 be an [n1; k1; d1℄q1 
odeover the alphabet �1 and let C2 be an [n2; k2; d2℄q2 
ode over the alphabet �2. Ifq1 = qk22 then the 
ode C1 Æ C2 is de�ned as follows: Asso
iate every letter in �1with a 
odeword of C2. En
ode every message �rst using the 
ode C1 and thenen
ode every letter in the en
oded string using the 
ode C2. More formally, given amessage m 2 �k11 = �k1k22 , let C1(m) = 
1 : : : 
n1 2 �n11 . The en
oding C1ÆC2(m)is given by 
11 : : : 
1n2
21 : : : 
n1n2 2 �n1n22 , where for every i 2 f1; : : : ; n1g,
i1 : : : 
in2 = C2(
i).Almost immediately we get the following property of 
on
atenation.Lemma 7. If C1 is an [n1; k1; d1℄q1 
ode and if C2 is an [n2; k2; d2℄q2 
ode withq1 = qk22 , then C1 Æ C2 is an [n1n2; k1k2; d0℄q2 
ode, for some d0 � d1d2.Proof. The blo
k size and message size bounds follow from the de�nition. Tosee the distan
e property, 
onsider two messages m1;m2 2 �k11 . For l 2 f1; 2g,let 
l1 : : : 
ln1 be the en
oding of ml using C1 and let 
l11 : : : 
ln1n2 be its en
odingusing C1ÆC2. Noti
e that there must exist at least d1 values of i su
h that 
1i 6= 
2i(by the distan
e of C1). For every su
h i, there must exist at least d2 values of jsu
h that 
1ij 6= 
2ij (by the distan
e of C2). Thus we �nd that C1 Æ C2(m1) andC1 Æ C2(m2) di�er in at least d1d2 pla
es.To best see the power of 
on
atenation, 
onsider the following simple ap-pli
ation: Let C1 be a Reed Solomon 
ode with q = 2m, n = q and k = :4n.I.e., C1 is an [n; :4n; :6n℄2m 
ode with n = 2m. Let C2 be the Hadamard 
ode[2m;m; 2m�1℄2. The 
on
atenation C1ÆC2 is an [n2; :4n logn; :3n2℄2 
ode. I.e., theresulting 
ode has 
onstant distan
e-rate, polynomial rate and is over the binaryalphabet! Thus this satis�es our weaker goal of obtaining a weakly-good 
ode.Even the goal of obtaining an asymptoti
ally good 
ode is 
lose now. In parti
u-lar, the 
ode of Justesen is obtained by an idea similar to that of 
on
atenation.Unfortunately we shall not be able to 
over this material in this arti
le.4 Algorithmi
 tasksWe now move on to the algorithmi
 tasks of interests: The obvious �rst 
andidateis en
oding.



