
Maximum Likelihood Decoding of Reed Solomon Codes

Madhu Sudan ∗

Abstract

We present a randomized algorithm which takes
as input n distinct points {(xi, yi)}ni=1 from F ×F
(where F is a field) and integer parameters t and
d and returns a list of all univariate polynomi-
als f over F in the variable x of degree at most
d which agree with the given set of points in at
least t places (i.e., yi = f(xi) for at least t values
of i), provided t = Ω(

√
nd). The running time

is bounded by a polynomial in n. This imme-
diately provides a maximum likelihood decoding
algorithm for Reed Solomon Codes, which works
in a setting with a larger number of errors than
any previously known algorithm. To the best
of our knowledge, this is the first efficient (i.e.,
polynomial time bounded) algorithm which pro-
vides some maximum likelihood decoding for any
efficient (i.e., constant or even polynomial rate)
code.

1 Introduction

1.1 Problem Statement

We consider the following problem.

Problem 1
Input: A field F ; n distinct pairs of elements
{(xi, yi)}ni=1 from F × F ; and integers d and t.

Output: A list of all functions f : F → F satisfy-
ing

f(x) is a polynomial in x of degree

at most d with |{i|f(xi) = yi}| ≥ t

 (1)

∗IBM Thomas J. Watson Research Center, P.O.

Box 218, Yorktown Heights, NY 10598, USA. email:

madhu@watson.ibm.com.

The above problem, and close variants, have been
considered before in the context of coding theory
and learning. The best threshold on t for which a
polynomial time bounded algorithm to solve this
problem was previously known is t ≥ n+d+1

2 . No-
tice that the ratio t/n → 1

2 if we fix d and let
n→∞. In fact, when t satisfies this property then
there is a unique function f satisfying (1). A par-
ticularly simple algorithm for this case is given by
Berlekamp and Welch [4] (see, for instance, Gem-
mell and Sudan [9]).

In this paper we present an algorithm which solves
the problem given above for t = Ω(

√
nd). Notice

that for fixed d, as n → ∞, the fraction of agree-
ment required by our algorithm approaches 0 (and
not 1

2 which is what previous algorithms seem to
get). The algorithm is based on an algorithm of
Ar et al. [1] for a restricted version of this prob-
lem.

The task of reconstructing polynomials describing
a given set of points is relevant in the context of
coding theory and we describe this context next.
This task may also be of some relevance to com-
putational complexity theory. We touch on this
motivation very briefly in the conclusions.

1.2 Error-correcting Codes

For integers n, k, δ and a collection of symbols Σ,
an [n, k, δ]-code over Σ is a collection C ⊂ Σn of
n-letter words over the alphabet Σ with |C| = |Σ|k
and the property that any two strings in C differ
in at least δ places (i.e., the strings have Hamming
distance δ). Given a code C, the largest δ for which
C is a [n, k, δ]-code is referred to as the distance
of the code. If τ satisfies 2τ + 1 ≤ δ, then an

1

[n, k, δ]-code C is also a “τ -error-correcting code”.
This terminology reflects that fact that given any
string s ∈ Σn, there is at most one string c ∈ C
which is within a Hamming distance of τ from s.

The codes of relevance to this paper are the Reed
Solomon Codes. For a finite field F of size n

and parameter d, the Reed Solomon Code is an
[n, d+ 1, n− d]-code over F , whose codewords are
the strings {(p(0), p(w), p(w2), . . . , p(w|F |−1))}p,
where w is some fixed primitive element of F and
p ranges over all polynomials of degree at most d
over F (see, for instance, [15], page 86).

The algorithmic tasks of relevance to this pa-
per are the tasks of “error-correction” and
“maximum-likelihood decoding”. The problem of
τ -error-correction for an [n, k, δ]-code is defined for
2τ + 1 ≤ δ as follows: “Given a string s ∈ Σn,
find a string c ∈ C which is within Hamming dis-
tance τ of s, if one such exists.” Since C is a τ

error-correcting code, the answer, if it exists, is
unique. Notice that the problem is not defined for
values of τ and δ (i.e., when 2τ + 1 > d) which
may allow for non-unique answers. The maximum-

likelihood decoding problem is set in a model where
larger numbers of errors are considered less likely,
and is defined as follows: “Given a string s ∈ Σn,
find a (the) codeword c ∈ C which is nearest to s
(i.e., least Hamming distance away from s).” This
problem is also sometimes referred to as the near-
est codeword problem.