Problem 1 ((En
oding)).Input: n� k matrix G and message m 2 �k.Output: C(m), where C = CG is the 
ode with G as the generator matrix.It is 
lear that the problem as spe
i�ed above is easily solved in time O(nk)and hen
e in time polynomial in n. For spe
i�
 linear 
odes su
h as the ReedSolomon 
odes it is possible to en
ode the 
odes faster, in time O(n log
 n) forsome 
onstant 
. However till re
ently no asymptoti
ally good 
ode was knownto be en
odable in linear time. In a re
ent breakthrough. Spielman [15℄ presentedthe �rst known 
ode that is en
odable in linear time. We will dis
uss this morein a little bit.The next obvious 
andidate problem is the de
oding problem. On
e againit is 
lear that if the re
eived word has no errors, then this problem is only ashard as solving a linear system and thus 
an be easily solved in polynomial time.So our attention moves to the 
ase where the re
eived word has errors. We �rstde�ne the error dete
tion problem.Problem 2 ((Error dete
tion)).Input: n�k generator matrix G for a 
ode C = CG; and a re
eived word R 2 �n.Output: Is R a 
odeword?The error dete
tion problem is also easy to solve in polynomial time. We �ndthe parity 
he
k matrix H for the 
ode C and then 
he
k if HR =0. We nowmove to the problem of de
oding in the presen
e of errors. This problem 
omesin several variants. We start with the simple de�nition �rst:Problem 3 ((Maximum likelihood de
oding)).Input: n�k generator matrix G for a 
ode C = CG; and a re
eived word R 2 �n.Output: Find a 
odeword x 2 C, that is nearest to R in Hamming distan
e.(Ties may be broken arbitrarily.)There are two obvious strategies for solving the maximum likelihood de
odingproblem:Brute For
e 1: Enumerate all the 
odewords and �nd the one that is 
losestto R.Brute For
e 2: For t = 0; 1; : : : ;, do: Enumerate all possible words within aHamming distan
e of t from R and 
he
k if the word is a 
odeword. Output the�rst mat
h.Despite the naivete of the sear
h strategies above, there are some simple 
aseswhere these strategies work in polynomial time. For instan
e, the �rst strategyabove does work in polynomial time for Hadamard 
odes. The se
ond strategyabove works in polynomial time for Hamming 
odes (why?). However, bothstrategies start taking exponential time on
e the number of 
odewords be
omeslarge, while distan
e also remains large. In parti
ular, for \asymptoti
ally good"or even \weakly good" 
odes, both strategies above run in exponential time.One may wonder if this exponential time behavior is inherent to the de
odingproblem. In perhaps the �rst \
omplexity" result in 
oding theory, Berlekamp,M
Elie
e and van Tilborg [4℄ present the answer to this question.



Theorem 1 ([4℄). The Maximum likelihood de
oding problem for general linear
odes is NP-hard.There are two potential ways to attempt to 
ir
umvent this result. Onemethod is to de�ne and solve the maximum likelihood de
oding problem forspe
i�
 linear 
odes. We will 
ome to this question momentarily. The other hopeis that we attempt to 
orre
t only a limited number of errors. In order to do so,we further parameterize the maximum likelihood de
oding problem as follows:Problem 4 ((Bounded distan
e de
oding)).Input: n � k generator matrix G for a 
ode C = CG; a re
eived word R 2 �nand a positive integer t.Output: Find any/all 
odewords in C within a Hamming distan
e of t from R.The hardness result of [4℄ a
tually applies to the Bounded distan
e de
odingproblem as well. However one 
ould hope for a result of the form: \There exists an� > 0, su
h that for every [n; k; d℄q linear 
ode C, the bounded distan
e de
odingproblem for C with t = �d is solvable in polynomial time". One bottlene
k tosu
h a general result is that we don't know how to 
ompute d for a generi
 linear
ode. This motivates the following problem:Problem 5 ((Minimum distan
e)).Input: n� k generator matrix G for a 
ode C = CG and an integer parameter d.Output: Is the distan
e of C at least d?This problem was 
onje
tured to be 
oNP-hard in [4℄. The problem remainedopen for nearly two de
ades. Re
ently, in a major breakthrough, this problemwas shown to be 
oNP-
omplete by Vardy [18℄. While this does not dire
tly ruleout the possibility that a good bounded distan
e de
oding algorithm may exist,the result should be ruled as one more reason that general positive results maybe unlikely.Thus we move from general results, i.e., where the 
ode is spe
i�ed as partof the input, to spe
i�
 results, i.e., for well-known families of 
odes. The �rstquestion that may be asked is: \Is there a family of asymptoti
ally-good [n; k; d℄qlinear 
ode and � > 0, for whi
h a polynomial time bounded distan
e de
odingalgorithm exists for t � �d?" For this question the answer is \yes". A large num-ber of algebrai
 
odes do have su
h polynomial time bounded distan
e de
odingalgorithms. In parti
ular the Reed Solomon 
odes are known to have su
h ade
oding algorithm for t � b(d � 1)=2
 (
f. [2, 11, 17℄). This 
lassi
al result isvery surprising given the non-trivial nature of this task. This result is also very
ru
ial for many of the known asymptoti
ally good 
odes, sin
e many of these
odes are 
onstru
ted by 
on
atenating Reed Solomon 
odes with some other
odes. In the next se
tion we shall 
over the de
oding of Reed Solomon 
odes inmore detail.Lastly there is another 
lass of 
odes, 
onstru
ted by 
ombinatorial means,for whi
h bounded distan
e de
oding for some t � �d 
an be performed inpolynomial time. These are the expander 
odes, due to Sipser and Spielman [14℄



and Spielman [15℄. The results 
ulminate in a 
ode with very strong | lineartime (!!!) | en
oding and bounded distan
e de
oding algorithms. In additionto being provably fast, the algorithms for the en
oding and de
oding of these
odes are surprisingly simple and 
lean. However, the des
ription of the 
odesand analysis of the algorithm is somewhat out of the s
ope of this paper. Werefer the reader to the original arti
les [14, 15℄ for details.5 De
oding of Reed Solomon 
odeAs mentioned earlier a polynomial time algorithm for bounded distan
e de
odingis known and this algorithm 
orre
ts up to t � b(d � 1)=2
 errors. Noti
e thatthis 
oin
ides exa
tly with the error-
orre
tion bound of the 
ode (i.e., a ReedSolomon 
ode of distan
e d is a t-error-
orre
ting 
ode for t = b(d�1)=2
). Thisbound on the 
orre
tion 
apability is inherent, if one wishes to determine the
odeword uniquely. However in the bounded distan
e de
oding problem we doallow for multiple solutions. Given this latitude it is reasonable to hope for apolynomial-time de
oding algorithm that 
orre
ts more errors - say up to t <(1��)dwhere � is some �xed 
onstant. However no su
h algorithm is known for allpossible values of (n; k; d = n� k). Re
ently, in [16℄, we presented an algorithmwhi
h does 
orre
t up to (1 � �)d errors, provided k=n ! 0. This algorithmwas inspired by an algorithm of Wel
h and Berlekamp [20, 3℄ for de
oding ReedSolomon 
odes. This algorithm is espe
ially 
lean and elegant. Our solution usessimilar ideas to 
orre
t even more errors and we present this next.Noti
e �rst that the de
oding problem for Reed Solomon 
odes 
an be solvedby solving the following 
leanly stated problem:Problem 6 ((Reed Solomon de
oding)).Input: n pairs of points f(xi; yi)g, xi; yi 2 GF(q); and integers t; k.Output: All polynomials p of degree at most k � 1 su
h that yi 6= p(xi) for atmost t values of i.The basi
 solution idea in Wel
h-Berlekamp and our algorithm is to �ndan algebrai
 des
ription of all the given points, and to then use the algebrai
des
ription to extra
t p. The algebrai
 des
ription we settle for is an \algebrai

urve in the plane", i.e., a polynomial Q(x; y) in two variables x and y su
hthat Q(xi; yi) = 0 for every value of x and y. Given this basi
 strategy, theperforman
e of the algorithm depends on the 
hoi
e of the degree of Q whi
hallows for su
h a 
urve to exist, and still be useful! (For example if we allow Q tobe 0, or if we pi
k the degree of Q be n in x and 0 in y, the su
h polynomials doexist, but are of no use. On the other hand a non-zero polynomial Q of degreen=10 in x and 0 in y may be useful, but will probably not exist for the givendata points.)To determine what kind of polynomialQ we should sear
h for, we pi
k two pa-rameters l and m and impose the following 
onditions on Q(x; y) =Pi;j qijxiyj :1. Q should not be the zero polynomial. (I.e., some qij should be non-zero.)