Previous work has focused mainly on the task
of error-correction and algorithms are known for
error-correction of many interesting codes. In
particular, for Reed Solomon Codes, the τ -error-
correction problem for a τ -error correcting code
can be solved in polynomial time. The earlier
mentioned solution of Berlekamp and Welch [4]
works in this setting.

The case of recovering from error larger than the
error-correction capacity of a code has not at-
tracted the same amount of attention and signifi-
cantly less is known about this problem. Since in
this case the solution to the maximum-likelihood
decoding problem may not be unique, it is not

clear which solution is to be reported when the
answer is not unique. Further, it is not clear why
any algorithm would be able to (or should be al-
lowed to) prefer any one solution over any other
equally respectable solution.

However, it is possible to define a closely related
problem which does not offer the algorithm any
choice in its solutions. This problem, sometimes
called the τ -reconstruction problem, is defined as
follows: “Given a string s, find all codewords c ∈ C
that are within Hamming distance τ of s.” This
reconstruction problem offers the solution to the
maximum-likelihood decoding problem for a much
larger range of τ than allowed by the τ -error cor-
rection problem. This is the problem tackled in
this paper for the case of Reed Solomon Codes.

The τ -reconstruction problem is not a universal
panacea for the maximum-likelihood problem. In
fact by making the task enumerative (rather than
picking one element from a large set, we want
the whole set), the complexity requirements of the
task go up. In particular the running time is lower
bounded by the output size. Bounds on the out-
put size of the reconstruction problem have been
studied in the context of coding theory and a well
known bound, due to S. Johnson (see [17]), bounds
the number of solutions by n(n−δ)

2τ2−(2n)τ+n(n−d) for bi-
nary codes (i.e., codes over the alphabet {0, 1}),
provided the denominator is positive. For gen-
eral codes, a simple bound can be shown by an
inclusion-exclusion argument (see, for instance,
[11]) which yields that the number of solutions
to the τ -reconstruction problem is at most 2/ε, if
τ = (1− ε)δ, provided τ < n−

√
2n(n− δ). (An-

other such bound is also known due to Goldreich,
Rubinfeld and Sudan [11]. We do not describe this
here.) However the inclusion-exclusion bound is
not constructive, i.e., it does not provide a list of
the 2/ε codewords which may be the solution to
the reconstruction problem.

It is reasonable to ask for a solution to the recon-
struction problem which runs in polynomial time,
when the output size in bounded. Here we solve
the τ -reconstruction problem for Reed Solomon

2

Codes for exactly the same values of the param-
eters δ and τ for which the inclusion-exclusion
bound seems to work. Finding bounds which work
for more general settings of δ and τ and finding so-
lutions to the reconstruction problem which work
in such settings remain open questions.

1.3 Previous work

As mentioned in the previous section, the τ -error
correcting problem is well-studied and we will not
describe past work in that problem here. The def-
inition of the τ -reconstruction problem used here
is based on definitions of Ar, Lipton, Rubinfeld
and Sudan [1] and Goldreich, Rubinfeld and Su-
dan [11]. To the best of our knowledge, there
are only two instances where the τ -reconstruction
problem has found interesting solutions for some
error-correcting code. The first, due to Goldreich
and Levin [10], provides a solution for certain fam-
ilies of Hadamard Codes. Kushilevitz and Man-
sour [14], provide a variant of this algorithm which
applies to the same codes. The second instance,
involves a generalization of the codes and algo-
rithm given by [10], and is due to [11]. Both the
codes given here are extremely low-rate codes. In
fact, the rate (i.e., the ratio k/n), for these codes
is O(logO(1) n

n) and thus a brute-force algorithm
(running in time poly(|Σ|k)) is not too inefficient
for these problems. What makes the solutions of
[10, 14, 11] interesting and efficient is that they
work in time polynomial in k, using random access
to an oracle describing the input s. This makes the
solution interesting in some learning theoretic and
cryptographic settings, but is however not very
useful for coding theoretic applications (due to the
low information rate). The techniques of Goldre-
ich and Levin (which are inherited by [14, 11]) are
interesting in that they manage to convert, mod-
ularly, the non-constructive bounds on the num-
ber of outputs (discussed earlier) into constructive
ones. But their technique does not appear to gen-
eralize to the setting of Reed Solomon Codes (or
any other high-rate codes).