2. qij is non-zero implies j � m and i + (k � 1)j � l. (The reason for thisrestri
tion will be
ome 
lear shortly.)3. Q(xi; yi) = 0 for every given pair (xi; yi).Now 
onsider the task of sear
hing for su
h a Q. This amounts to �ndingvalues for the unknown 
oeÆ
ients qij . On the other hand the 
onditions in(3) above amount to homogeneous linear equations in qij . By elementary linearalgebra a solution to su
h a system exists and 
an be found in polynomial timeprovided the number of equations (n) stri
tly ex
eeds the number of unknowns(i.e., the number of (i; j) pairs su
h that 0 � i; j, j � m and i+(k�1)j � m). Itis easy to 
ount the number of su
h 
oeÆ
ients. The existen
e of su
h 
oeÆ
ientswill determine our 
hoi
e of m; l. Having determined su
h a polynomial we willapply the following useful lemma to show that p 
an be extra
ted from Q.Lemma 8 ([1℄). Let Q(x; y) = Pi;j qijxiyj be su
h that qij = 0 for every i; jwith i + (k � 1)j > l. Then if p(x) is polynomial of degree k � 1 su
h that forstri
tly more than l values of i, yi = p(xi) and Q(xi; yi) = 0, then y � p(x)divides the polynomial Q(x; y).Proof. Consider �rst the polynomial g(x) obtained from Q by substituting y =p(x). Noti
e that the term qijxiyj be
omes a polynomial in x of degree i+(k�1)jwhi
h by property (2) above be
omes a polynomial of degree at most l in x. Thusg(x) = Q(x; p(x)) be
omes a polynomial in x of degree at most l. Now, for everyi su
h that yi = p(xi) and Q(xi; yi) = 0, we have that g(xi) = Q(xi; p(xi)) = 0.But there are more than l su
h values of i. Thus g is identi
ally zero. Thisimmediately implies that Q(x; y) is divisible by y� p(x). (The division theoremfor polynomials says that if a polynomial h(y) evaluates to 0 at y = � theny � � divides h(y). Applying this fa
t to the polynomial Qx(y) = Q(x; y) andy = p(x), we obtain the desired result. Noti
e in doing so, we are swit
hing ourperspe
tive. We are thinking of Q as a polynomial in y with 
oeÆ
ients fromthe ring of polynomials in x.)Going ba
k to the 
hoi
e of m and l, we have several possible 
hoi
es. In oneextreme we 
an settle for m = 1 and then if l � (n+ k)=2, then we �nd that thenumber of 
oeÆ
ients is more than n. In this 
ase the polynomial Q(x; y) foundby the algorithm is of the form A(x)y + B(x). Lemma 8 above guarantees thatif t � b(n� k)=2
 then y� p(x) divides Q. Thus p(x) = �B(x)=A(x) and 
an be
omputed easily by a simple polynomial division. Thus in this 
ase we 
an de
odefrom b(n � k)=2
 errors thus re
overing the results of [20℄. In fa
t, in this 
asethe algorithm essentially mimi
s the [20℄ algorithm, though the 
orresponden
emay not be immediately obvious.At a di�erent extreme one may pi
km �pn=k and l � pnk and in this 
aseLemma 8 works for t � n� 2pnk. In this 
ase to re
over p(x) from Q, one �rstfa
tors the bivariate polynomial Q. This gives a list of all polynomial pj(x) su
hthat y�pj(x) dividesQ. From this list we pull out all the polynomials pj su
h thatpj(xi) 6= yi for at most t values of xi. Thus in this 
ase also we have a polynomialtime algorithm provided Q 
an be fa
tored in polynomial time. Fortunately, su
h
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Fig. 1. Fra
tion of errors 
orre
ted by the algorithm from [16℄ plotted against the rateof the 
ode. Also plotted are the distan
e of the 
ode and the 
lassi
al error-
orre
tionbound.algorithms are known, due to Kaltofen [8℄ and Grigoriev [7℄ (see Kaltofen [9℄ fora survey of polynomial fa
torization algorithms). For k=n ! 0, the number oferrors 
orre
ted by this algorithm approa
hes (1� o(1))n.A more detailed analysis of this algorithm and the number of errors 
orre
tedby it appear in [16℄. The result shows that this given an [n; �n; (1� �)n℄q ReedSolomon 
ode, the number of errors 
orre
ted by this algorithm approa
hesn�1� 11 + �� � ��2 �� where �� = $r 2� + 14 � 12% :A plot of this 
urve against � appears in Figure 1. Also shown in the �gureare the distan
e of the 
ode ((1� �)n) and the 
lassi
al-error 
orre
tion bound((1� �)=2n).6 Open questionsGiven that the fundamental maximum likelihood de
oding problem is NP-hardfor a general linear 
ode, the next dire
tion to look to is a bounded distan
e



de
oding algorithm for every [n; k; d℄q linear 
ode. The bottlene
k to su
h anapproa
h is that in general we 
an't 
ompute d in polynomial time, due to there
ent result of Vardy [18℄. Thus the next step in this dire
tion seems to suggestan appli
ation of approximation algorithms:Open Problem 1 Given an n� k matrix G, approximate the distan
e d of the
ode CG to within a fa
tor of �(n).The goal here is to �nd the smallest fa
tor �(n) for whi
h a polynomial timeapproximation algorithm exists. Currently no non-trivial (i.e., with �(n) = o(n))approximation algorithm is known. A non-trivial �(n) approximation algorithmwould then suggest the following 
andidate for bounded distan
e de
oding:Open Problem 2 Given an n � k matrix G, a word R 2 �n and an integert, �nd all 
odewords within a Hamming distan
e of t from R, or show that theminimum distan
e of the 
ode is less than t�1(n).A similar problem is posed by Vardy [18℄ for �1 = 2. Here the hope wouldbe to �nd the smallest value of �1 for whi
h a polynomial time algorithm exists.While there is no immediate formal reasoning to believe so it seems reasonableto believe that �1 will be larger than �.Next we move to the questions in the area of design of eÆ
ient 
odes, moti-vated by the work of Spielman [15℄.Open Problem 3 For every � > 0, design a family of [n; �n; Æn℄2 
odes Cn sothat the bounded distan
e problem on Cn with parameter t � 
n 
an be solved inlinear time.The goal above is to make 
 as large as possible for every �xed �. Spielman'sresult allows for the 
onstru
tion 
odes whi
h mat
h the best known values of Æfor any [n; �n; Æn℄2 linear 
ode. However the value of 
 is still far from Æ in theseresults.We now move towards questions dire
ted towards de
oding Reed-Solomon
odes. We dire
t the reader's attention to Figure 1. Clearly every point abovethe solid 
urve and below the distan
e bound of the 
ode, represents an openproblem. In parti
ular we feel that the following version maybe solvable in poly-nomial time:Open Problem 4 Find a bounded distan
e de
oding algorithm for an [n; �n; (1��)n℄q Reed Solomon 
ode that de
odes up to t � (1�p�)n errors.The motivation for this parti
ular version is that in order to solve the boundeddistan
e de
oding problem, one needs to ensure that the number of outputs (i.e.,the number 
odewords within the given bound t) is polynomial in n. Su
h abound does exist for the value of t as given above [6, 12℄, thus raising the hopethat this problem may be solvable in polynomial time also.Similar questions may also be raised about de
oding multivariate polyno-mials. In parti
ular, we don't have polynomial time algorithms mat
hing the



bounded distan
e de
oding algorithm from [16℄, even for the 
ase of bivariatepolynomials. This we feel may be the most tra
table problem here.Open Problem 5 Find a bounded distan
e de
oding algorithm for the bivariatepolynomial 
ode Cpoly;2;�n;n that de
odes up to t � (1�p2�)n2 errors.Referen
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