Ar et al. [1] do provide some solutions to the re-
construction problem, but not in its full generality.

In particular they restrict the nature of the input
string s. For this restricted case they provide a
solution to the reconstruction problem based on
algebraic techniques (and in particular uses poly-
nomial time solutions to the bivariate factoring
problem). Our solution is a minor modification of
their algorithm and analysis which manages to get
around their restriction.

2 Algorithm

We now present our algorithm for solving the
problem given in Section 1.1.

Definition 1 (weighted degree) For weights
wx, wy ∈ Z+, the weighted degree of a monomial
qijx

iyj is iwx + jwy. The (wx, wy)-weighted de-
gree of a polynomial Q(x, y) =

∑
ij qijx

iyj is the
maximum, over the monomials with non-zero co-
efficients, of the (wx, wy)-weighted degree of the
monomial.

Algorithm:

A. /* Parameters l,m to be set later. */

B. Find any function Q : F 2 → F satisfying

Q(x, y) has (1, d)-weighted degree

at most m+ ld,

∀i ∈ [n], Q(xi, yi) = 0,

Q is not identically zero.


(2)

C. Factor the polynomial Q into irreducible fac-
tors.

D. Output all the polynomials f such that (y −
f(x)) is a factor of Q and f(xi) = yi for at
least t values of i from [n].

Note: Step C above can be solved in randomized
polynomial time with zero-sided error. If F is of
characteristic zero, or if the running time is al-
lowed to be polynomial in |F |, then the solution
can be obtained deterministically. (See, for in-
stance, [12].)

3

3 Analysis

In order to prove that the algorithm above can
be run in polynomial time and works correctly,
we need to prove the following set of claims. In
all the following claims, we fix the set of pairs
{(x1, y1), . . . , (xn, yn)}.

Claim 2 If a function Q : F 2 → F satisfying
(2) exists, then one can be found in time poly(n).

Proof: Let Q(x, y) =
∑l
j=0

∑m+(l−j)d
k=0 qkjx

kyj .
Then we wish to find coefficients qjk satisfying the
constraints

∑l
j=0

∑m+(l−j)d
k=0 qkjx

k
i y
j
i = 0, for every

i ∈ [n]. This is a linear system in the unknowns
{qkj} and hence if a solution exists then one can
be found in polynomial time.

Claim 3 If (m+ 1)(l+ 1) +d
(l+1

2

)
> n then there

exists a function Q(x, y) satisfying (2).

Proof: First we observe that the linear system
is homogenous. Therefore the setting qkj = 0,
satisfies all the linear constraints. However this
does not satisfy (2), since Q would be identi-
cally zero. In order to show that a non-zero so-
lution exists, we observe that the number of un-
knowns in the linear system that we wish to solve
is (m+ 1)(l+ 1) + d

(l+1
2

)
. Since this is more than

n, we have a homogenous linear system with more
variables than constraints and hence a non-zero
solution exists.

The following lemma is a special case of a gen-
eral class of theorems known as Bezout’s Theo-
rem. Since we will be interested in tight behavior
of the theorem, we use a version due to [1]. The
proof is also from [1].

Claim 4 If Q(x, y) is a function satisfying
(2) and f(x) is a function satisfying (1) and
t > m+ ld, then (y − f(x)) divides Q(x, y).

Proof: Consider the function
p(x) def= Q(x, f(x)). This is a polynomial of de-
gree at most m + ld in x. Since Q(xi, f(xi)) is
zero whenever yi = f(xi), we have that p(xi) is
zero for strictly greater than m+ ld points. Thus
p has more zeroes than its degree and hence is
identically zero, implying Q(x, f(x)) ≡ 0.

Now consider Q(x, y) as a polynomial Qx(y) in y

with coefficients from F [x], the ring of polynomi-
als in x. By the polynomial remainder theorem,
we have that if Qx(ζ) = 0, then (y − ζ) divides
Qx(y). Substituting ζ = f(x), yields the lemma.

We are now ready to optimize the parameters m
and l. For now we will ignore the fact that l and
m have to be integers and fix this aspect later.
Notice that we want

m+ ld < t and (m+ 1)(l + 1) + d

(
l + 1

2

)
> n.

Thus given a value of l, we can compute the small-
est m for which the second condition holds and
that is

n+1−d(l+1
2)

l+1 − 1. Thus we find that t must
be at least

n+ 1− d
(l+1

2

)
l + 1

− 1 + ld+ 1 =
n+ 1
l + 1

+
dl

2
.

We can now minimize the expression above as a
function of the unknown parameter l to obtain
the smallest value of t for which this algorithm
will work. The minimum occurs when

−(n+ 1)
(l + 1)2

+
d

2
= 0⇒ l =

√
2(n+ 1)

d
− 1.

This setting yields

m ≥
√

(n+ 1)d/2−
√

(n+ 1)d/2 + d/2− 1

= d/2− 1

and

t ≥ m+ ld ≥ d/2− 1 +
√

2(n+ 1)d− d

=
√

2(n+ 1)d− d/2− 1.

Due to integrality issues we will lose a little bit in
the following theorem.

4

Theorem 5 Given a sequence of n distinct pairs
{(xi, yi)}ni=1, where the xis and yis are elements
of a field F , and integer parameters t and d, such
that t ≥ dd

√
2(n+ 1)/de − bd/2c, there exists an

algorithm which can find all the polynomials f :
F → F of degree at most d, such that the number
of point (xi, yi) such that yi = f(xi) is at least t.

Proof: We use the algorithm of Section 2 with
m = dd/2e − 1 and l = d

√
(2(n+ 1)/d)e − 1. It

may be verified that this setting satisfies the con-
dition (m + 1)(l + 1) + d

(l+1
2

)
≥ n + 1. Hence by

Claim 3, Step 2 will return a function Q(x, y) sat-
isfying property (2). Furthermore, the setting of
m and l also satisfies the condition t > m + ld.
Thus Claim 4 guarantees that if f is a function
satisfying (1), then (y−f(x)) will divide the poly-
nomial Q returned in Step 2 and hence be one of
our outputs.

4 Bound on the number of polynomials

Here we give a new proof of an upper bound given
in [11] on the number of polynomials f of degree d
agreeing with t out of n distinct points {(xi, yi)}.
Their proof uses an inclusion-exclusion argument,
while ours is different. Notice that their bound
is exactly the same and applies under exactly the
same conditions on n, t and d, with the impor-
tant difference being that our proof holds only for
the univariate polynomial case, while theirs ap-
plies more generally. Nevertheless we feel that this
new proof may be of some interest. Furthermore
this justifies the statement, made in Section 1 that
our algorithm works in exactly the same setting as
the inclusion-exclusion bound.

Lemma 6 If t/n ≥
(√

2 + d
4n ·

√
d
n

)
− d

2n , then

the number of polynomials f of degree d satisfy-
ing (1) is at most

b t
d

+
1
2
−
√

(
t

d
+

1
2

)2 − 2n
d
c ≤ 2n

t+ d/2
.

Proof: If m and l are integers such that the al-
gorithm of the previous section works correctly,
then the algorithm of Section 2 gives at most l
solutions implying that l is an upper bound on
the number of polynomials of degree d which can
agree with n given points at t places. In other
words, if m and l are integers satisfying

(m+ 1)(l + 1) + d

(
l + 1

2

)
> n. (3)

and m+ ld+ 1 ≤ t, (4)

then l is an upper bound on the number of func-
tions satisfying (1). (4) indicates that we should
pick m to be as large as possible subject to the
constraint m ≤ t − ld− 1. We therefore set m to
t− ld− 1. Thus (3) reduces to

(t− ld)(l + 1) + d(l + 1)l/2 > n.

In other words we require

(
d

2
) l2 − (t− d

2
) l + (n− t) < 0. (5)

Let

α
def=

1
d

(
(t− d/2)−

√
(t− d/2)2 − 4(d/2)(n− t)

)
and

δ
def=

2
d

(√
(t− d/2)2 − 4(d/2)(n− t)

)
.

Then α and α + δ are the two roots to (5). If
δ > 1, then l = bα + 1c1 and m = t − ld − 1,
satisfy conditions above and l provides an upper
bound on the number of functions satisfying (1).

The condition δ > 1 is satisfied if√(
2t
d
− 1

)2

− 8
n

d
+ 8

t

d
> 1.

⇐

√(
2t
d

+ 1
)2

− 8
n

d
> 1.

1Notice that we need l to be an integer which satisfies

the inequality (5) strictly and hence we are forced to use

bα+ 1c rather than just dαe.

5

⇐
(

2t
d

+ 1
)2

− 8
n

d
> 1.

⇐ 2t
d

+ 1 >
√

8
n

d
+ 1.

⇐ t >
d

2

(
−1 +

√
8
n

d
+ 1

)

= n

√d

n

√
2 +

d

4n
− 8d

n

 .
If t satisfies the condition above then we get the
following bound for l.

l = bα+ 1c

= b(t
d
− 1

2
)−

√
(
t

d
− 1

2
)2 − 2(n− t)

d
+ 1c

= b(t
d

+
1
2

)−
√

(
t

d
+

1
2

)2 − 2n
d
c.

This yields the lemma. ([11] already show that
the final quantity is upper bounded by 2n

t+d/2 , so

we don’t have to show that part.)

5 Extensions to multivariate polynomi-
als

It is relatively simple to extend the algorithm and
the analysis of the earlier sections directly so as to
apply for multivariate polynomial fitting.

We first extend the problem definition. Some
slight care has to be take to determine what is an
appropriate extension of the problem definition,
and the definition below turns out to be the one
for which the extension works easily.

We consider k variate polynomials. We use
x(1), . . . , x(k) to denote the k variables. The short-
hand x̂ will be used to denote this tuple of vari-
ables in vector notation.

Problem 2
Input: A field F , a set H ⊂ F , a function f ′ :
Hk → F and integers t and d.

Output: A list of all functions f : F k → F satis-
fying

f(x̂) is a polynomial in x̂

of degree at most d and

|{x̂ ∈ Hk|f(x̂) = f ′(x̂)}| ≥ t.

 (6)

The algorithm is a straightforward generalization
of the algorithm of Section 2. We first extend the
definition of weighted degree in the obvious way.

Definition 7 For integers
w1, . . . , wn, the (w1, . . . , wn)-weighted degree of a
monomial

∏n
i=1 x

di
i is

∑
iwidi. The (w1, . . . , wn)-

weighted degree of a polynomial Q(x1, . . . , xn) is
the maximum, over the monomials with non-zero
coefficients in Q, of the (w1, . . . , wn) weighted de-
gree of the monomial.

Multivariate Algorithm:

A’. /* Parameters l,m to be set later. */

B’. Find any function Q : F k+1 → F satisfying

Q(x̂, y) has (1, . . . , 1, d)-weighted

degree at most m+ ld,

∀x̂ ∈ Hk, Q(x̂, f ′(x̂)) = 0,

Q is not identically zero.


(7)

C’. Factor the polynomial Q into irreducible fac-
tors.

D’. Output all degree d polynomials f such that
(y − f(x̂)) is a factor of Q and f(x̂i) = yi for
at least t values of i from [n].

As usual we need to ensure that the number of
coefficients of Q is more than n and prove that for
sufficiently large t, the algorithm will output all
solutions to the reconstruction problem above.

Claim 8 If m+ ld ≥ (k+ 1)(d+ 1)
1

k+1h
k

k+1 , then
then there exists a function Q(x̂, y) satisfying (7).

6

Proof of Sketch: The number of coefficients
in Q is strictly larger than 1

m+d+1

(m+ld+k+1
k+1

)
.

(Essentially Q is a degree m + ld polyno-
mial in k + 1 variables with some slight differ-
ences, which is handled easily the 1

m+d+1 factor.)
This number can be lower bounded (grossly) by

1
m+d+1(m+ld+k+1

k+1)k+1 and we wish this to be at
least as large as n = hk, which follows easily.

Now it remains to mimic Lemma 4 in the multi-
variate setting.

Claim 9 If Q(x̂, y) is a function satisfying
(7) and f(x̂) is a function satisfying (6) and
t > (m+ ld)hk−1, then (y− f(x̂)) divides Q(x̂, y).

Proof of Sketch: Proof similar to that of
Lemma 4. The function p(x̂) def= Q(x̂, f(x̂)) is
a polynomial of degree m + ld and identically
zero. Hence f(x̂) is a root of the polynomial
Qx̂(y) def= Q(x̂, y).

Thus with some optimization of parameters we are
done.

Theorem 10 Given a table for a function f ′ :
Hk → F , where F is a field and H is an arbitrary
finite subset of F , and integers t and d a list of
all polynomials f : F k → F of degree at most d
which agree with f ′ in t places can be found in
time poly(|H|k) provided

ε
def=

t

|H|k
> (k + 1)

(
d+ 1
|H|

) 1
k+1

.

Proof: Let h = |H|. Set m = 0 and l =
1
d(k + 1)(d + 1)

1
k+1h

k
k+1 . Then since m + ld ≥

(k + 1)(d + 1)
1

k+1h
k

k+1 , Lemma 8 guarantees that
Step B’ of the multivariate algorithm will return
a polynomial Q satisfying (7). Further the condi-
tion on t implies that t ≥ (m+ ld)hk−1 indicating
that if a function f satisfies (6), then y−f(x̂) will
divide Q. Thus all polynomials will be returned
by this procedure.

5.1 Modular improvement of the Goldre-
ich et al. algorithm

Goldreich et al. [11], present a different solution to
the reconstruction problem for multivariate poly-
nomials. The conditions under which their algo-
rithm works are quite different from the conditions
under which our algorithm works. For instance,
their solution requires H = F , but can work for
smaller values of t. They assume that f ′ is pre-
sented as an oracle, and present a probabilistic al-
gorithm which queries the oracle for the value of
f ′ on randomly chosen points. The running time
bounds in their case are also quite different. Their
algorithm runs in time exponential in d but poly-
nomial in k, the number of variables for any fixed
d (while ours runs in time exponential in k but
polynomial in d). Thus for the most part the two
solutions seem incomparable. However it is possi-
ble to combine the effects of both algorithms if the
conditions under which they work are met simul-
taneously. This is because their algorithm uses as
subroutines algorithms for the univariate and 4-
variate reconstruction problems. If the conditions
for the usage of our algorithm are met (in partic-
ular, the condition on ε from Theorem 10), then
our algorithm could be used to accelerate the sub-
routines there and hence the performance of their
algorithm.

6 Conclusions

We first discuss the univariate reconstruction algo-

rithm. The limit on t, i.e., t
≥
≈
√

2nd is a significant
weakness in any practical use of this code. Prac-
tical applications tend to work with [n, k, δ] codes
where δ/n → 0, and for such growth our proof
does not yield anything interesting. However low-
rate codes, and even Hadamard codes, have been
used in the past2 and when it suffices to use a low-
rate code the reconstruction algorithm has some
advantage, but even this advantage is likely to be
only theoretical (since the use of bivariate factor-
ing will probably render this algorithm quite slow

2Apparently the Voyager used a Hadamard code [17].

7

in practice). Nevertheless, we would like to pose
the question of solving the τ -reconstruction prob-
lem, whenever τ is strictly less than the distance
of the code, i.e., τ = (1 − ε)δ and ε > 0, in time
polynomial in n, as an open problem. One does
not expect the running time to be polynomial in
1
ε , since [11] give a NP-hardness proof in this case.
The NP-hardness result there has n = 2d + 3,
t = d + 2, with d being the degree of the desired
polynomial. The instance is defined over the re-
als/rationals.

One of the main hopes was that this algorithm
will be of some use in complexity theory. It
is in this area that numerous application for
”Reed Solomon like”-codes have occurred repeat-
edly. Examples include the hardness of the per-
manent on random instances [16, 7], Byzantine
agreement [3], and almost every result involving
probabilistically-checkable proofs. (See survey by
Feigenbaum [8] for a detailed look at many connec-
tions.) In particular, in the case of applications to
probabilistically checkable proofs, it becomes use-
ful to be able to characterize functions that are not
close to polynomials (to be able to refute claimed
proofs of incorrect statements). Notice that our
algorithm proves that the problem of recognizing
points which are not very close to any polynomial
is decidable in NP (by showing it is in P). The
witness for this property is a proof that a function
does not have a low-degree polynomial describing
it on even a tiny fraction of the input. Recent
work by Arora and Sudan [2] seems to justify this
hope by using some of this analysis in a new anal-
ysis of low-degree testing, which may lead to some
new constructions of PCP proof systems.

Moving on to the multivariate reconstruction
problem, several glaring open problems remain.
For starters, it is not clear as to how to even
bound the number of solutions when ε

def= t
|H|k

is less than Ω(
√
d/|H|). Then even in the cases

where ε is larger than Ω(
√
d/|H|), the reconstruc-

tion problem is not fully solved. In particular even
for the case k = 2, no algorithm appears to solve
this problem efficiently. This should hopefully be
some oversight on our part and some simple mod-

ification of methods in [9, 1, 11] may work. How-
ever such a solution does not remain algebraic.
The question of whether there is an algebraic solu-
tion to the k-variate problem for general k, which
works whenever ε = Ω(

√
d/|H|) seems to be an-

other interesting question.

Lastly we speculate on the complexity of the
maximum-likelihood problem (or the nearest
codeword problem). This problem is known to be
NP-hard for general linear codes [5]. The hardness
of the problem considered in [5] could be due to
one of two reasons: (1) It is a maximum likelihood
decoding problem rather than a τ -error correction
problem; (2) The code is specified as part of the in-
put, rather than being a ”well-known” one which
is more standard. It would be nice to know which
of the two causes is responsible for the hardness,
since for all well-known codes, the τ -error cor-
rection problem seems to well-solved. Bruck and
Naor [6] present a code (not well-known, but nev-
ertheless easily presented), for which they show
that the existence of small size maximum likeli-
hood decoding circuits would imply the collapse of
the polynomial hierarchy (using a result of Karp
and Lipton’s [13]). However the codes presented
by Bruck and Naor do not have large distance.
It still remains open if the maximum likelihood
decoding problem is hard for any constant dis-
tance code. The Reed-Solomon codes would have
formed a good candidate to show hardness of this
problem, except that it is not so hard to solve.
It would be nice to find some other candidate for
such a hardness result. Lastly, there is still the
possibility that some error-correcting codes are
hard to decode, to even the full extent of their
error-correction capacity. Alternately, we can ask
the question: Is it possible to construct a τ -error
correction algorithm for every τ -error correcting
linear code, specified by its generator matrix? A
positive answer to this might necessitate an al-
gorithm to determine the distance of a code, a
well-known open problem.

8

Acknowledgments

Many thanks to Sanjeev Arora, Greg Sorkin,
Ronitt Rubinfeld, Martin Tompa and Shmuel
Winograd for many valuable comments and dis-
cussions.

References

[1] S. Ar, R. Lipton, R. Rubinfeld and

M. Sudan. Reconstructing algebraic func-
tions from mixed data. FOCS, 1992.

[2] S. Arora and M. Sudan. Manuscript, Au-
gust, 1996.

[3] M. Ben-Or, S. Goldwasser and

A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed
computation. STOC, 1988.

[4] E. Berlekamp and L. Welch. Error Cor-
rection of Algebraic Block Codes. US Patent,
Number 4,633,470, 1986.

[5] E. Berlekamp, R. McEliece and H. van

Tilborg. On the inherent intractability of
certain coding problems. IEEE Transactions
on Information Theory, pp. 384–386, 1978.

[6] J. Bruck and M. Naor. The hardness
of decoding linear codes with preprocessing.
IEEE Trans. Inform. Theory, pp. 381–385,
1990.

[7] U. Feige and C. Lund. On the hardness
of computing the permanent of random ma-
trices. STOC, 1992.

[8] J. Feigenbaum. The Use of Coding Theory
in Computational Complexity. Proceedings of
Symposia in Applied Mathematics, R. Calder-
bank (ed.), American Math Society, Provi-
dence, pp. 203–229, 1995.

[9] P. Gemmell and M. Sudan. Highly re-
silient correctors for polynomials. Info. Proc.
Letters, 43 (1992), 169–174.

[10] O. Goldreich and L.A. Levin. A Hard-
Core Predicate for any One-Way Function.
STOC, 1989.

[11] O. Goldreich, R. Rubinfeld and M. Su-

dan. Learning polynomials with queries: The
highly noisy case. FOCS, 1995.

[12] E. Kaltofen. Polynomial Factoriza-
tion 1987–1991. LATIN ’92, I. Simon (Ed.),
Springer LNCS, vol. 583, pp. 294–313, 1992.

[13] R. Karp and R. Lipton. Some connections
between nonuniform and uniform complexity
classes. STOC, 1980.

[14] E. Kushilevitz, Y. Mansour. Learn-
ing decision trees using the Fourier spectrum.
STOC, 1991.

[15] J. H. van Lint. Introduction to Coding The-
ory. Springer-Verlag, 1982.

[16] R. Lipton. New directions in testing.
Distributed computing and cryptography, DI-
MACS Series in Discrete Math. and Th. CS,
vol. 2, AMS, 1991.

[17] F. MacWilliams and N. Sloane. The
Theory of Error-Correcting Codes. North-
Holland, 1981.

9

